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Abstract. Automated detection of cilia in low magnification transmis-
sion electron microscopy images is a central task in the quest to relieve
the pathologists in the manual, time consuming and subjective diagnos-
tic procedure. However, automation of the process, specifically in low
magnification, is challenging due to the similar characteristics of non-
cilia candidates. In this paper, a convolutional neural network classifier
is proposed to further reduce the false positives detected by a previ-
ously presented template matching method. Adding the proposed con-
volutional neural network increases the area under Precision-Recall curve
from 0.42 to 0.71, and significantly reduces the number of false positive
objects.

Keywords: Convolutional neural network · Primary Ciliary Dyskine-
sia · Template maching · Transmission electron microscopy

1 Introduction

Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder resulting in dys-
functional cilia - the hairlike structures protruding from certain cells. Dysfunc-
tionality of cilia can result in severe chronic respiratory infection, and infertility
in both genders. To diagnose the disorder, pathologists examine the morpholog-
ical appearance of cilia (∼220–250 nm) using transmission electron microscopy
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(TEM). Qualitative analysis of cilia in the TEM images is still largely subjec-
tive and manual diagnosis is laborious, monotonous, and hugely time consuming
(diagnosis takes ca. two hours per sample). An expert pathologist has to zoom
in and out at locations of cilia which possibly exhibit structural information nec-
essary for correct diagnosis. Navigation through the huge search space, together
with change of magnification, is very demanding. Hence, there is an inevitable
requisite for the automation of the cilia detection and diagnosis process. However,
it is not feasible to acquire images which cover the whole sample at a magni-
fication that allows structural analysis; such an acquisition would take tens of
hours. Furthermore, objects of interest are rare, very small, and not spreading
over more than a couple of percents of the total sample. Locating these regions
of interest at low magnification, and acquiring high magnification images only
at selected locations, would therefore be highly beneficial.

Automated detection of cilia structures (of a quality sufficient for diagnosis)
at low magnification is a challenging task due to (1) their similar characteris-
tics with the large number of non-cilia structures, and (2) variance in the size,
shape and appearance of the individual cilia structures. The task becomes more
complicated also due to noise and the non-homogeneous background at low mag-
nification, see Fig. 1.

Lately, availability of large amounts of data and strong computational power
have rapidly increased the popularity of machine learning approaches (deep learn-
ing). Convolutional neural networks (CNN) [10] have outperformed the state-of-
the-art in many computer vision applications [8]. Similarly, the applicability of

Fig. 1. (a) Low magnification TEM image of 4096× 4096 pixels utilized for training
purpose with the magnified view of 350× 350 pixel bounding box (marked in red) with
indicated ground truth marked by an expert pathologist. Here, cilia candidates marked
with blue dots are of the suitable quality. (b) Some examples of patches extracted by
previously reported method [15], the first and second rows contain true positives (TP)
whereas patches in the third row are false positives (FP). Note the high similarity
between the classes, this makes the problem a serious challenge. (Color figure online)
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CNN is also investigated in the medical image analysis field [1,11]. In particu-
lar, their capability to learn discriminative features while trained in a supervised
fashion makes them useful for automated detection of structures in, e.g., elec-
tron microscopy images. For instance, Ciresan et al. [5] reported a CNN model to
segment the neuronal membranes in electron microscopy images; in [19], a CNN
with autoencoder for automated detection of nuclei in high magnification (HM)
microscopy images was employed.

Previously, a template matching (TM) method to detect cilia candidates in
low magnification TEM images was proposed [15]. Considering that we aim at
locating regions highly populated by good quality cilia, for further HM image
acquisition and analysis, it is crucial that the identification of such regions is
not misled by a large number of false positives (FP). In the current work, we
aim at improving the performance by incorporating a dedicated CNN model in
the cilia detection scheme with the special focus on reducing the number of FP.
A performance benchmark for the proposed model is presented, and independent
validation on an additional image is performed.

2 Image Data

Two low magnification (LM) TEM images from different patients, each with ca.
200 cilia structures, are used for training and independent validation purposes.
Both images are acquired with a FEI Tecnai G2 F20 TEM and a bottom mounted
FEI Eagle 4K × 4K HR CCD camera, resulting in 16-bit gray scale TIFF images
of size 4096 × 4096 pixels.

For each LM image field, a set of mid magnification (MM) images are
acquired, where the ground truth, i.e., true cilia candidates of promising qual-
ity for diagnosing at HM (not dealt with in this paper), are manually marked
by an expert pathologist (author AD). Some examples of extracted patches of
marked cilia candidates are shown in Fig. 1(b). The field of view (FOV) for a
MM (2900×) image is 15.2µm and for a LM (690×) image, it is 60.6µm.

3 Method

The overall detection workflow consists of two stages: (1) Template matching as
described in [15], and (2) further FP reduction using a 2-D CNN model, which
is the core of this paper.

3.1 Initial Candidate Detection

Template matching based on normalized cross-correlation (NCC) and a cus-
tomized synthetic template is used to detect the initial cilia candidates. The
cross correlation image is thresholded at a suitable threshold, followed by area
filtering and position filtering, meaning that only the best hit in a local region
is kept as a candidate [15].
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3.2 Data Partitioning and Augmentation

For each candidate position, we extracted patches of 23× 23 pixels centered at
a given position p = (x, y). The patch size was chosen in order to contain a cilia
object (∼19–20 pixels diameter), and some local background around the cilia
instances (∼3 pixels) to include sufficient context information.

A training set of cilia, as well as non-cilia candidates, was extracted from the
training image based on ground truth markings made by our expert pathologist
(author AD), in MM images covering the same area of the sample. All true
cilia (a total of 136) regardless of their match score, i.e., their NCC values,
were chosen. A set of 272 non-cilia candidates was extracted from different NCC
levels in order to represent non-cilia objects with high similarity to good cilia
(136 randomly chosen non-cilia objects with NCC values ≥ 0.5) as well as non-
cilia objects more different from true cilia (136 randomly chosen objects with
NCC threshold values between 0.2 and 0.5).

While training a CNN model, an imbalanced dataset can mislead the opti-
mization algorithm to converge to a local minimum, wherein the predictions can
be skewed towards the candidates of the majority class, resulting in an over-
fitted model. To avoid overfitting, candidates from both classes (i.e. cilia and
non-cilia) are augmented. Augmentation on test data has shown a considerable
improvement in terms of robustness of the system, as it, if designed properly for
the problem at hand [3].

Prior to the augmentation step, the candidates are randomly divided into
training, validation and test sets. The training set consists of 82 cilia and 164
non-cilia candidates whereas the validation and test sets, each consists of 27 cilia
and 54 non-cilia candidates. The candidates are augmented using affine trans-
formations (rotation, scaling and shear) and bilinear interpolation. Horizontal
flipping is applied to the cilia candidates to balance the sets. A fully automated
script is created to perform the combination of seven random angular rotations
(0–360◦), six random scalings within ±10% range and five random shearings
within 5% range in both x- and y- directions, resulting in 1050 augmented vari-
ations for each candidate. The augmentation scheme is applied separately for
each subset to ensure independency of the training set from the validation and
test sets.

3.3 2-D CNN Configuration

The architecture of the proposed CNN model is initially derived from the LeNet
architecture [9]. The motivation behind this choice is its efficiency, as well as
lower computational cost compared to the architectures such as Alexnet [8] and
VGGnet [13]. These models have extended the functionality of LeNet into a
much larger neural network with often better performance but at a cost of a
massive increase in number of parameters and computational time. Training of
such large networks is still difficult due to the lack of powerful ways to regularize
the models and large feature sizes in many layers [16]. Hence, we decided to
empirically modify the LeNet architecture to fit our application.
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Fig. 2. Performance curves of different configuration: (a) validation accuracy for differ-
ent activation functions and pooling layer combinations; (b) training loss for different
optimizers with zero-padding and kernel of 1× 1.

In our modified architecture, the default activation function i.e., hyperbolic
tangent (tanh) [18] is replaced with Rectified linear units (ReLU) [12]. In com-
parison to the tanh, the constant gradient of ReLUs results in faster learning
and also reduces the problem of vanishing gradient. We also implemented the
maxpooling layer instead of average pooling as subsampling layer [8]. A compar-
ative performance of both activation functions with different subsampling layers
are shown in Fig. 2(a). The figure shows the accuracy for each configuration at
different number of epochs. It is noticeable that the performance is better when
ReLU was configured with maxpooling layer, resulting in higher accuracy after
50 epochs.

We also compared the usability of zero-padding and 1× 1 convolution filters
(as suggested in [16]) for two different optimizers, Adam [7] and RMSProp [17].
A kernel of size 1 × 1 in the first convolutional layer reduced the number of
parameters (difference of 1 120 parameters compared to the zero-padding), thus
keeping the computations reasonable. Comparatively, in either configuration,
RMSProp with zero-padding resulted in a better training loss, as shown in
Fig. 2(b). We thus, selected the configuration with minimum training loss. More-
over, several parameters (number of layers, kernel size, training algorithm, and
number of neurons in the dense layer) were also experimentally determined.

In the proposed CNN classifier, the input patches are initially padded with a
three pixels thick frame of zeros in order to keep the spatial sizes of the patches
constant after the convolutional layers, as well as to keep the border information
up to the last convolutional layer. Next, two consecutive convolutional layers
and subsampling layers are used in the network. The first convolutional layer
consists of 32 kernels of size 6 × 6 × 1. The second convolutional layer consists of
48 kernels of size 5 × 5 × 32. The subsampling layer is set as the maximum values
in non-overlapping windows of size 2× 2 (stride of 2). This reduces the size of
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the output of each convolutional layer by half. The last layer is a fully connected
layer with 20 neurons followed by a softmax layer for binary classification. ReLU
are used in the convolutional and dense layers, where the activation y for a given
input x is obtained as y = max (0, x ). The architecture of the proposed CNN
model is shown in Fig. 3.

Fig. 3. An overview of the proposed CNN model.

3.4 Network training

The training of the classifier was performed in a 5-fold cross-validation scheme.
For each fold, the candidates were randomly split into five blocks to ensure that
each set was utilized as test set once. The distribution of candidates in each fold
was kept as shown in Table 1.

Table 1. The number of cilia and non-cilia candidates in the different sets. Candidates
marked in bold are finally utilized for building the model.

Set Training Validation Test

Cilia 82 27 27

Aug (cilia) 172 364 56 754 56 754

Non-cilia 164 54 54

Aug (non-cilia) 172 364 56 754 56 754

Final set 344 728 113 508 113 508

On the given training dataset, RMSProp [17] is used to efficiently optimize
the weights of the CNN. RMSProp is an adaptive optimization algorithm, which
normalizes the gradients by utilizing the magnitude of recent gradients. The
weights are initialized using normalized initialization as proposed in [6] and
updated in a mini-batch scheme of 128 candidates. The biases were initialized
with zero and learning rate was set to 0.001. A dropout of 0.5 is implemented
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as regularization, on the output of the last convolutional layer and the dense
layer to avoid overfitting [14]. Softmax loss (cross-entropy error loss) is utilized
to measure the error loss. The CNN model is implemented using theano backend
in Keras [4]. The average training time is approximately 48 s/epoch on a GPU
GeForce GTX 680.

4 Experimental Results and Discussion

The performance of the proposed CNN model was evaluated in terms of Preci-
sion, Recall, Area under the Precision-Recall curve (AUC), and F-score, defined
as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F–score = 2 × Precision × Recall

Precision + Recall
, AUC =

∫ 1

0

P (r)dr.

The AUC is the average of precision P(r) over the interval (0 ≤ r ≤ 1), and
P(r) is a function of recall r. Additionally, for different NCC threshold levels, the
Free-response Receiver Operating Characteristic (FROC) curve [2] was utilized
to measure the sensitivities at a specific number of false positives per image.
The FROC curve is an extension of the receiver operating characteristic (ROC)
curve, which can be effective when multiple candidates are present in a single
image. It plots the Recall (Sensitivity) against the average number of false posi-
tives per images. FROC is more sensitive at detecting small differences between
performances and has higher statistical discriminative power [2].

4.1 Quantitative results

Figures 4(a) and (b) show the precision-recall curves corresponding to cilia detec-
tion for the CNN classifier applied after thresholding the template matching at
different NCC levels (0.2, 0.3, 0.4, and 0.5), as well as the detection when using
only template matching (which includes NCC thresholding at 0.546), as pro-
posed in [15], for the training and test image, respectively. In the figures, the
AUC is also stated. The results show that adding a CNN classifier significantly
improves the AUC to 0.82 and 0.71 compared to the AUC of 0.48 and 0.42, for
both the training and test image, respectively, at an NCC threshold level of 0.5.

The FROC curve for the proposed CNN applied to the training and test
images when the template matching result was thresholded at different NCC
levels (0.2, 0.3, 0.4, and 0.5) is shown in Fig. 5(a)–(b). This corresponds to the
sensitivity of the classifier against total number of FP per image.

A classification confusion matrix is also shown in Table 2. The matrix shows
the performance of the classifier for both the training and test image, in terms of
TP (true positive), FP (false positive), FN (false negative), and TN (true nega-
tive), at equal error rate. At an NCC threshold level 0.5, the template matching
method detected 212 (73 cilia and 139 non-cilia) candidates as potential cilia can-
didates. Amongst these, in the Table 2(A), the proposed CNN classifier correctly
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Fig. 4. Precision-recall curves of the CNN classifier at different NCC threshold levels
shown together with the AUC for the template matching approach(TM) [15] for (a)
training, (b) test images

Fig. 5. FROC curves of the CNN classifier for (a) training image (b) test image at
different NCC threshold levels. The number of FP are shown on a logarithmic scale.

classified 47 (TP) out of 73 (TP+FN) cilia candidates whereas from the set of
139 (FP+TN) non-cilia candidates, 26 non-cilia candidates (FP) were wrongly
classified as cilia candidates by our proposed CNN classifier. We observe, in the
training image, at equal error rate (Table 2(A)), the classifier also performed well
when tested with the candidates extracted at an NCC threshold level of 0.4, but
it eventually underperformed for the test image. The achieved results led us to
finally conclude that the proposed CNN model yields a stable performance if it is
incorporated with the candidates extracted at an NCC threshold level of 0.5. This
observation is supported by the F-Score curves, shown in Fig. 6. Comparatively for
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Table 2. Classification matrix of the CNN classifier at different NCC threshold levels
for: (A) training image and (B) test image; at equal error rate.

A: Training image (Equal error rate)

0.2 0.3 0.4 0.5

TP FP 51 85 50 80 64 51 47 26

FN TN 85 48 004 80 18 035 51 1 113 26 113

B: Test image (Equal error rate)

0.2 0.3 0.4 0.5

TP FP 38 67 37 66 37 60 37 36

FN TN 67 45 926 66 18 348 60 2 658 36 188

Fig. 6. F-score curves, for the test image, showing the improvement in overall per-
formance by adding a CNN classifier with template matching approach(TM) [15] at
different NCC threshold levels

the test image, at an NCC level of 0.546 (as suggested in [15]), the proposed CNN
model increases the overall F-Score from 0.47 to 0.59.

4.2 False positive reduction results

Detection results of the proposed CNN model on a ROI of 650 × 650 for the test
LM TEM image, at an NCC level of 0.5, are shown in Fig. 7(c)–(d). Figure 7(c)
shows the detection results of the initial candidate detection step (template
matching method, [15]) whereas Fig. 7(d) shows the improved results achieved
by incorporating the proposed CNN model as an FP reduction step. In these
images, the blue circles, red crossed circles, and green squares represent the
candidates that have been correctly detected (TP), the candidates that have been
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Fig. 7. Illustration of cilia detection results. (a) The 4096× 4096 test image, (b) a
650× 650 example subregion of the test image, (c) same subregion after initial template
matching method, and (d) after proposed CNN classifier. The numbers are given for
the whole image and for the ROI is in parenthesis. Here, blue circles, red crossed circles,
and green squares represent the TP, FP, and FN, respectively. (Color figure online)

erroneously detected as cilia (FP), and the cilia that were missed with respect
to the manually ascertained ground truth delineations and initial detection step
(FN), respectively. These results show the potential of our CNN model for cilia
detection in low magnification TEM images.

Examples of classified candidate image patches in the test image are shown
in Fig. 8. The images marked in the first row are the TP and FP candidates from
both methods (i.e., TM and CNN). In the second row, TP candidates detected
by TM but erroneously classified as FN by CNN; and FP candidates detected
by TM, which are successively classified as TN by proposed classifier.



FP Reduction Using a CNN model in Low Magnification TEM Images 417

Fig. 8. Examples of candidates (with their corresponding NCC values) detected or
missed by the proposed CNN model in the test image at an NCC level of 0.5. The first
row shows TP’s and FP’s of both methods. The second row shows TP and FP candi-
dates which are missed and successively classified by the CNN method, respectively.

5 Conclusion

In this paper, a CNN classifier is presented as a false positive reduction step for
automated detection of cilia candidates in low magnification TEM images. The
results suggest that adding a CNN classifier as a FP reduction step certainly
improves the performance and results in an increased F-Score from 0.47 to 0.59.
It was also investigated whether utilizing a CNN classifier as an additional refine-
ment step would allow for using a lower NCC threshold in order to not discard
true cilia objects in the template matching step. This was however, not found to
be practically suitable as lowering the NCC threshold increases the number of
candidates to analyze tremendously while only rather few additional true candi-
dates are detected. It will be interesting in the future to develop and investigate
a CNN model for the whole automated cilia detection problem, without relying
on a first template matching step. This is currently not possible as it requires
more training and test data.
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