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Abstract. Research in optical flow estimation has to a large extent
focused on achieving the best possible quality with no regards to run-
ning time. Nevertheless, in a number of important applications the speed
is crucial. To address this problem we present BriefMatch, a real-time
optical flow method that is suitable for live applications. The method
combines binary features with the search strategy from PatchMatch in
order to efficiently find a dense correspondence field between images. We
show that the BRIEF descriptor provides better candidates (less outlier-
prone) in shorter time, when compared to direct pixel comparisons and
the Census transform. This allows us to achieve high quality results from
a simple filtering of the initially matched candidates. Currently, Brief-
Match has the fastest running time on the Middlebury benchmark, while
placing highest of all the methods that run in shorter than 0.5 s.
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1 Introduction

Optical flow estimation is a fundamental problem within computer vision. It is
useful in a wide range of applications, from temporal filtering to structure-from-
motion. Due to its applicability, a huge body of work has been devoted to the
topic. However, the great majority of methods do not focus on real-time, and it
still remains a difficult challenge to determine robust and high quality flow fields
in live applications. Real-time optical flow is essential e.g. for detecting moving
objects on moving platforms, obstacle avoidance and gesture recognition. It can
also be used in live video streaming, in order to perform frame interpolation,
video stabilization, rolling-shutter correction etc.

In this work, we use local pixel matching, with binary robust independent
elementary features (BRIEF) [11] as similarity criterion. We match these using
principles from the PatchMatch algorithm [5]. Running on the GPU, this com-
bination can efficiently estimate a candidate optical flow field. The field contains
few outliers as compared to using direct patch comparisons or a Census trans-
form [35]. This makes it possible to use only low-level filtering to obtain a high
quality optical flow field, and thus avoid expensive global optimization.
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The main contributions of this paper can be summarized as follows:
– We propose to combine BRIEF and PatchMatch, for efficient dense feature

matching in order to find a candidate flow field with few outliers.
– We show that BRIEF features improve both matching quality and efficiency,

compared to the Census transform and direct pixels comparisons.
– By comparing to existing real-time and offline methods we show that our

robust optical flow exhibits a very good trade-off between quality and running
time. It is thus well-suited for real-time applications.

2 Background

While classical methods for optical flow estimation generally optimize globally
in a coarse to fine setting, modern approaches tend to increasingly use local
pixel matching. This means that fine detailed motion at large displacements can
be better recovered. The matching can be performed using a sparse set of fea-
tures [10,28,33,34], and then propagated to neighboring pixels to give a per-pixel
flow estimation. Alternatively, the matching can be done densely, comparing per-
pixel local patch distances or dense features [2,4,12,21,23]. However, a dense
correspondence field (CF) contains many outliers, and some post-processing is
inevitably needed in order to find a final optical flow. For example, the method
proposed by Bailer et al. [2] performs a hierarchical correspondence field search,
followed by outlier filtering. We also make use of a per-pixel correspondence
search. However, in order to relieve the need for post-processing we perform the
matching using feature descriptors that makes for relatively few outliers.

The first use of binary patch descriptors were the local binary pattern descrip-
tors (LBP) [26], also known as the Census transform [35] which is the name we
will use. The Census transform encodes the local properties around a pixel by
comparing it to the pixels in a local neighborhood. Census matching is common
in stereo where it often is used together with a Semi Global Matching (SGM) in
order to find disparities between images [13,17,18]. The Census transform has
also been used in recent state-of-the-art for optical flow estimation [2], and in
order to promote real-time performance [25,31]. It has a number of favorable
features that makes it well-suited for determining flow vector candidates [16,32].
A different formulation of binary features is used in the BRIEF descriptor [11],
where random pixel-pairs are compared in a local neighborhood. This descriptor
has been extensively used as an efficient alternative to e.g. SIFT or SURF. There
is also at least one example of it being used for stereo matching [36]. However,
to our knowledge BRIEF has not been used in the context of optical flow esti-
mation, and not in combination with the PatchMatch algorithm. We will show
that using the BRIEF descriptor for real-time per-pixel matching has significant
advantages over the Census transform, both in terms of robustness and speed.

The PatchMatch algorithm [5] is an efficient and well-known method to esti-
mate the correspondence field between two images. The method alters random
searches and a propagation scheme, in order to efficiently find approximate near-
est neighbors. There are examples of the method being used both for optical flow
evaluation [4,21,23,34] and stereo matching [7,13]. By combining BRIEF and
PatchMatch we are able to achieve a robust optical flow estimation in real-time.
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Fig. 1. BriefMatch optical flow pipeline.

3 Method

The proposed pipeline for BriefMatch optical flow estimation is outlined in
Fig. 1. It has two main components: (1) per-pixel matching between images using
BRIEF descriptors and PatchMatch, to obtain an approximate correspondence
field (CF), and (2) outlier filtering of the CF using a cross-trilateral filter kernel.
This section describes the pipeline, as well as implementation specific details.

3.1 Correspondence Field Search

A BRIEF descriptor is constructed by performing N pair-wise comparisons in a
S × S pixels local neighborhood [11]. A binary feature vector is then built as a
bit string, setting the bits based the comparisons. Denoting local coordinates as
q and q′, the descriptor at pixel p in the image I can be formulated as

F (p) =
N∑

i=1

2i−1 (0.5 sign(I(p + qi) − I(p + q′
i)) + 0.5) . (1)

In BRIEF, the sampling of point pairs for the descriptor is done using a
normal distribution, q, q′ ∼ N (0, σ), where the standard deviation is set to
σ = S/5. The Census transform instead compares all pixels of a patch to the
central pixel [35]. This can also be described using (1), if we define q, q′ as

q = (0, 0),
q′ = (i, j), i, j = {−S/2,−S/2 + 1, . . . , S/2 − 1, S/2}, q �= q′.

(2)

Matching on descriptor fields F (p) is performed by comparing the descrip-
tors with the Hamming distance. This can be done efficiently using a bitcnt
operation on the bitwise exclusive or (XOR) of two descriptors. In order to find
a correspondence field between two images, we use the search strategy from
PatchMatch [5]. This was originally designed to search for approximate nearest
neighbors, comparing in terms of mean absolute pixel differences over patches.
PatchMatch uses the fact that the offset to a nearest neighbor of a pixel is also
often a good candidate for its adjacent pixels. By iterating random searches
and a propagation scheme, the algorithm is able to find a good correspondence
field in about 4–5 iterations. The algorithm is also directly applicable for finding
nearest neighbors in terms of binary feature distances.
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Table 1. Properties of different matching criteria. The binary descriptors provide
invariance to light changes and a greater outlier robustness as compared to direct
pixel comparisons. Census depends heavily on the central pixel of a patch, and is thus
sensitive to noise. Only BRIEF is independent of the particular patch size used.

3.2 Properties of Comparison Criteria

In the previous subsection three different comparison criteria were mentioned for
performing a correspondence field search – direct pixel comparisons, a Census
transform and BRIEF descriptors. Figure 2 shows examples of the resulting cor-
respondence fields from matching in terms of these criteria. The main differences
are due to four distinct properties, which are summarized in Table 1. These are:

Light Changes: The most obvious advantage of using binary features, such as
Census and BRIEF, is the invariance to global changes in intensity. Direct pixel
comparisons on the other hand, depend on absolute pixel values.

Outlier Robustness: Encoding the local information around a pixel with binary
features also results in a more robust matching that is less sensitive to outliers.
For example, an inherent problem with patch comparisons is matching on edges
where the background is moving relative to the foreground (see Fig. 2(a)). With
binary features, outlier pixels have less influence compared to direct pixel com-
parisons. In order to further improve matching on edges, we also tested to include
edge-aware binary matching, that only uses comparisons on either foreground or
background [36]. However, this did not improve on the result to a large extent,
so given the limited time budget for real-time performance we did not include
this in the algorithm.

Robustness to Pixel Noise: A weakness of the Census transform is that it relies
heavily on the value of the center pixel of the patch, and it is thus sensitive to that
pixel’s variance. This is not the case for BRIEF and direct patch comparisons.

Patch Size: While the complexity of direct patch comparisons and the Census
transform are directly related to the size of the local neighborhood, BRIEF is
only dependent on the number of binary feature comparisons (N in Eq. 1).

3.3 Flow Refinement

In order to improve on the correspondence field search described in Sect. 3.1,
we make two modifications. First, we up-sample the input frames in the spatial
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(a) Pixel comparisons (b) Census transform (c) BRIEF

Fig. 2. Examples of correspondence fields estimated using different comparison criteria,
where the images have been up-sampled by a factor 3 before matching (see Sect. 3.3).
Using BRIEF results in the least amount of outliers.

dimension, as illustrated in Fig. 1, to achieve sub-pixel accuracy and to provide a
higher number of flow vector candidates. For the up-sampling the interpolation
strategy is crucial, where a Lanczos-3 kernel improves significantly on bicubic
or bilinear interpolation. After matching has been performed on the up-sampled
frames, the resulting correspondence field is down-sampled to the original size.
This is done by first filtering the flow vectors with a Gaussian filter, followed by
a nearest neighbor down-sampling.

While the up-sampling strategy is able to refine the flow candidates, there
are still many outliers in the flow field. Many existing patch-based methods
for optical flow estimation use higher level optimization in order to refine the
candidates, e.g. determining motions in segmented regions with RANSAC [12].
However, since we have a tight time budget to allow for real-time performance,
we rely purely on local filtering of the correspondence field. While a median filter
is able to remove many outliers, it also results in over-smoothed edges. Instead,
we propose to use a cross-trilateral filter that in addition to spatial distance
incorporates distances both in terms of flow vectors and image intensity,

ū(p) = medianFilter(u(p)),

dEPE(p, q) =
√

(u(q) − ū(p))2 + (v(q) − v̄(p))2,

dI(p, q) = I(q) − I(p),

¯̄u(p) =
1
W

∑

q∈Ω

u(q)Gσ1 (dEPE(p, q)) Gσ2 (dI(p, q)) Gσ3(q − p).

(3)

Here, q runs in a neighborhood Ω of the pixel p. The distance dEPE incorpo-
rates the differences in the flow field. It is computed by comparing flow vectors to
the median filtered version of the flow, ū(p), to increase outlier resistance. The
distance dI is a weighting term computed from the original image I. Gσ{1,2,3}
are Gaussian kernels, which are normalized through the weight W . The filtering
is performed in the same manner for both u and v. The final optical flow esti-
mation ¯̄r = (¯̄u, ¯̄v) has some advantages over a separate median filter, where it
better preserves corners and boundaries of the flow as can bee seen in Fig. 3.
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(a) CF (b) Median filtered (c) Cross-trilateral filtered

Fig. 3. The result of filtering the correspondence field (CF) using (b) a median filter
and (c) the cross-trilateral filter in Eq. 3. The up-sampling ratio is 3, and BRIEF-64
features have been used, resulting in a total running time of about 65 ms.

3.4 Temporal Propagation

Since the aim is to provide a real-time optical flow algorithm for processing
frames in a video sequence, we can explore between-frame correlations. One sim-
ple modification is to initialize the nearest neighbor search using the information
from the previous matching,

rt(p)0 = rt−1(p + rt−1(p)). (4)

Here, t is the current frame and 0 indicates the initial correspondences. Now,
the number of iterations of the correspondence search can be cut in half without
sacrificing performance. This makes for a significant reduction in running time.

3.5 Implementation

The described method is well-suited for parallel implementation. The only excep-
tion is the serial propagation of nearest neighbors in the PatchMatch algorithm.
In order to approximate this on the GPU we use a jump flooding scheme [29]. All
the steps in Fig. 1 have been implemented using CUDA, and the performance we
report throughout this paper has been evaluated running on an Nvidia Geeforce
GTX 980. For a typical setup, the running times of the different stages in Fig. 1
are given in Table 2.

For the filtering step (Eq. 3) we use a 13 × 13 pixels median filter. This
involves sorting an array of 169 values for each pixel, which is expensive. Instead
we choose to approximate the filter with a separable median computation, which
significantly reduces running time without sacrificing quality to a large extent.

Table 2. Running time for the different steps in Fig. 1, given a typical parameter
calibration (this can be changed to trade-off quality and speed). Times are estimated
using a 640 × 480 resolution sequence, and running on a Geeforce GTX 980.

Up-sampling Matching Down-sampling Filtering Total time Framerate

6.1 ms 33.1 ms 1.9 ms 26.5 ms 68.1 ms 14.7 fps
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Fig. 4. Correspondence field search time vs. final error for the RubberWhale sequence.
Sampling points have been estimated at different up-sampling factors before matching.

4 Results

In order to validate the performance of BriefMatch we perform a set of compar-
isons on the Middlebury training and test data [3]. In order to measure quality we
use the average endpoint error (EPE), where the EPE is defined as the distance
between estimated and ground truth flow vectors, dEPE(p) = ||r(p) − rgt(p)||.

Impact of Feature Length: With BriefMatch we have the option to trade off
quality for running time by specifying the length N of the binary features in
Eq. 1. Figure 4(a) shows the error on the RubberWhale sequence for a selection
of descriptor sizes. The times specified are only for the matching, while the
error is after performing the filtering in Eq. 3. For each descriptor length the up-
sampling factor has been set in the range [1, 6]. Since the method has a random
search component, the outcome may be slightly different between runs, and thus
the results are averaged over 30 separate runs. From the results it is clear that
the optimal descriptor length depends on the up-sampling factor.

Comparison to Census: In order to show that the BRIEF descriptor performs
better than direct pixel comparisons or a Census transform, Fig. 4(b) shows
the same comparison as in Fig. 4(a). However, it is now made between different
comparison criteria (see Sect. 3). All criteria have been matched with the same
settings of the correspondence search, and the results have been filtered with the
same calibration of the filter in Eq. 3. For the direct pixel comparisons and the
Census transform, the patch size has been tuned to achieve the best possible per-
formance. For the BRIEF comparisons the descriptor length has been chosen for
best performance, so that the plot is the lower envelope of the plots in Fig. 4(a).
It is clear that the performance when using binary descriptors is improved to a
large extent, compared to direct pixel comparisons. The difference between using
Census and BRIEF is smaller, although significant for shorter running times. For
example, it takes about 3 times as long time for Census to reach the quality of
BRIEF, when BRIEF runs in the range of 20–60 ms.
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Table 3. Results from the Middlebury benchmark. The list includes the top 3 per-
formers and the six methods that run in under 0.5 s. The colors indicate how well
BriefMatch performs relative to the compared methods.

Middlebury Benchmark: The Middlebury online benchmark1 currently comprises
125 methods. In terms of the average EPE, BriefMatch places in the middle of
these, while being the fastest of all. Table 3 lists 3 of the top-performing methods
from the benchmark, as well as the ones that run in <0.5 s. BriefMatch performs
very well for 3 of the sequences (green), with an error that is not very far from
the top-performing methods while being about 4 orders of magnitude faster.
However, for 2 sequences (yellow) the result is approximately equivalent to the
best of the fast methods, and for 3 of the sequences (red) the quality is worse
than many of the fast methods. In Sect. 5 we try to analyze why this is the case.

Comparison to Real-Time Methods: A comparison with existing real-time meth-
ods for optical flow is listed in Table 4. The table includes three methods from
OpenCV’s CUDA library. The first is a Lucas-Kanade solver [24] in a pyrami-
dal implementation [8]. The second is Farnebäck’s method [15], that is based
on polynomial expansion to approximate the neighborhood of each pixel. The
third is the method proposed by Brox et al. [9], using a variational model and
a warping technique. We also include the recent real-time method presented by
Kroeger et al. [22], which uses a dense inverse search (DIS) for finding patch cor-
respondences. All methods have been executed with constant parameters over
the sequences, selected in an effort to give the best quality in approximately
50 ms. However, the pyramidal LK and the polynomial expansion methods do
not provide viable options to trade quality for time. For these, increasing the
number of iterations or pyramid scaling increases time, but quality does not scale
well, and it is a better trade-off to run in shorter time. The times reported are
estimated on a machine equipped with an Intel Xeon X5680 (3.33 GHz) CPU and
a Geeforce GTX 980 GPU. From the results we can see that BriefMatch reduces

1 http://vision.middlebury.edu/flow/eval/results/results-e1.php.

http://vision.middlebury.edu/flow/eval/results/results-e1.php
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Table 4. Comparison to real-time methods using the Middlebury training data. The
colors indicate how well BriefMatch performs relative to the compared methods.

the error to 45–75% for four of the sequences (green), as compared to the second
best method. The only sequences where another method yields slightly better
quality are the Urban2 and Urban3 datasets (yellow). We discuss the reason for
this in the next section.

5 Limitations

Looking at the results in Tables 3 and 4, BriefMatch is not consistent in how
well it performs relative to other methods. For some sequences it performs very
well (marked with green), and for others there are many outliers (marked with
red). Elaborating on the cause for this, we can discern the following reasons:

1. Repetitive patterns: Image structures that occurs repetitive can cause
many outliers in the correspondence field. This is for example the case in
the Urban sequences in Tables 3 and 4. These sequences are also computer
generated, which potentially may increase the problem. In order to success-
fully deduce the motion in areas of repetitive patterns, a global optimization
is inevitably needed, which would make real-time performance difficult.

2. Occlusion: Many outliers can be created in areas that are occluded from one
frame to the next and vice versa, e.g. close to image boundaries in a sequence
with camera motion. This is the case for the Urban and Teddy sequences. To
alleviate this problem a global optimization would also be needed.

3. Z-motion: In comparing patches between images – either directly or in terms
of binary features – there is no invariance to image scale. This is a problem
if objects or the camera are moving perpendicular to the image plane, as in
the Yosemite sequence. In order overcome this problem, matching may need
to be performed at multiple scales.

Figure 5 exemplifies the two first problems, using the Urban3 sequence. In
the mid regions of the images the building facades are highly repetitive, causing
a large number of outliers. The problem with occlusion can e.g. be seen close to
the top and bottom image borders, caused by a vertical camera motion.
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(a) Frame 1 (b) Frame 2

(c) CF (d) Filtered CF (e) Ground truth

Fig. 5. Repetitive patterns and occluded areas result in a large fraction of outliers in
the correspondence field (CF). These are difficult to completely remove with a local
outlier filtering technique.

6 Discussion

We have shown that for real-time optical flow estimation BRIEF has a significant
advantage over the Census transform, and that binary features in general are
much better suited for the problem than direct comparisons of pixels. Further-
more, our optical flow algorithm offers a substantial increase in quality compared
to existing real-time methods. Also, comparing to offline state-of-the-art meth-
ods it can in some circumstances perform on a par with these in terms of quality,
while being about 4 orders of magnitude faster.

Although BriefMatch shows promising results, problems occur for repetitive
patterns and occlusions. These problems would be the main focus for improving
the method, investigating how they can be alleviated without using an expen-
sive global optimization formulation. Another possibility is to use BriefMatch in
offline applications. Since a number of the best performing methods use direct
patch comparisons, from our investigation we expect that using BRIEF for these
methods has the potential of increasing quality and/or reducing running time.

Other straightforward improvements include bidirectional matching, color
matching, multiple neighbors in the correspondence search, improved tempo-
ral considerations, etc. The up/down-sampling strategy may also be subject to
improvement, exploring other interpolation kernels and sampling schemes. We
also expect that the current implementation can be improved on, for example
using Halide2 and by adapting the implementation to better use shared memory
2 http://halide-lang.org/.

http://halide-lang.org/
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and thread cooperation. Finally, for the BRIEF descriptor we have used ran-
dom patch comparisons, were pixel pairs are drawn from a normal distribution,
as in the original BRIEF formulation. Similar performance could probably be
obtained with smaller descriptors, by using mining of feature pairs, as was done
for e.g. the ORB descriptor [30].
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