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Abstract. The aim of this paper is to propose and initially evaluate
our novel algorithm which enables averaging of time-varying sequences
of rotations with three degrees of freedom described by quaternions. The
methodology is based on Dynamic Time Warping barycenter averaging
(DBA) with one minus dot product distance function, Markley’s quater-
nions averaging method and Gaussian quaternion signal smoothing. The
proposed algorithm was successfully applied to generate single, averaged
motion capture recording (MoCap) from ten MoCap of mawashi-geri
karate kick of black belt Shorin-Ryu karate master. We have used inverse
kinematic model. In our experiment mean DTW normalized distance
between averaged signal and original signals varied from 0.713 · 10−3

for Hips sensor to 6.153 · 10−3 for LeftForearm sensor, which were very
good results. Also the visualization of the averaged MoCap data showed
that the proposed method did not introduce unwanted disturbances and
may be usable for that task. That type of averaging has many important
applications. For example it can be used to calculate and visualize an
average performance of an athlete who performs some activity that he
wants to optimize during training. The numerical and visual data may
be a very important feedback for coach that supervises the training. Also
our method is not limited to MoCap data averaging; it can be applied
to average any type of quaternion-based time-varying sequences.

Keywords: Signal averaging · Preprocessing · Quaternions · Dynamic
Time Warping barycenter averaging · Motion capture · Karate

1 Introduction

In many real-life scenarios time-varying signal analysis requires averaging (or
template generation) from samples that come from many measurements [1–4].
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There are several state-of-the art methods which can be used averaging. Among
most popular is Kalman Filter (KF) [5] that is used for example in kinematic
model synthesis [6–8]. Other popular method is DTW barycenter averaging
(DBA) [9], which was already used in movements’ analysis [10,11]. One can
use the smoothing ability of KF to average the signals that came from multiple
measurements of the same angle. However, in the situation when signals cannot
be wrapped optimally linearly, the nonlinearity between signals will be smoothed
by the KF. This smoothing might visually damage the recorded content, because
it might treat nonlinearity as noise. Due to this we choose DBA approach.

The motivation of this paper was a need to create the averaged karate action
templates for future use in athletes’ kinematic analysis. That approach has many
important applications. For example it can be applied in computer supervised
training to calculate and visualize an average performance of an athlete or to
compare it to templates of world class sportsmen’s to find the optimize the
action’s technique. The aim of this paper is to propose and initial evaluate our
novel algorithm that enables averaging of time-varying sequences of rotations
with three degrees of freedom described by quaternions. To our best knowledge
the method of this kind has not yet been reported in scientific papers. The
methodology is based on DBA with one minus dot product distance function,
Markley’s quaternions averaging method [12] and Gaussian quaternion signal
smoothing. The proposed algorithm is applied to generate single averaged motion
capture (MoCap) recording from ten MoCap of mawashi-geri karate kick of black
belt Shorin-Ryu karate master. We have used inverse kinematic model.

2 Materials and Methods

This section presents all algorithms that are used for MoCap signal averaging
and smoothing. Due to paper space limitation we did not provide the details
of Markley’s and DBA algorithm that can be found elsewhere (in [9,12]
appropriately).

2.1 Quaternion Averaging

For the Quaternion averaging we have utilized Markley’s algorithm [12]. It deter-
mines the average norm-preserving quaternion from a set of weighted quater-
nions. The solution involves an eigenvalue/eigenvector decomposition of a matrix
composed of the given quaternions weights matrix.

2.2 Signal Averaging

To average a set of time-varying signals we have used Dynamic Time Warping
barycenter averaging (DBA) heuristic algorithm [9] that uses Dynamic Time
Warping (DTW) similarity measure. The cost function in DTW for quaternions
is defined as:

cf(x, y) = 1 − (x ◦ y) (1)
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where x, y are normalized quaternions and ◦ is a dot product. Because we are
dealing with quaternions, the barycenter averaging is replaced by Markley’s algo-
rithm from Sect. 2.1.

Signal Averaging Algorithm

Input data:
A #initially averaged sequence of size L
S #matrix of sequences, each sequence has length T

Algorithm:
Associations := empty list of size L
For each seq in S

#DTW algorithm returns Cost matrix and Path matrix
#cf function is defined in Eq. (1)
[Cost, Path] := DTW (A, seq)
i := L
j := T
While i >= 1 and j >= 1

#add j-th quaternion from seq to Associations
Associations[i] := Associations[i] sum seq[j]
[i, j] := Path[i,j]

End While
End For
For i in 1:T

Ai := Quaternion averaging(Associations[i]) #See Sect. 2.1
End For

Return:
Ai

2.3 Smoothing Algorithm

It is possible that DBA algorithm introduces in averaged signals the high fre-
quency noises that are visible as rapid Euler angles hops. This is of course result
of the DBA heuristic which does not prevent these situations even if input data
does not contain that type of noises. Our smoothing algorithm works similarly
to typical discrete linear convolution algorithm with Gaussian kernel, however
instead of linear combination of signal samples in kernel window and kernel
weights, we use Markley’s algorithm from Sect. 2.1 with Gaussian weights.

Smoothing Algorithm

Input data:
Q #quaternion signal of length T which we want to smooth
windowSize #length of kernel

Algorithm:
smoothedSignal := Q #rewrtie signal to sequence
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#that hold output data
startInd := floor(windowSize / 2)
startLoop := startInd
endInd := ceiling(windowSize / 2)
endLoop := T endInd
G := symmetric vector with Gaussian distribution

of values with length windowSize
For a in startLoop:endLoop

i := 1
sampleToSmooth := vector with length windowSize
For b in (-startInd+1):endInd

sampleToSmooth[i] <- Q[a+b]
i := i + 1

End For
smoothedSignal[a] <- Quaternion averaging(sampleToSmooth, G)

End For
Return:

smoothedSignal

2.4 MoCap Averaging

The averaging algorithm for MoCap data works as follows. As an input it takes
a set of MoCap recordings of a single activity. They may vary in length, however
they have to use the same kinematic model. In our case we use inverse kine-
matic model with 16 various features that represents the rotation of body joints
with three degrees of freedom in Euler angles (see Fig. 1). The Euler angles are
recalculated to quaternions. This step remove problems caused by nonlinearity
in Euler angles domain: [−180, 180) for rotation towards X axis, [−90, 90) for
Y and [−180, 180) for Z. Also quaternions prevent the gimbal lock phenomena.
Signal in each feature of each recording is interpolated to the uniform length with
nearest neighbor interpolation. It is obvious that signals among single MoCap
recording have same number of frames, however different MoCap recordings
may have different frames number. The new length equals the longest signal in
the input dataset. After averaging all features, each of the averaged signals is
smoothed with algorithm from Sect. 2.3. The obtained averaged and smoothed
quaternions are recalculated to Euler angles.

3 Results

To evaluate our novel MoCap averaging algorithm, we have used recording of
black belt Shorin-Ryu karate master. The activity we wanted to average was a
mawashi-geri kick with a right leg. We have recorded ten repetitions of this kick
with a Shadow 2.0 wireless motion capture system. The tracking frequency was
100 Hz with 0.5◦ static accuracy and 2◦ dynamic accuracy. We have prepared
data to be in reverse kinematic model which is presented in Fig. 1. Data was
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Fig. 1. This figure presents the 16 points over the human body in which three-
dimensional rotations in Euler angles are measured. Figure presents also local coor-
dinate systems for each measuring point.

recalculated from Euler angles representation to quaternions and we applied
the methodology that was presented in Sect. 2 of this paper. The length of the
signals among those ten recordings varied from 226 to 249 frames, due to this
the averaged signal had length of 249 frames. We have calculated 100 iterations
of DBA method after which results became stable.

In Figs. 2, 3 and 4 we have presented the plots of Euler angles values that
describe the rotation in hips measuring point about X, Y and Z axis. The dotted
plots are values from input data set (they names begins with Hips in legend of
plots). The blue solid line is a result of averaging by algorithm from Sect. 2.2.
The red solid line is plot smoothed with algorithm from Sect. 2.3. In Figs. 5,
6 and 7 we have presented the plots of Euler angles values that describe the
rotation in RightLeg measuring point about X, Y and Z axis. Dotted plots are
values from input data set, solid black lines are results of averaging and red plot
are smoothed results from black plot.

We have also prepared visualization of MoCap recordings averaged by our
methodology to check if our algorithm did not introduce some visible deviations
from expected limbs trajectories. In Fig. 8 we present rendering of important
parts of averaged mawashi-geri kick.

To evaluate how similar averaged signals are to the input dataset we have used
DTW normalized distance between each time-varying signal (in quaternions) and
averaged signal. The normalized distance is defined as a DTW distance divided
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Fig. 2. This figure presents the plots of Euler angles values that describe the rotation
in Hips measuring point for about X axis. (Color figure online)
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Fig. 3. This figure presents the plots of Euler angles values that describe the rotation
in Hips measuring point for about Y axis. (Color figure online)
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Fig. 4. This figure presents the plots of Euler angles values that describe the rotation
in Hips measuring point for about Z axis. (Color figure online)
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Fig. 5. This figure presents the plots of Euler angles values that describe the rotation
in RightLeg measuring point for about X axis. (Color figure online)
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Fig. 6. This figure presents the plots of Euler angles values that describe the rotation
in RightLeg measuring point for about Y axis. (Color figure online)
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Fig. 7. This figure presents the plots of Euler angles values that describe the rotation
in RightLeg measuring point for about Z axis. (Color figure online)

Fig. 8. This figure presents rendering of important parts of averaged mawashi-geri kick
done by our algorithm.
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Table 1. This table summarizes results from proposed algorithms evaluation.

Feature name Mean of DTW normalized distance ·10−3 Standard deviation of
DTW normalized distance
·10−3

Hips 0.713 0.181

LeftThigh 0.949 0.602

LeftLeg 0.681 0.419

RightThigh 2.727 2.249

RightLeg 1.996 1.278

SpineLow 0.016 0.011

SpineMid 0.120 0.081

Chest 0.116 0.079

LeftShoulder 2.732 2.447

LeftArm 4.207 2.127

LeftForearm 6.153 5.165

RightShoulder 0.966 0.7039

RightArm 4.097 2.742

RightForearm 3.327 1.392

Neck 1.759 1.231

Head 1.028 0.685

by the sum of length of two signals between which distance is calculated. In
Fig. 9 we present those results in the form of heat map with color-coded values.
In Table 1 we present means and standard deviations of that comparison grouped
by features (measuring points) names.

4 Discussion

As can be seen in Figs. 2 and 4, the proposed method deals very well with non-
linearity in rotation description caused by periodicity of Euler angles notation.
Also two very similar rotations might be composed of two sets of three rotations
about X, Y and Z axis that might have quite different values, for example com-
pare signal 9 and 10 in Figs. 2 and 4 to other signals in those figures. Both those
problems are solved thanks to applications of quaternions in DBA averaging.
The DBA might introduce some high-frequency noises that are clearly visible in
Figs. 2, 3, 4, 5, 6 and 7 as peaks of angle values in relatively smooth angles trajec-
tories. Those noises are unwanted phenomena that should not appear in MoCap
recordings which operate in frequency 100 Hz even while dealing with such fast
body actions like karate. Those errors are introduced because DBA is a heuristic
method. As can be seen on all plots, our smoothing method performed by an
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Fig. 9. This figure presents normalized DTW distance between averaged signals and
input data in the form of heat map with color-coded values. Each row represents
different input recording (there were totally 10 MoCap recordings in our data set)
while each column is for different measuring point name.

algorithm described in Sect. 2.3 removes those peaks very well without damaging
the overall signal characteristic.

The visualization of MoCap recordings averaged by our methodology was
judged by a karate master as very accurate. The averaging did not introduced
visible deviations from expected limbs trajectories.

The results presented in Table 1 prove that mean DTW normalized distance
between averaged signal and original signals varies from 6.153 · 10−3 for Left-
Forearm sensor to 0.713 · 10−3 for Hips sensor, which were very good results.
The heat map in Fig. 9 shows that the biggest distance between averaged signals
and input data is present in measuring points that describe position of hands,
especially LeftForearm. This situation is caused by two facts. The first is that
arm position is a bit less important than precise lower body movements in this
technique and the professional karate athlete might pay a bit less attention to
some small variation in his or her hands placement. The second fact was that we
have some small MoCap errors introduced during data acquisition in the region
of LeftForearm that resulted in less precise angles measurement.

5 Conclusions

In this paper we have presented the algorithm that enables averaging of multiple
MoCap signals of the same full body action which is represented as the set
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of time-varying signals in inverse kinematic. Basing on discussion in previous
section, we can conclude that the proposed method seems to be promising for
that task. That type of averaging has many important applications. For example
it can be used to calculate and visualize an average performance of an athlete
who performs some activity that he or she wants to optimize in training. The
numerical and visual data may be a very important feedback for the coach
that supervises the training [13]. Also our method is not limited to MoCap
data averaging; it can be applied to any type of quaternion-based time-varying
sequences.

The next step of our researches will be evaluation of our algorithm on signif-
icantly larger dataset.
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monitoring. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp.
514–525. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45237-0 47
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