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Abstract. In this paper, we propose PCKID , a novel, robust, kernel
function for spectral clustering, specifically designed to handle incom-
plete data. By combining posterior distributions of Gaussian Mixture
Models for incomplete data on different scales, we are able to learn a ker-
nel for incomplete data that does not depend on any critical hyperpara-
meters, unlike the commonly used RBF kernel. To evaluate our method,
we perform experiments on two real datasets. PCKID outperforms the
baseline methods for all fractions of missing values and in some cases
outperforms the baseline methods with up to 25% points.

Keywords: Missing data · Robustness · Kernel methods · Spectral clus-
tering

1 Introduction

Clustering is of utmost importance in the field of machine learning, with a vast
literature and many practical applications [7]. Over the past decades, a huge
variety of methods have been proposed. These range from simple linear meth-
ods like k-means [21], to more recent advanced methods, like spectral cluster-
ing [4,14,15,22,23]. Spectral clustering is a family of highly performing cluster-
ing algorithms, currently considered state of the art. In spectral clustering, the
eigenvectors and eigenvalues (spectrum) of some similarity matrix are exploited
to generate a beneficial representation of the data, such that a simple method
like k-means could be utilized to generate a partitioning, even with non-linearly
separable data.

Analyzing incomplete datasets (with missing features) is a big challenge
within clustering methods and data analysis in general, since encountering
incomplete data is common in real applications. For instance, an entry in the
dataset may not be recorded if a sensor is failing or a field in a questionnaire is left
unanswered. Both supervised and unsupervised methods have been proposed to
deal with incomplete data. In the supervised setting, we have e.g. a max–margin
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framework, where geometric interpretations of the margin is used to account for
missing data [1], an approach based on training one SVM per missingness pat-
tern [17] and the “best” Bayesian classifier [12] approach. In the unsupervised
setting, there are mixture model formulations accounting for missing features,
including both non–Bayesian approaches [5,10] and Bayesian approaches [11].
In general, a common approach is to apply imputation techniques [3] to esti-
mate the missing values and then proceeding with the analysis on the imputed,
complete, data set. None of these approaches come without challenges since the
best choice of imputation technique is often very dependent on the data, and
moreover difficult to evaluate.

In this paper, we propose as a new approach to integrate in a synergistic
manner recent advances in spectral clustering and kernel methods with existing
probabilistic methods for dealing with incomplete data. In particular, we exploit
the Probabilistic Cluster Kernel (PCK) framework [6], which combines posterior
distributions of Gaussian Mixture Models (GMMs) on different scales to learn
a robust kernel function, capturing similarities on both a global and local scale.
This kernel function is robust with regards to hyperparameter choices, since
instead of assuming some structure in the data, the ensemble of GMMs adapt
to the data manifold. We hypothesize that by integrating GMMs specifically
designed to handle incomplete data [10] into the PCK framework for spectral
clustering, we will be able to cluster incomplete data sets in a more robust
manner compared to existing approaches. The proposed approach for building
the kernel matrix to be used for spectral clustering in our framework, is denoted
the Probabilistic Cluster Kernel for Incomplete Data (PCKID).

2 Background Theory

2.1 Missing Data Mechanisms

Let x = {xi} denote a data vector and let xo and xm denote the observed- and
missing features of x. Define r = {ri}, where ri = 1 if xi ∈ xm and zero otherwise
to be the missing indicator for x. In order to train a model that accounts for
values in the dataset that are not observed, one has to rely on assumptions that
describe how missing data occurs. In this section, we describe the three main
missing data mechanisms that characterize the structure of r [17].

Missing Completely at Random (MCAR). Features are said to be missing
completely at random (MCAR) if the features are missing independently from
both the observed values xo and the missing values xm. That is,

P (r|x) = P (r).

This is the missingness assumption on the data that leads to the simplest analy-
sis. However, this assumption is rarely satisfied in practice.
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Missing at Random (MAR). If the features are missing independently of
their values, the features are said to be missing at random (MAR). Then the
missingness of the features are only dependent of the observed values, such that

P (r|x) = P (r|xo).

This missing data mechanism is often assumed when working with missing
data, since many real world missing data are generated by this mechanism. For
instance, a blood test of a patient might be missing if it is only taken given some
other test (observed value) exceeds a certain value.

Not Missing at Random (NMAR). If the missingness of a feature is depen-
dent on their values, it is said to be not missing at random (NMAR), that is

P (r|x) = P (r|xm).

For instance, NMAR occurs when a sensor measurement is discarded because it
goes beyond the maximum value that the sensor can handle.

2.2 Gaussian Mixture Models for Incomplete Data

In this section, we briefly summarize how to implement Gaussian Mixture Models
(GMM) when the data have missing features. This model will be exploited as the
foundation for PCKID to learn a robust kernel function. For details, we address
the interested reader to [10].

A GMM is used to model the probability density function (PDF) for given
dataset. In a GMM, a data point xi is assumed to be sampled from a multivariate
Gaussian distribution Nk(xi|μk,Σk) with probability πk and k ∈ [1,K], where
K corresponds to the number of mixture components. Accordingly, the PDF of
the data is modeled by a mixture of Gaussians, such that

f(x) =
K∑

k=1

πkN (x|μk,Σk). (1)

The maximum likelihood estimates for the parameters in this model can be
approximated through the Expectation Maximization (EM) algorithm.

When the data have missing features, we assume that the elements in a data
vector xi can be partitioned into two components; one observed part xo

i and
one missing part xm

i as explained in Sect. 2.1. Then, one can construct a binary
matrix Oi by removing the rows from the identity matrix corresponding to the
missing elements xm

i , such that xo
i = Oixi. Given the mean vector μk and the

covariance matrix Σk for mixture component k, the mean and covariance matrix
for the observed part of missingness pattern i is given by

μo
k,i = Oiμk

Σo
k,i = OiΣkOT

i .
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Algorithm 1. EM algorithm for incomplete data GMM
1: Initialize μ̂
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5: end while

By defining
So

k,i = OT
i Σo

k,i
−1Oi,

one can show that, under the MAR assumption, the EM procedure outlined in
Algorithm 1 will find the parameters that maximizes the likelihood function [10].

Note that, even though the notation in this paper allows for a unique miss-
ingness pattern for each data point xi, one missingness pattern is usually shared
between several data points. Thus, to improve efficiency when implementing
Algorithm 1, one should sort the data points by missingness pattern such that
parameters that are common across data points are calculated only once [10].

Diagonal Covariance Structure Assumption. In some cases, when the
dimensionality of the data is large compared to the number of data points,
in combination with many missingness patterns, one could consider assuming
a diagonal covariance structure for the GMM for computational efficiency and
numerical stability when inverting covariance matrices. This will of course limit
the models to not encode correlations between dimensions, but for some tasks it
provides a good approximation that is a viable compromise when limited com-
putational resources are available. In this case, covariance matrices are encoded
in d-dimensional vectors, which simplify the operations in Algorithm 1.

Let σ̂k be the vector of variances for mixture component k and let ŝk,i be a
vector with elements ŝk,i(�) = 1

σk(�)
if element � of data point xi is observed and
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ŝk,i(�) = 0 otherwise. Define

ŷk,i = μ̂k + σ̂k � ŝk,i � (xi − μ̂k), (2)

and
ωk,i = γ̂k,i ((ŷk,i − μ̂k) � (ŷk,i − μ̂k) + σ̂k − σ̂k � ŝk,i � σ̂k) (3)

where � denotes the Hadamard (element wise) product. Estimating the para-
meters with an assumption of diagonal covariance structure is then a matter of
exchanging Ŷk,i and Ωk,i with ŷk,i and ωk,i respectively in Algorithm 1.

2.3 Spectral Clustering Using Kernel PCA

Spectral clustering is a family of clustering algorithms, where the spectrum, i.e.
the eigenvalues and eigenvectors, of some similarity matrix is exploited for clus-
tering of data separated by non-linear structures [4,14,15,22,23]. Most spectral
clustering algorithms employ a two-stage approach, with (i) a non-linear feature
generation step using the spectrum and (ii) clustering by k-means on top of the
generated features [14,19]. Some have employed a strategy where the final clus-
tering step is replaced by spectral rotations [15,20] or by replacing both steps
with kernel k-means [2], which is difficult to initialize. In this work, we employ
the two-stage approach where we use kernel PCA [18] to generate k-dimensional
feature vectors, for then to cluster these using k-means.

Kernel PCA. Kernel PCA implicitly performs PCA in some reproducing ker-
nel Hilbert space H given a positive semidefinite kernel function κ : X ×X → R,
which computes inner products in H. If we define a kernel matrix, K, whose
elements are the inner products κ(xi,xj) = 〈φ(xi), φ(xj)〉H, this matrix is posi-
tive semidefinite, and may be decomposed as K = EΛET , where E is a matrix
with the eigenvectors as columns and Λ is the diagonal eigenvalue matrix of
K. Then it can be shown that the k-dimensional projections onto the principal
components in H is given by

Z = EkΛ
1
2
k , (4)

where Λk consists of the k largest eigenvalues of K and Ek consists of the
corresponding eigenvectors.

The traditional choice of kernel function is an RBF kernel, defined as

κ(xi,xj) = e− 1
2σ2 ‖xi−xj‖2

, (5)

where the σ parameter defines the width of the kernel.

3 PCKID – A Probabilistic Cluster Kernel
for Incomplete Data

In this paper, we propose a novel procedure to construct a kernel matrix based
on models learned from data with missing features, which we refer to as PCKID .
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In particular, we propose to learn similarities between data points in an unsu-
pervised fashion by fitting GMMs to the data with different initial conditions
q ∈ [1, Q] and a range of mixture components, g ∈ [2, G] and combine the results
using the posterior probabilities for the data points. That is, we define the kernel
function as

κPCKID(xi,xj) =
1
Z

Q∑

q=1

G∑

g=2

γT
i (q, g)γj(q, g), (6)

where γi(q, g) is the posterior distribution for data point xi under the model with
initial condition q and g mixture components and Z is a normalizing constant.
By using Algorithm 1 to train the models, we are able to learn the kernel function
from the inherent structures of the data, even when dealing with missing features.
In this work, we use this kernel for spectral clustering.

The PCKID is able to capture similarities on both a local and a global
scale. When a GMM is trained with many mixture components, each mixture
component covers a small, local region in feature space. On the contrary, when
the GMM is trained with a small number of mixture components, each mixture
component covers a large, global region in feature space. Thus, if two data points
are similar under models on all scales, they are likely to be similar, and will have
a large value in the PCKID . This procedure of fitting models to the data on
different scales, ensures robustness with respect to parameters, as long as Q and
G are set sufficiently large. Thus, we are able to construct a kernel function that
is robust with regards to parameter choice. This way of constructing a robust
kernel is similar to the methodology used in ensemble clustering and recent work
in spectral clustering [6]. However, such recent methods are not able to explicitly
handle missing data.

According to the ensemble learning methodology [13,24], we build a powerful
learner by combining multiple weak learners. Therefore, one does not need to run
the EM algorithm until convergence, but instead perform just a few iterations1.
This also has the positive side-effect of encouraging diversity, providing efficiency
and preventing overfitting. To further enforce diversity, it is beneficial to use sub-
sampling techniques to train different models on different subsets of the data and
evaluate the complete kernel on the full dataset.

3.1 Initialization

For each mixture model that is trained, one needs to provide an initialization.
Since we are fitting large models to data that in practice does not necessarily fit
these models, the initialization needs to be reasonable in order to avoid compu-
tational issues when inverting covariance matrices. An initialization procedure
that has been validated empirically for the PCKID is

1. Use mean imputation to impute missing values.
2. Draw K random data points from the input data and use them as initial

cluster centers.
1 For instance, 10 iterations.
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3. Run one k-means iteration to get initial cluster assignments and means.
4. Calculate the empirical covariance matrix from each cluster and calculate

empirical prior probabilities for the mixture model based on the cluster assign-
ments.

Data with imputed values is only used to be able to calculate initial means and
covariances. When training the model, data without imputed values is used.

4 Experiments

4.1 Experiment Setup

PCKID Parameters. In order to illustrate that PCKID does not need any
parameter tuning, the parameters are set to Q = G = 30 for all experiments. In
order to increase diversity, each model in the ensemble is trained on a random
subset of 50% of the whole dataset. The kernel is evaluated on the full dataset,
once the models are trained. Each GMM is trained for 10 iterations with a
diagonal covariance structure assumption.

Baseline Methods. For the baseline methods, missing data is handled with
imputation techniques, in particular, (i) zero imputation, (ii) mean imputation
(iii) median imputation and (iv) most frequent value imputation. To produce a
clustering result, each of these imputation techniques is coupled with (i) k-means
on the data and (ii) spectral clustering using an RBF kernel, where the kernel
function is calculated by (5).

Since no hyperparameters need to be tuned in in PCKID , the kernel width
σ of the RBF is calculated with a rule of thumb. In particular, σ is set to 20%
of the median pairwise distances in the dataset, as suggested in [8]. This is in
agreement with unsupervised approaches, where labels are not known and cross
validation on hyperparameters is not possible.

Performance Metric. In order to assess the performance of PCKID , its super-
vised clustering accuracy is compared with all baseline models. The supervised
clustering accuracy is computed by

ACC = max
M

∑n
i=1 δ{yi = M(ŷi)}

n
, (7)

where yi is the ground truth label, ŷi is the cluster label assigned to data point
i and M(·) is the label mapping function that maximizes the matching of the
labels. This is computed using the Hungarian algorithm [9].

Clustering Setup. Spectral clustering with k clusters is performed by mapping
the data to a k dimensional empirical kernel space and clustering them with k-
means as described in Sect. 2.3. For all methods, k-means is run 100 times. The
final clustering is chosen by evaluating the k-means cost function and choosing
the partitioning with the lowest cost. The number of clusters, k, is assumed
known.
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4.2 MNIST 5 vs. 6

In this experiment, subsets containing 1000 of the MNIST 5 and 6 images are
clustered. The subsets consist of a balanced sample, i.e. there are approximately
the same amount of images from each class. The images are unraveled to 784
dimensional vectors, which are used as the input to the algorithms. Missing data
is generated by randomly choosing a proportion pm of the images and removing
one of the four quadrants in the image according to the MAR mechanism. These
missingness patterns are illustrated in Fig. 1(a). In each test, we consider different
probabilities of having missing quadrants, i.e. pm ∈ {0.0, 0.1, 0.2, . . . , 0.9}, Each
method is run 30 times for each value of pm, with a unique random subset of the
data for each run. Since there are dimensions in the dataset where there is no
variation between images, they are removed before training the GMMs. These
are dimensions without information, and causes problems when inverting the
covariance matrices. The number of dimensions with variance varies across the
runs, since the subset from the dataset and the missingness is randomly sampled
for each run. The number of dimensions with variance is approximately 500.

Figure 1(b) shows a plot of the mean clustering accuracy over the 30 runs
versus the missingness proportion pm. The proposed method outperforms the
baseline methods for all pm. Although the clustering accuracy declines slightly
when the pm increases, the results are quite stable.

Figure 2(a)–(b) shows two dimensional representations using kernel PCA on
PCKID with pm = 0 and pm = 0.9, respectively. The shape of the mark-
ers indicate ground truth class, while the color indicate the clustering result.
It is interesting to see that although the plot with no missing data has a
smoother structure, the overall topology seems to be very similar when pm = 0.9.

Fig. 1. (a): Example of missingness patterns. Gray pixels are considered missing. (b):
Mean clustering accuracy as a function of the percentage of images with missing values.



Spectral Clustering Using PCKID 439

(a) (b)

Fig. 2. Example of embedding and clustering in kernel space with (a): No missingness,
(b): 90% missingness. The marker indicates the true label, while the color indicates the
clustering results. (Color figure online)

The two-classes seem to be less separable in the plot with more missing data,
which is not surprising, given the numerical clustering results in Fig. 1(b).

When considering the approach of k-means directly on data with imputed
values, we see that none of the imputation techniques perform as well as PCKID ,
although in this case mean imputation works reasonably well. To explain perfor-
mance improvements as pm increases, it is possible that the missingness patterns
chosen for this experiment introduce some noise that provides a form of regular-
ization that is beneficial to certain imputation techniques, or maybe the balance
in the dataset is helping the mean of the observed values to not introduce bias
towards one class. With median–, zero– and most frequent value imputation, the
clustering accuracy starts to decline around pm = 0.3, with zero imputation and
most frequent value imputation following almost exactly the same path. This is
likely due to the nature of the data, where many of the dimensions actually con-
tains zeros in most of the images. The most frequent value in most dimensions
will then be zero.

Spectral clustering using an RBF kernel completely fails in this experiment,
which is probably due to a sub-optimal kernel width. However, this illustrates
the difficulty with an unsupervised problem, where no prior information is given,
making cross-validation virtually impossible without expertise knowledge on the
data.

4.3 Land Cover Clustering

In this experiment, we cluster pixels in high resolution land cover images con-
taminated with clouds, also used for classification in [16,17]. The data consists
of three Landsat ETM+ images covering Hardangervidda in southern Norway,
in addition to elevation and slope information. With 6 bands in each image,
the total dimensionality of the data is 20. In this dataset, a value is considered
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missing if a pixel in an image is contaminated by either clouds or snow/ice. For
details on how the dataset is constructed, see [16].

The pixels in the image are labeled as one of 7 classes: (1) water, (2) ridge,
(3) leeside, (4) snowbed, (5) mire, (6) forest and (7) rock. In this experiment,
we exclude the water class, since it is easy to separate from the other classes
in the Norwegian mountain vegetation. To investigate how the PCKID handle
the different combination of classes, we restrict the analysis to pairwise classes.
Each dimension is standardized on the observed data.

The average clustering accuracy for each combination of the chosen classes is
reported in Table 1. The average is computed over 30 runs of each algorithm. We
see that PCKID seems to perform better for most class pairs. Although it might
struggle with some classes, most notably class 2. For the class pair 3–5, PCKID
wins with a clustering accuracy of 0.563, which is not much better than random
chance in a two-class problem. It is however worth to note that the classes labels
are set according the vegetation at the actual location, which is not necessarily
the group structure reflected in the data. The class combinations where PCKID
really outperforms the other methods seems to be when class 7 (rocks) is present
in the data, where we improve performance by up to 25% points with regards
to the baseline methods.

Table 1. Average clustering accuracy over 30 runs for different combinations of classes
in the Hardangervidda dataset. The best results are marked in bold. The baseline
methods are: ZI (zero imputation), AI (average imputation), MI (median imputation)
and MFVI (most frequent value imputation), combined with either k-means or spectral
clustering using an RBF kernel.

Classes PCKID Spectral clustering, RBF k-means

ZI AI MI MFVI ZI AI MI MFVI

2–3 0.580 0.610 0.610 0.624 0.627 0.601 0.601 0.601 0.605

2–4 0.536 0.663 0.663 0.663 0.674 0.591 0.591 0.590 0.597

2–5 0.661 0.589 0.589 0.598 0.605 0.671 0.671 0.663 0.652

2–6 0.712 0.578 0.578 0.571 0.594 0.672 0.672 0.664 0.639

2–7 0.868 0.519 0.519 0.516 0.501 0.854 0.854 0.858 0.862

3–4 0.698 0.505 0.505 0.505 0.511 0.697 0.697 0.711 0.722

3–5 0.563 0.521 0.521 0.511 0.516 0.534 0.534 0.540 0.540

3–6 0.620 0.565 0.565 0.562 0.564 0.521 0.521 0.519 0.523

3–7 0.933 0.501 0.501 0.726 0.522 0.577 0.577 0.599 0.603

4–5 0.764 0.517 0.517 0.512 0.510 0.839 0.839 0.847 0.848

4–6 0.897 0.517 0.517 0.547 0.547 0.897 0.897 0.894 0.880

4–7 0.931 0.550 0.550 0.547 0.534 0.687 0.687 0.687 0.718

5–6 0.740 0.623 0.623 0.644 0.672 0.554 0.554 0.602 0.606

5–7 0.956 0.687 0.687 0.667 0.698 0.706 0.706 0.706 0.706

6–7 0.970 0.767 0.767 0.752 0.696 0.759 0.759 0.759 0.670
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Fig. 3. Example of mapping for the forest–rock class pair. Colors indicate clustering,
while the shape of the marker indicates the ground truth label.

Figure 3 shows an example of a mapping for the forest–rock class pair, where
it seems like the rock class, as defined by the ground truth, actually consists of
two separate structures in the KPCA embedding using PCKID . This demon-
strates the power of PCKIDs ability to adapt to the inherent structures in the
data.

5 Conclusion

In this paper, we have proposed PCKID , a novel kernel function for spectral clus-
tering, designed to (i) explicitly handle incomplete data and (ii) be robust with
regards to parameter choice. By combining posterior distributions of Gaussian
Mixture Models for incomplete data on different scales, PCKID is able to learn
similarities on the data manifold, yielding a kernel function without any critical
hyperparameters to tune. Experiments have demonstrated the strength of our
method, by improved clustering accuracy compared to baseline methods, while
keeping parameters fixed for all experiments.
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