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Abstract. This work presents a novel system utilizing state of the art deep
convolutional neural networks to detect dead end body component’s (DEBC’s)
to reduce costs for inspections and maintenance of high tension power lines.
A series of data augmenting techniques were implemented to develop 2,437
training images which utilized 146 images from a sensor trade study, and a test
flight using UAS for inspections. Training was completed using the Python
implementation of Faster R-CNN’s object detection network with the VGG16
model. After testing the network on 111 aerial inspection photos captured with
an UAS, the resulting convolutional neural network (CNN) was capable of an
accuracy of 83.7% and precision of 91.8%. The addition of 270 training images
and inclusion of insulators increased detection accuracy and precision to 97.8%
and 99.1% respectively.

Keywords: Convolutional neural networks � CNN � Inspections � Machine
learning

1 Introduction

Infrastructure maintenance in the United States is a multi-trillion-dollar industry, of
which the electrical grid makes up a significant portion [1]. Maintenance of the elec-
trical grid poses substantial costs. To help reduce these costs, we developed a deep
learning neural network capable of detecting the dead-end body component (DEBC)
from high tension power lines to allow for further analysis of the part due to wear.

The DEBC is a full tension device that is used to attach the conductor to the power
line structure while maintaining electrical current. This component is comprised of an
outer aluminum sleeve with a four-bolt pad welded to one end, a steel forging with a
steel eye, and an aluminum insert. The outer aluminum sleeve grips the aluminum
strands of the power line, while the inner aluminum inserts grip the inner aluminum
matrix core wires separately. The eye of the steel forging is connected to the insulator
string on the dead-end tower or substation. Jumper connectors attach to the outer sleeve
pad and are used to connect pairs of powerline conductors. To aid inspection and
maintenance of the DEBC, the component was detected with a bounding box anno-
tation allowing for segmentation and analysis of possible wear or failures of the DEBC.

Deep convolutional neural networks (CNN) were chosen for the task of detecting
the DEBC as they have made a resurgence in visual recognition tasks in recent years,
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overtaking other methods in image classification challenges [2]. This is further
exemplified by the Pascal VOC challenge, a yearly challenge from 2005–2012, with
the goal of recognizing objects from several visual object classes through a supervised
learning process [4]. The challenge has commonly been used as a comparison between
different object detection networks. Convolutional neural networks have consistently
outperformed other methods and increased precision of detection in the Pascal Visual
Object Classes (VOC) challenge [3].

Faster R-CNN was chosen for the purposes of aiding inspections as it was the state
of the art in object detection available, as evidenced by the Pascal VOC 2007 chal-
lenge. The pretrained deep VGG16 model was implemented due to its high precision
and public availability, as shown in [5]. All training in this work was completed using a
Titan X GPU.

1.1 Background

To determine the most effective object detection CNN available, four different object
detection CNN’s were considered including R-CNN, SPPnet, YOLO, and Faster
R-CNN. Due to the post processing focus of the proposed algorithm, accuracy and
precision were the main considerations for each network. Table 1 lists a direct com-
parison of each network on the Pascal VOC 2007 dataset as represented by the mean
average precision (mAP) attained on the challenge by each network.

R-CNN was the first successful object detection algorithm utilizing a CNN, and
increased mAP of the previous state of the art method by over 30% [6]. This was done
by utilizing region proposals. Region proposals are specific regions in the image
determined as an object, provided by a separate algorithm, and performing a convo-
lutional network forward pass for each proposed region. Although originally suc-
cessful, there are many drawbacks to the region-based convolutional neural network.
First, training is a multi-staged pipeline requiring finetuning the CNN on object pro-
posals generated separately, then fitting a support vector machine (SVM) to the CNN
features, and performing bounding box regression. Second, training is expensive in
both hard drive space and time spent during training. The SVM and bounding box
regression training requires storing features extracted from each object proposal to disc
which may require storing hundreds of gigabytes of data. Third, detection is slow as
features are extracted from each object proposal in each test image. Methods consid-
ered below improve both speed and precision over this implementation.

Table 1. mAP of each detection network considered.

CNN considered mAP in Pascal VOC 2007

R-CNN 58.5%
SPPnet 60.9%
YOLO 63.4%
Faster R-CNN 73.2%
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Spatial Pyramid Pooling (SPP-net) was proposed to speed up R-CNN by sharing
computation [7]. SPP-net first computes a convolutional feature map for the entire input
image, then classifies each object proposal using a feature vector from the shared
feature map. Features are extracted through maxpooling the portion of the feature map
inside the proposal into a fixed output size. Training is still multi staged, as it must
extract feature vectors, fine tune the network with log loss, train a SVM, and finally fit
bounding box regressors. SPPnet cannot update the convolutional layers preceding the
spatial pyramid pooling limiting accuracy of deep networks.

You only look once (YOLO), is a real-time object detection CNN [8]. This method
applies a single neural network to the full image at test time to provide global context,
divides the image into equally spaced regions, and predicts bounding boxes and
probabilities for each region. This method provides a fast object detection that runs in
real time, up to 45 FPS, for the more computationally expensive and accurate model.
As stated in [8], this network provides a mAP of approximately 10% less than Faster
R-CNN.

Faster R-CNN is the latest improvement over R-CNN and introduced Region
Proposal Networks (RPN) that share convolutional layers with the object detection
network [5]. The region proposals are created by adding two additional convolutional
layers. The first layer encodes each convolutional feature map position into a feature
vector. The second layer outputs an objectness score and regressed bounds for k region
proposals, relative to various scales and aspect ratios, at each convolutional map
position. These added layers create a fully-convolutional network that can be trained
end-to-end for the task of generating detection proposals. Faster R-CNN also devel-
oped a training scheme that alternates between fine-tuning for the region proposal task,
and fine-tuning for object detection with the proposals fixed. Faster R-CNN was chosen
for our purposes as it achieved the highest mAP of all methods considered at 73.2%.

2 Procedure

To properly train Faster R-CNN for detection of DEBC’s, several tasks were completed
with the following processes. The Python version of Faster R-CNN was obtained via
[5] utilizing the VGG16 model as explained in Sect. 2.1. Section 2.2 expands on data
collection of DEBC’s. Section 2.3 provides methods for data augmentation to enhance
the training dataset. Section 2.4 details the creation of the ground truth annotations for
the training data. Section 2.5 provides the methods for collection of test data. Sec-
tion 2.6 explains the process for training the different networks considered.

2.1 Faster R-CNN

The Python reimplementation of Faster R-CNN was obtained from [5]. As previously
mentioned, Faster R-CNN incorporates a small region proposal network that shares a
common set of convolutional layers with a standard detection network and was built
using the Caffe framework [9]. This region proposal network takes an image of any size
as input, and outputs rectangular object proposals with objectness scores, or in other
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words, a measurement of belonging to a set of object classes vs. the background.
Training the region proposal network layers is accomplished through assigning a binary
object or not object to anchors that are predicted from k region proposals. These
anchors are assigned as positive while training when they either have the highest
Intersection-over-Union (IoU) overlap with a ground truth box or IoU overlap greater
than 0.7 with any ground truth box. Non-positive anchors did not contribute to training.
The loss function for an image,

L pif g; tif gð Þ ¼ 1
Ncls

P
i
Lcls pi; p�i

� �þ k 1
Nreg

P
i
p�i Lreg ti; t�i

� �
; ð1Þ

is minimized to generate a trained network. In the loss function i is the anchor index in
a mini batch, pi the predicted probability of the i’th anchor being an object. p�i rep-
resents the ground-truth label and is set to 1 for a positive anchor and 0 if negative. ti
provides the vector representation of the four parameterized coordinates of the pre-
dicted bounding box with t�i the ground-truth box associated with the positive anchor.
The classification loss Lcls represents the log loss over the two object vs. non object
classes. The regression loss Lreg ti; t�i

� � ¼ R ti; t�i
� �

where R represents the robust loss
function. The Lcls and Lreg functions are normalized with Ncls, Nreg, and the balancing
weight k. The classification of the region can then be performed once the regions for
the object detected are determined. In this work, the VGG16 model was used to
perform this classification.

The VGG16 model utilizes a total of 16 convolutional and max pooling layers with
max pooling occurring after every three convolutional layers [10]. After each convo-
lutional layer a ReLU layer was applied to increase nonlinearity. The
response-normalized activity bix;y is given by

bix;y ¼
aix;y

ðkþ a
Pmin N�1;iþ n

2ð Þ
j¼max 0;i�n

2ð Þ ða j
x;yÞ2 ð2Þ

in which ða j
x;yÞ denotes the activity of a neuron computed by applying kernel I at ðx; yÞ,

the sum runs over n adjacent kernel maps, and N represents the total number of kernels
in the layer. The last three layers of the VGG16 CNN are the fully connected layers to
perform the classification.

A Titan X GPU was used to train Faster R-CNN with the complex VGG16 net-
work, which required *11 Gb of GPU memory. Training was performed using the
alternating optimization method per [5]. This method performed a 4-step training to
learn shared features between the region proposal network with a separate detection
network. First, the RPN was trained as above. Second, the detection network was
trained separately without sharing layers. Third, the detection network was used to
initialize the region proposal network training but fixed the shared layers, fine-tuning
only the region proposal network layers. The final stage shared the convolutional
layers, keeping them fixed, and fine-tuned the fully connected layers, which formed a
unified network.
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2.2 DEBC Data Collection

The original data was provided from two local businesses. The first provided data from
a sensor trade study [11], and the second a UAS test flight. The trade study collected
data to determine the optimal camera sensor, viewing angle, and distance for a human
to be able to identify potential maintenance concerns.

In the trade study, the cameras used to collect the data include the Sony NEX 7, and
a Sony a6000 sensor converted to perform as a multispectral camera. The converted
Sony a6000 sensor provided 700–800 nm wavelength light along with the standard
visible light. Each image was of size 6000 � 4000 pixels. Two different DEBC’s were
attached to a forklift and lifted to the test height ranging from 4 m to 12 m from the
camera height, and tested under various weather conditions. A total of 111 images from
the sensor trade study were provided.

From the UAS test flight, images were collected on live high voltage power lines.
The UAS flew approximately 15–20 m from the DEBC’s imaged. A sensor comparable
to the Sony NEX 7 from Field of View was used for data collection. For our purposes,
only images with the DEBC within view were considered. From the UAS test flight, 30
training images were collected.

With a total of 146 images (Fig. 1), the training data set required a large amount of
data augmentation to be performed to allow for a sufficiently large training set. As a
comparison, the Pascal VOC training dataset provides close to 5,000 images per class
to be considered. An additional 270 images from another inspection flight were later
included and unaltered to improve the network accuracy. In addition to the 270 images,
another class of images considering insulators was added to help the network differ-
entiate between insulators and DEBC’s.

Fig. 1. Example images from training data. Top images from sensor trade study, bottom images
from test flight.
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2.3 DEBC Data Augmentation

To generate enough data to properly train the network to accurately detect the DEBC, a
series of simple image processing techniques were performed (Fig. 2). All image
processing methods were completed using OpenCV functions [12].

The first method involved manually cropping the DEBC from each original image.
Due to the Faster R-CNN algorithm automatically resizing all input images to 1000
pixels on the larger side, and 600 pixels on the smaller side, the cropped images
allowed for increasing the robustness of the network to differences of scale. The
cropped images were also used for multiple data augmentations below.

To account for various viewing angles the DEBC may be oriented, each cropped
image from before was manipulated to create a series of rotations. Rotations were
performed using an SO(3) rotation matrix in degrees. The rotation matrix as

RotationMatrix ¼
cos hð Þ � sin hð Þ 0
sin hð Þ cos hð Þ 0
0 0 1

2
4

3
5 ð3Þ

was applied to the image. Rotations were applied using inverse warping where each
intended pixel location in the rotated image is computed, then the corresponding
location in the original image is sampled. The cropped images were rotated from their
original position in 15º intervals to a total of 60º. The images were then cropped to
remove the resulting black corners of the image from the rotations.

To account for possible out of focus or grainy images, two different morphological
operations were performed on the images. These morphological operations include a
slight dilation and erosion. This process is done by convolving a kernel (b) over the
image I. b has a defined anchor point at the center of the kernel. For dilation, kernel b is
convolved over the image and the maximal pixel value overlapped by b is computed
and replaced by the image pixel in the anchor points position with that maximal value.
This causes bright regions within an image to expand. Erosion is done similarly but
instead uses the minimal pixel value for the anchor point causing bright regions. For
our purposes, b was chosen to be of size [3 � 3] with only a single pass for slight

Fig. 2. Sample augmented images. (a) Original image. (b) Cropped image of left DEBC.
(c) Image rotated 45º.
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erosion and dilation operations. Each of the above images were then flipped
horizontally.

The last method cropped 1000 � 1000 pixel sized patches in a raster scan pattern
with 50% overlap from the original 6000 � 4000 images. This technique was per-
formed to create translations of the DEBC, as well as allow for edge cases where the
DEBC would be only partially visible due to being truncated at the edge of the cropped
image. The 50% overlap was used to ensure parts of the image would always be visible.
Lastly, the total images had to be manually sorted to remove images without the DEBC
visible.

With all image processing techniques completed, a total of 2,437 images were
developed. With many images to train the network now available, the data needed to be
annotated for the CNN to train on the object in each image to be detected.

2.4 Annotations

Training a Faster R-CNN model required all cases of the intended object categories to
be annotated. For our purposes, one class was considered outside the background class,
a catch all for all non-defined objects, as the DEBC. Each annotation was created to
encompass a portion of the DEBC while limiting all other features. A second class
which considered the insulators was annotated and added to the training set later. With
Faster R-CNN developed to train on the Pascal VOC dataset, the annotations per-
formed matched the format using the LabelImg software [13]. The Pascal VOC format
stores each bounding box annotations location, class, and image location on file in xml
format. All annotations were manually selected and a sample of an annotation is
provided in Fig. 3.

Fig. 3. Example image with ground truth
bounding box annotation.

Fig. 4. Example Image from validation set.
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2.5 Test Data

Images to test the network performance were needed to evaluate the trained networks.
Figure 4 provides sample images that were utilized and provided by the company
which collected the test flight training data, and provided a newer set of true inspection
images for the DEBC’s. This test data included 111 images which include 115 total
DEBCs taken from a much closer range and viewing angle in which the DEBC was
easier to view. These test images were kept separate from the training data.

2.6 Training

The networks evaluated were fine-tuned from an ImageNet pre-trained VGG16 model
over differing numbers of iterations and numbers of images following the methods in
[14]. The learning rate was set as 0.0001 for 60k mini-batches and 0.00001 for the next
20k mini-batches, momentum as 0.9, and weight decay as 0.0005 as provided by the
VGG16 model. The numbers of iterations varied from 40,000 to 150,000, often
alternating the higher number of iterations in the first and third stage, and the lower
number of iterations in the second and fourth. These alternating numbers of iterations
were done as the default iterations were set to alternate from 80,000 to 40,000. The
most visually accurate networks based on the number of iterations run were chosen for
a full evaluation of the network. Time training the network was heavily dependent on
the number of iterations, but took approximately three to seven days of training.

3 Results

The 111 test images were used to evaluate several different trained networks while
varying both the number of iterations the network was trained with, and the number of
training images. ROC and Precision-Recall curves were developed for each trained
network to determine network accuracy (Fig. 5). Data for the curves was generated by
setting the threshold for detection to the value of 0.1, and storing all detections and
confidence intervals.

With all data available, true positives, true negatives, false positives, and false
negatives were recorded while varying the threshold from 0.1 to 1 in 0.05 intervals.
Figure 6 provides examples of how the network could accurately locate the DEBC in a
variety of positions and poses, including one image where most the DEBC was outside
the image. True positives were classified as matches if the detection appeared visually
correct allowing for the user to easily view and evaluate the DEBC condition within the
bounding box. True negatives were only considered from the list of false positives. As
the threshold increased and the false positives were no longer detected, they became
true negatives. False positives were defined as any detections that were not of a DEBC.
False negatives were tallied for any DEBC not detected in the dataset. Both ROC and
Precision Recall curves were developed by calculating the recall/true positive rate
(TPR), the false positive rate (FPR), and precision as TPR ¼ TP

TPþFN ; FPR ¼ FP
TN þFP ;

and Precision ¼ TP
TPþFP respectively. The ROC curve for all three networks considered
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was plotted using the TPR, and FPR, whereas the Precision Recall curve was plotted
using the precision and recall at each threshold value. After finding a high rate of false
positives due to detecting insulators as DEBC’s, an additional 270 images were
included in the network with insulators as a separate class. The network was retrained
with the more successful number of iterations, 100,000, 80,000, 100,000 and 80,000.

As per [15], the network trained with 100,000, 80,000, 100,000, and 80,000 iter-
ations dominates the ROC space of the first three trained networks at higher confidence
interval thresholds as evidenced in Fig. 5. Taking the closest point to a TPR of 1 and
FPR of 0 in the ROC curve while closer to a precision of 1 and recall of 1 in the
precision recall curve, a threshold of 0.9 was found using the network trained with
100,000, 80,000, 100,000 and 80,000. From this data, the accuracy, acc: ¼ TPþTN

Total ; was
also found. Accuracy was determined as 83.7% while maintaining a precision of
91.8%. A second point was also considered with a threshold of 0.85, but resulted in a
slightly lower precision of 90.01% and the same accuracy. The confusion matrix at the
0.9 threshold is listed in Table 2.

Inclusion of the additional 270 images, along with the new insulator class, sub-
stantially improved the detections of the DEBC. Adding the 270 images increased the
TPR, while the addition of the insulator class decreased the FPR on the ROC curve.
The Precision Recall curve demonstrates inclusion of the additional images and
including the additional insulator class dominates in the ROC space. Due to a pref-
erence for higher recall, the F2 measure was calculated. The highest score was found as
F2 ¼ 0:6168 at a threshold of 0.85. The accuracy and precision of this network at a
threshold of 0.85 is 97.8% and 99.1% respectively with the confusion matrix for this
threshold listed in Table 3.

Fig. 5. (a) ROC curve of five different networks, numbers list the iterations of each stage of
training for that network (in thousands). The curve with insulators includes additional images and
a separate class considering insulators, the curve without insulators includes the additional images,
but not the separate insulator class. (b) Precision Recall curve for the same five networks in (a)

256 I.E. Nordeng et al.



Failures fell mostly into two categories, false positives with high confidence, and
false negatives (Fig. 7). False positives occurred primarily due to insulators in the
background, and are believed to occur due to a lack of insulators in the training set.
Inclusion of the additional images and the insulator class diminished these false pos-
itives. False negatives were attributed to both variation in lighting conditions and
viewing angle, likely due to a lack of variability in the original training data set.
Inclusion of additional training images helped in these detections.

Fig. 6. Example results of successful DEBC detections.

Table 2. Confusion matrix for network
100, 80, 100, 80 (in thousands) with
threshold 0.9.

Predicted
negative

Predicted
positive

Total

Actual
negative

TN: 85 FP: 8 93

Actual
positive

FN: 26 TP: 89 115

Total 111 97 208

Table 3. Confusion matrix for network 100, 80,
100, 80 (in thousands) with additional images and
insulator class, threshold 0.85.

Predicted
negative

Predicted
positive

Total

Actual
negative

TN: 22 FP: 1 23

Actual
positive

FN: 2 TP: 113 115

Total 24 114 138
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4 Conclusion

In this work, deep convolutional neural networks were applied and evaluated based on
detection of DEBC’s from dead end high tension power lines using Faster R-CNN. It
was demonstrated that increasing the number of iterations for each of the four stages of
training to 100,000, 80,000, 100,000 and 80,000 increased detection accuracy.
Including 270 additional images, subsequently increasing the variability of the training
set, increased the TPR. After finding a common object that caused a high number of
false positives, inclusion of that object as a separate class decreased the false positive
rate.

Future improvements to the network are suggested. Per [16], removing difficult
training images can increase the precision. The training data from the sensor trade study
provided several images where the DEBC was difficult to see due to situations such as
the sun in the direct background. Most false positives were found to be other round
shaped objects in the image. Additional classes and training images may help to reduce
these false positives further. Increasing the annotation size for the DEBC to include
more features, for example the four bolts on the DEBC, may also help reduce or
eliminate this problem. Additionally, adding more classes can increase the utility of the
network.
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