
Task Allocation Strategies for FPGA Based
Heterogeneous System on Chip

Atanu Majumder, Sangeet Saha(B), and Amlan Chakrabarti

A.K. Choudhury School of IT, University of Calcutta, Kolkata, India
a.majumder007@gmail.com, sangeet.saha87@gmail.com, amlanc@ieee.org

Abstract. FPGA based heterogeneous System On Chips (SOCs) have
become a prospective processing platform for modern performance-
sensitive systems, like automotive, avionics, chemical reactor etc. In such
system, “makespan” time minimization plays a crucial role to achieve
higher throughput as well as performance efficiency and thus, efficient
task allocation schemes are indeed essential. This paper presents two task
allocation algorithms for such FPGA based heterogeneous SOCs. The
first allocation strategy is based on well known “Branch and Bound” opti-
mization technique. Secondly, we proposed a novel heuristic based alloca-
tion mechanism, TAMF (Task Allocation Mechanism for FPGA based
heterogeneous SOC). The simulation based experimental results reveal
that both the strategies are able to provide lower makespan time over
various simulation scenarios with acceptable runtime overheads. Achieved
simulation results are further tested through a validation, carried out on
practical ZYNQ SOC platform using standard benchmark task sets.

Keywords: Tasks allocation · FPGA · Branch and bound · makespan
time

1 Introduction

Embedded systems are now-a-days employing FPGAs as a prospecting comput-
ing platform in various fields, ranging from avionic and automotive systems,
nuclear reactors [1] to synthetic vision, object tracking [2] etc. These FPGAs
provide the performance efficiency of a dedicated hardware as well as flexibil-
ity of a general purpose processor. Recently, FPGAs are also being integrated
in System on Chip (SOC) along with pre-fabricated Hard-core processors and
Soft-core processors (Constructed using FPGA logic) [3]. Such “Heterogeneous”
systems contain different Processing Elements (PEs) with certain performance
characteristic and can execute a set of tasks by assigning them on suitable PEs.

As an interesting example, such heterogeneous SOCs may be used as a per-
formance efficient processing platform for automotive systems. In automotive
systems [4], an ample amount of routine tasks need to be executed at system
instantiation before its full phase functioning begins. Suppose, this SOC will per-
form the parallel execution of those initial set of tasks by appropriately assigning
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
K. Saeed et al. (Eds.): CISIM 2017, LNCS 10244, pp. 341–353, 2017.
DOI: 10.1007/978-3-319-59105-6 29

342 A. Majumder et al.

them on individual PEs, such that the completion time of all tasks are minimized
and the system can quickly start functioning, after its instantiation. Therefore,
it is essential to have well defined tasks allocation strategy, feasibility criteria for
achieving high resource utilization with performance efficiency.

In this paper, we propose two novel static tasks allocation strategies for
FPGA based heterogeneous SOCs. The first strategy is optimal “Branch and
Bound” [5] based task allocation technique and the second one, is based on
heuristic approach, coined as TAMF allocation strategy. The contributions of
this work can be summarized as follows:

– ILP based problem formulation for tasks assignments on FPGA based het-
erogeneous SOCs.

– Employing the optimal “Branch and Bound” strategy for tasks assignments.
– Proposal of a new TAMF heuristic for faster tasks allotments.
– The experimental results reveal the efficacy of the proposed approaches in

various simulation scenarios and also showed that the performance of TAMF
is comparable to optimal Branch and Bound technique in most of the cases.

– Validation of the proposed tasks allocation strategies on actual FPGA based
heterogeneous SOC named ZYNQ [3], using benchmark task sets.

The rest of the paper is organized as follows. The next section provides a
brief discussion on important related works conducted. This is followed by a
discussion on the system model adopted in this work in Sect. 3. In Sect. 4, we
present the formulation of the tasks allocation problem. The proposed Branch
and Bound based strategy and TAMF with illustrating examples, are discussed
in Sects. 5 and 6, respectively. Section 7 presents simulation based experimental
results along with analysis and discussion on the same. The validation of the
approaches on ZYNQ platform is discussed in Sect. 8. The paper finally concludes
in Sect. 9.

2 Related Work

The generic problem of efficient task allocation on heterogeneous multiprocessor
systems (with CPUs and GPUs or Processors having different instruction sets)
have drawn considerable research interest in last few years [6,7]. One stream of
researchers [8,9] have delved towards finding out the efficient allocation schemes
for dependent task sets. On the other hand, a plethora of research works [10,11]
are available which dealt with independent tasks sets. Authors in [10], present
an Integer Linear Programming (ILP) based tasks allotment scheme which guar-
antees the execution speedup upto a certain bound. In [11], authors proposed
two tasks assignment algorithms and discussed about the performance between
migrative allocation approach which allows tasks migration among different
types of processors and the non-migrative approach. Further, the problem of
tasks handling in heterogeneous multiprocessor systems has spun-off in another
direction where tasks could be static or dynamic in nature. In [12], authors con-
sidered static allocation where the tasks remain quantitatively constant through

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 343

out the schedule. Similarly in [13], authors proposed a dynamic allocation tech-
nique for heterogeneous multiprocessor system where tasks arrive in arbitrary
instances.

Minimization of the makespan1 time remains one of the principal research
focus for researchers during allocation of tasks on heterogeneous multiprocessors.
Thus, the researchers reported both fast heuristic based algorithms as well as
optimal algorithms. Heuristics based independent task allocation strategies such
as greedy approach, ant colony optimization techniques can be found in [14].
In [15], authors proposed “Branch and Bound” based optimization strategy to
achieve optimal solution. However, literatures about tasks allocation on FPGA
based heterogeneous SOCs with proper optimization technique is merely a hand-
ful. The existing research works [16,17] mainly employed hardware and software
tasks partitioning as a tasks allocation strategy. The computation intensive tasks
are being executed using FPGA fabric as a hardware task whereas tasks having
less computation requirements are assigned to CPUs for execution as a software
task. However, such allotments are often plagued with some limitations.

3 System Model and Assumptions

The system model, considered in this work is a FPGA based heterogeneous SOC.
Our heterogeneous SOC contains an FPGA logic area and pre-fabricated Hard
Cores (HCs). Further, the FPGA logic consists of Reconfigurable Regions or
tiles (RRs) to execute hardware tasks and Soft Cores (SCs) (which constructed
using FPGA logic) for software tasks execution. Hence, the system model under
consideration contains three distinct types of PEs that is RR, SC, HC which
completely resembles with modern ZYNQ [3] architecture. Depending upon the
SOC architecture, a particular type of PE could exist in multiple units.

Being an embedded system, the initial distributions of tasks are known at
design time and each task is capable of running on each type of PEs. The pro-
posed system model is further characterized by the following assumptions:

– A task cannot execute simultaneously on two distinct PEs at same instant
and will be strictly executed on a single PE (till it execution requirements
fulfills), which implies that tasks are non-migrative in nature.

– Tasks are independent and thus, each PEs can operate in parallel to execute
an individual task.

– The cost of execution of each task over each distinct type of PEs is calculated
through profiling and stored in offline.

– PEs are capable to suffice the memory and I/O requirements of any task.

At system instantiation (time, t = 0), a fixed number of tasks will arrive for pos-
sible allotment on SOC and will be stored in a queue. Our strategy will attempt
to allocate tasks, such that the makespan time gets minimized. Algorithms will
operate through a dedicated HC (termed as allocator) and will allocate tasks on

1 It is the total length of the schedule i.e. when all the tasks have finished their
execution.

344 A. Majumder et al.

respective PEs, as per the outcome. The pictorial representation of the proposed
system model is shown in Fig. 1. A practical validation of the proposed system
model on physical ZYNQ platform is illustrated in Sect. 8.

Fig. 1. System model

4 Problem Formulation

Let us assume a task set τ = {T1, T2, ..., TN}, arrives for possible allotment over
M distinct types of PEs where each jth type of PE is comprised of kj units.
Such multiple units of a particular type of PE is individually referred as “core”.
It may be noted that the cost of execution of a task, will be same for all the
cores which belong to a particular type of PE.

At a particular instant t, we can allocate atmost (
∑M

j=1 kj) tasks for parallel
execution over all resources. Let, Ci,j denotes the cost of execution incurred by
Ti when assigned to jth type of PE. Let us define a binary variable tikj as follows:

tikj =
{

1, When Ti is assigned to any one of the kj cores of jth type PE
0, otherwise

}

Hence, we can illustrate the makespan time mk as:

mk = Max{
η∑

i=1

kj∑

i′=1

Cij ∗ tikj}, ∀j ∈ M (1)

where, η denotes the number of tasks assigned to jth type of PE.

In order to achieve lower mk, the objective function can be defined as:

Minimize mk (2)

Subject to the following constraints:
– The maximum number of tasks that can operate in parallel at a particular

instant, can be atmost equal to the total number of available resources.
– No task can simultaneously execute on different resources. Thus, at a partic-

ular instant, following equation has to be satisfied.
M∑

j=1

kj∑

i′=1

tikj ≤
M∑

j=1

kj (3)

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 345

5 Branch and Bound Based Allocation Strategy

The above problem formulation clearly depicts that the proposed task allot-
ment phenomena turns into an ILP based optimization problem and hence, NP-
complete in nature [18]. Once a problem enrolls into the NP-complete category,
it is very unlikely that an algorithm with polynomial time complexity can be
designed in order to solve that one. The optimal Branch and Bound [5], implic-
itly enumerates all of the feasible solutions by forming and traversing a “state
space tree.”2 The tree is constructed using DFS [19] algorithm. At each node
of the state space tree, the Lower Bound (LB) has to be calculated such that,
search effort for probing the solution space can be reduced.

The cost incurred by the allocated tasks and the probable (underestimate)
cost that will be incurred by the remaining unallocated tasks, will reflect as a
sum in LB. Similarly, Upper Bound (UB), is calculated by considering the worst
case cost (instead of minimum cost) of the unallocated tasks.

At a particular node (NT), if the calculated LB appears to be larger or equal
to the best solution result found so far, then the enumeration of the subtree
rooted at NT can be skipped. It definitely implies that some nodes and subtrees
will be “pruned-off” but it will obviously not jeopardize the optimality.

The pseudo-code for the proposed Branch and Bound strategy is shown in
Algorithm 1. In the following section, we will illustrate an example which will
depicts our proposed Branch and Bound allocation strategy through a test case.

Algorithm 1. Branch and Bound Based Allocation Strategy
Input: Task set τ , M types of PEs (including kj units)
Output: Allocation of tasks which provide minimum mk.

1 For each PE, calculate the minimum task execution costs;
2 Sum up those minimum execution costs and assign to Start Value;
3 while τ is not empty do
4 for each task Ti ∈ τ do
5 Find the LB for each type of PEs;

6 Find task Tβ which provides min-LB (minimum LB) for say, jth PE;
7 {In case of multiple existence of min-LB, choose any arbitary Tβ};

8 Calculate UB of Tβ for that jth PE;
9 Allocated Value = Summation of the costs of already allocated task/tasks;

10 if (min-LB + Allocated Value) ≥ Start Value AND min-LB < UB then

11 Assign Tβ to jth PE;
12 Remove Tβ from the τ ;

13 else
14 Choose the next min-LB;
15 Go to step 10;

16 Find mk using Eq. 1.

2 A tree constructed in the solution space.

346 A. Majumder et al.

5.1 An Example of Branch and Bound (BnB) Based Strategy

Let us consider six tasks, τ = {T1, T2, ..., T6} that appear for the possible allot-
ment (such that makespan time get minimized) in our proposed FPGA based
heterogeneous SOC. Let us assume that system under consideration contains,
one unit of RR (k1 = 1), two units of SC (hence, k2 = 2; core1 and core2 of SC)
and two cores of HC (k3 = 2), one of which is dedicatedly acting as allocator.
The performance of each task over these three (M = 3) distinct types of PEs
is measured through profiling and displayed in Table 1.3 It may be noted that
the execution performance for both the cores of SC will be same and hence, not
explicitly shown in the Table 1.

Table 1. Tasks parameters

PEs Tasks
T1 T2 T3 T4 T5 T6

HC 4 5 1 14 5 5

SC 3 7 3 11 4 3

RR 7 9 5 9 9 5

Table 2. Tasks LBs

PEs Tasks
T1 T2 T3 T4 T5 T6

HC 15 16 12 25 16 14

SC 12 16 15 20 13 12

RR 14 16 15 16 16 12

The minimum execution cost demanded by HC is one time-unit for executing
T3. Similarly, SC demands minimum three time-units for both the cores and
RR demands minimum five time-units while executing the tasks T6 and T3,
respectively. Hence, Start V alue = 1 + 3 + 3 + 5 = 12.

A particular LB value can be calculated as follows: let us consider, T6 is
allocated in SC and thus, the incurred cost of T6 will be 3 time-units. This
allocation implies that, SC (core1) and T6 will be out of consideration for the
next course of calculation. The minimum cost that will be incurred by remaining
unallocated tasks can be found as: “minimum execution cost demand by HC”: 1 +
“minimum execution cost demand by SC (core2)”: 3 + “minimum execution cost
demand by RR”: 5. Hence, the corresponding LB becomes: 3+ (1 + 3 + 5)=12.
Similarly, by considering each individual allotment possibilities, LBs for each
task corresponding to each type of processing resource is calculated and shown
in tabular form in the Table 2.

Following the steps 6–8 of Algorithm 1, min-LB can be found as 12 of T6

for SC (core1). Hence, UB of T6 for SC can be calculated as follows: “maxi-
mum execution cost for HC”: (14) + “maximum execution cost for SC (core2)”:
(11)+ “maximum execution cost for RR”: (9) + cost of T6 for SC (core1) (3).
Hence, UB of task T6 for SC becomes: 37. Before the task allocation procedure
begins, Allocated Value is initialized as zero. Thus, it may be observed that T6

3 The values corresponding to tasks are depicting the execution cost in terms of time-
units.

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 347

is satisfying the conditions stated in step 10 of the Algorithm 1. Hence, T6 suc-
cessfully assigned to SC (core1) and removed from the task set τ . In the same
way, following the steps of Algorithm 1, the allocation procedure will continue
until τ becomes empty. The final task allocation scenario and corresponding mk
is shown in Table 3.

6 TAMF-Working Principle

It is worth mentioning that Branch and Bound strategy demands higher degree
of computations and may become computationally intensive when the number
of task increases. Hence, we propose a novel heuristic based tasks allocation
strategy called TAMF. TAMF will be executed once at system instantiation and
tasks will be allocated as per the achieved task-to-PE mapping information.

At the beginning of TAMF, the task set τ gets ready with sorted execution
cost of each task (in non-decreasing order) for different types of PEs. We assume
that each type of PE provides minimum execution cost for atleast one task.
Hence, TAMF will choose the element of the sorted sequence for allocation. It
ensures that the task will be allocated to that particular PE for which it has the
minimum execution cost. Now as soon as core/cores of a PE, finishes its pre-
assigned execution, it will look for the next most eligible candidate task Tα. Tα

can only be allocated to a “free”4 PE, if and only if the following two conditions
hold alternatively:

i. The execution cost of the Tα is minimum for the free PE (among all PEs).
ii. The execution cost of the Tα for the free PE ≤ average execution cost of Tα.

Here, both the conditions attempt to ensure that Tα should completes with
its lower execution requirement and thus, maximizing the probability of having
minimum mk. Moreover, the allocation of Tα to any other PE might not be able
to provide better mk. TAMF will continue its own operation till any unallocated
task remains. The pseudo-code for TAMF is depicted in Algorithm 2.

Table 3. Tasks allotment and mk: BnB
Based

PEs Allocated task(s) Consumed cost mk

HC T2, T3 5 + 1 = 6 9
SC Core1 <= T1, T5 3 + 4 = 7

Core2 <= T6 3
RR T4 9

Table 4. Tasks allotment by TAMF

PEs Time
1 2 3 4 5 6 7 8 9

HC T2 T3

SC (core1) T1 T6

SC (core2) T5

RR T4

4 The PE finished its earlier execution and currently not executing any task.

348 A. Majumder et al.

Algorithm 2. TAMF
Input: Task set τ , M types of PEs
Output: Allocation of tasks for achiveing minimum mk.

1 {Tα: next candidate task; Cαj : execution cost of Tα in jth PE; Cmin
αj =

min{Cαj}, ∀j ∈ M: minimum execution cost of Tα in jth PE; Cavg
α =∑M

j=1 Cαj/M: average execution cost of Tα over all PEs};

2 while τ is not empty do

3 for each jth free PE, j ∈ M do
4 if Cαj == Cmin

αj OR Cαj ≤ Cavg
α then

5 Assign Tα to the jth PE;
6 Remove Tα from τ ;

7 jth PE become free when Cαj completes.;

8 Find mk using Eq. 1;

6.1 TAMF in Work: An Example

Let us consider, the same set of tasks τ as shown in Table 1. As stated earlier,
in this case τ contains all the parameters in a sorted fashion. Let us consider T1

as a first candidate for allocation. It may be noted that the execution cost of T1,
related to each PEs is already being stored in a sorted sequence. T1 consumes
minimum execution cost 3 time units while executes in SC. On the other hand,
the average execution cost of T1 over all PEs becomes: {(3 + 4 + 7)/3}. It may
be observed that T1 satisfies the condition, stated in step 4 of the algorithm 2.
Hence, T1 is allocated on SC (arbitrarily, core1) and removed from τ .

By following the same way, T2 gets allocated in HC but T3 could get allo-
cated in HC when T2 finishes. Similarly, other tasks will be allocated by the
following algorithm 2. The respective allocation and execution sequence of each
task is shown in Table 4. It is very much evident that all the tasks complete their
execution requirements within 9 time units and thus, mk = 9.

7 Experiments and Results

The performance of the Branch and Bound based strategy and TAMF have been
evaluated by conducting simulation based experiments using randomly generated
task sets whose execution cost corresponding to a PE have been taken from
normal distribution. The performance metrics used for evaluation are makespan
time as defined in Eq. 1 and the Computational Overheads, CO (measured in
terms of consumed clock cycles/CPU ticks). Data sets for various values of N
(10 to 30)5, have been generated on systems containing total 2 to 8 cores of
three types of PEs. Each result is generated by executing 50 different instances
of each data set type and then taking the average over these 50 runs.

5 Routine tasks within an embedded system typically lies within this range [20].

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 349

Table 5 shows the performance variation of Branch and Bound (BnB) based
strategy and TAMF over different number of processing resources. It may be
observed from the third and fourth column of the table, that BnB based tech-
nique can effectively eliminate the possible numbers of solution (by travers-
ing less number of nodes) through an intelligent pruning technique. Moreover,
as N increases, the computation overhead related to the LB estimation also
increases (lines 4–5, Algorithm 1) and thus, the COBnB of overall strategy
increases. Another notable observation reveals that when the number of process-
ing resources increases by keeping N fixed, the number of traversed node (AF
prun) as well as COBnB also increases, this is mainly because the additional
overheads incurred in LB calculation for the increment in processing resources.
This observations is also supported by Fig. 2(a).

Table 5 also establishes the fact that TAMF demands less computational over-
head than Branch and Bound based strategy. This observation may be attributed
to the fact that being a heuristic based policy, TAMF does not implicitly enu-
merate all possible solutions instead, employs task selection mechanism with
linear overhead and thus, costs less COTAMF . Moreover, like BnB based strat-
egy, increase in N also endorses increment in TAMF’s overheads. However, if
BnB based strategy and TAMF runs on an allocator whose frequency is 1.5 GHz
then COBnB and COTAMF for N = 10 (with six processing resources) becomes
0.72 and 0.16 in milliseconds, respectively. Figure 2(b), depicts bar chart showing
makespan time (mk) produced by Branch and Bound based strategy and TAMF
for number of tasks (N) varying from 10 to 30 with constant number of process-
ing resources as 8. From the respective figure, it is very much evident that in most

Table 5. Performance of Branch and Bound (BnB) based strategy and TAMF

PEsa N BF Prun AF Prun COBnB COTAMF

HC - 2 10 > 1002 330 1080551 243112

15 > 1002 720 2775883 384098

SC - 2 20 > 1002 1260 5490998 535518

25 > 1002 1950 9675934 679567

RR - 2 30 > 1002 2790 15481722 832551

HC - 3 10 > 1002 440 1755676 252107

15 > 1002 960 4621855 391578

SC - 3 20 > 1002 1680 10279888 552077

25 > 1002 2600 17389423 724583

RR - 2 30 > 1002 3720 28938997 877661

N : Number of tasks, BF Prun; AF Prun: Numbers of
expected and actual nodes traveled respectively, COBnB :
Computational overheads in terms of Clock ticks for Branch
and Bound based strategy, COTAMF : Computational
Overheads for TAMF
a PEs with individual number of cores

350 A. Majumder et al.

 0

 5

 10

 15

 20

 25

 30

 4 5 6 7 8

 C
O

*(
1

0
6
)

 Number of PEs

 CO VS PEs

N=10
N=15
N=20
N=25
N=30

(a) CO vs PEs: BnB Based Strategy

 0

 5

 10

 15

 20

 25

N=10 N=15 N=20 N=25 N=30

mk: BnB Based Vs TAMF

BnB Based
TAMF

(b) mk vs N : BnB Based and TAMF

Fig. 2. Performance of BnB based strategy and TAMF

of the cases, the efficiency of Branch and Bound based strategy and TAMF (in
terms of mk) is comparable. Through a deeper observation, it can be observed
that for N = 20 tasks, BnB based strategy provides mk = 18 (slightly lower)
while TAMF produces mk = 21. However, TAMF will cost COTAMF =552112
clock cycle which is 18.6% lower than the BnB based strategy (refer, Table 5).

8 Validation in Physical ZYNQ Platform

Besides of the thorough theoretical and simulation studies, we have also val-
idated the proposed strategies in actual FPGA based heterogeneous SOC
(ZYNQ:ZC702) with synthetic task sets. The platform contains three distinct
types of PEs that is the FPGA chip, dual core ARM Cortex-A9 processor and
MicroBlaze (MB) processor. In the ZYNQ board, these ARMs are located in PS
(Processing System) region and FPGA logics are separate as PL (Programmable
logic) region [3]. In PL, the Reconfigurable Regions (RRs) are done to carry out
the hardware task execution and Soft Core (SC) MB executes software tasks.
In PS, ARMs are pre-fabricated and hence, termed as Hard Core (HC). It may
be observed that the ZYNQ architecture resembles our adopted system model.
Xilinx PlanAhead 14.4 and XPS, EDK, SDK 14.4 [3] tools are have been used
for this validations.

8.1 Customization of the Platform

For the purpose of the meaningful validation, the ZYNQ platform needs to be
architecturally customized.

• In the PL, RR was properly marked and the execution of each task on that
RR is ensured by properly maintaining the UCF [3] constraints.

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 351

• Two MBs are added in the PL using XPS IP-core. RR and MB are connected
through inter PL bus architecture.

• The RR, MB both are operated with PLs clock (FCCLK) of 50 MHz fre-
quency.

• One ARM core (core-0) is kept for possible task allotment and another
ARM (core-1) works as allocator. These ARMs are operating using 667 MHz
frequency.

• Both the PS and PL are communicating through GP0 and GP1 port. PS
and PL are also connected with OCM (On-Chip Memory) using AXI bus.

8.2 Synthetic Task Set Creation

To cope-up with the customized platform, it is essential to have proper set
of tasks. In our validation, we have constructed and profiled the sets of task.
These task sets are taken from well known Benchmark task set named ITC’99
benchmarks [21]. This Benchmark consists of numerous task such as “Adder”,
“Decoder”, “Integer to Float conversion” etc.

• Synthetic hardware tasks are created using VHDL code and performance of
each such tasks is measured forming proper test-bench.

• Software tasks are written in system-c code. The execution performance of
those tasks are measured for both MB and ARM. The execution cost of
sample tasks is shown in Table 6.

• At design time, each hardware task is stored in its executable format (as .bit)
in external memory. In ZYNQ, such .bit files are stored in SD card.

• Software tasks are stored in executable (.elf) format in the external SD card.
• This external memory is present in PS region and linked with the allocator.

8.3 Implementation and Outcomes

Both the strategies (Branch and Bound based and TAMF) are coded in system-
c, compiled and stored (as respective executable format) in the SD card. At the
system instantiation, ZYNQ starts booting from SD card and core-1 of ARM
(allocator), initiates the execution of the respective strategy. After completion,
the tasks allocation information are stored in a log file, in the external memory.
Now core-1, will start allocation by transferring the respective .bit file to the PL
(if a task is assigned to PL region) and .elf to MB, core-0 of ARM respectively.
In the similar way, the allocator further reads the task assignment information
from the stored log file and allocates tasks (in their respective executable format)
from external memory to appropriate PEs.

Table 7 shows the performance of BnB based allocation strategy and TAMF
over different number of processing resources, on the ZYNQ platform. From the
table, it can be concluded that the trends of results in the actual platform concur
with the outcomes obtained through simulation studies.

352 A. Majumder et al.

Table 6. Benchmark tasks execu-
tion overhead (clock ticks unit) on
ZYNQ

PEs Dec Add I2F Lg2

HC 460158 455920 464819 451817

RR 750 35112 70089 465335

SC 41312 42736 87733 581298

Table 7. Performance on ZYNQ

PEs N BF Prun AF Prun COBnB COTAMF

HC - 1 10 > 1002 330 1268233 483468

SC - 2 - - - - -

RR - 2 20 > 1002 1260 1988597 791436

9 Conclusion

In this paper, we presented methodologies for allocating task sets on FPGA based
heterogeneous SOC such that makespan is minimized. An optimal strategy and
heuristic based technique is discussed. We designed, implemented and evaluated
the algorithms using simulation based experiments and the simulation results
were further validated through real implementation on ZYNQ platform.

Acknowledgments. This work was supported in part by the TCS Research Fellow-
ship Award, granted to Sangeet Saha and TEQIP Phase-II project of University of
Calcutta, India.

References

1. Hayashi, T., Kojima, A., Miyazaki, T., Oda, N., Wakita, K., Furusawa, T.: Appli-
cation of FPGA to nuclear power plant I&C systems. In: Yoshikawa, H., Zhang,
Z. (eds.) Progress of Nuclear Safety for Symbiosis and Sustainability, pp. 41–47.
Springer, Tokyo (2014). doi:10.1007/978-4-431-54610-8 5

2. Jin, J., Lee, S., Jeon, B., Nguyen, T.T., Jeon, J.W.: Real-time multiple object cen-
troid tracking for gesture recognition based on FPGA. In: Proceedings of the 7th
International Conference on Ubiquitous Information, Management and Communi-
cation, p. 80. ACM (2013)

3. Crockett, L.H., Elliot, R.A., Enderwitz, M.A., Stewart, R.W.: The Zynq Book:
Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Pro-
grammable Soc. Strathclyde Academic Media (2014)

4. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: Autosar-a worldwide standard is on
the road. In: International VDI Congress Electronic Systems for Vehicles, vol. 62
(2009)

5. Corrêa, R., Ferreira, A.: Branch and bound. Parallel Algorithms for Irregular Prob-
lems: State of the Art, pp. 157–176 (2013)

6. Moreira, O., Valente, F., Bekooij, M.: Scheduling multiple independent hard-real-
time jobs on a heterogeneous multiprocessor. In: Proceedings of the 7th ACM &
IEEE International Conference on Embedded Software, pp. 57–66. ACM (2007)

7. Satish, N.R., Ravindran, K., Keutzer, K.: Scheduling task dependence graphs with
variable task execution times onto heterogeneous multiprocessors. In: Proceedings
of the 8th ACM International Conference on Embedded Software, pp. 149–158.
ACM (2008)

http://dx.doi.org/10.1007/978-4-431-54610-8_5

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 353

8. Dhingra, S., Gupta, S.B., Biswas, R.: Hybrid gasa for bi-criteria multiprocessor
task scheduling with precedence constraints. Comput. Appl. Int. J. 1(1), 11–21
(2014)

9. Biswas, S.K., Rauniyar, A., Muhuri, P.K.: Multi-objective bayesian optimization
algorithm for real-time task scheduling on heterogeneous multiprocessors. In: 2016
IEEE Congress on Evolutionary Computation (CEC), pp. 2844–2851. IEEE (2016)

10. Baruah, S.K., Bonifaci, V., Bruni, R., Marchetti-Spaccamela, A.: ILP-based
approaches to partitioning recurrent workloads upon heterogeneous multiproces-
sors. In: ECRTS, pp. 215–225 (2016)

11. Raravi, G., Andersson, B., Nélis, V., Bletsas, K.: Task assignment algorithms for
two-type heterogeneous multiprocessors. Real-Time Syst. 50(1), 87–141 (2014)

12. Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An automatic input-sensitive
approach for heterogeneous task partitioning. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, pp.
149–160 (2013)

13. Tabatabaee, H., Akbarzadeh-T, M.R., Pariz, N.: Dynamic task scheduling model-
ing in unstructured heterogeneous multiprocessor systems. J. Zhejiang Univ. Sci.
C 15(6), 423–434 (2014)

14. Luo, P., Lü, K., Shi, Z.: A revisit of fast greedy heuristics for mapping a class
of independent tasks onto heterogeneous computing systems. J. Parallel Distrib.
Comput. 67(6), 695–714 (2007)

15. Chow, K.W., Liu, B.: On mapping signal processing algorithms to a heterogeneous
multiprocessor system. In: 1991 International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 1991, pp. 1585–1588. IEEE (1991)

16. Pagani, M., Marinoni, M., Biondi, A., Balsini, A., Buttazzo, G.: Towards real-time
operating systems for heterogeneous reconfigurable platforms. In: OSPERT 2016,
pp. 49–54 (2016)

17. Li, L., Sun, J., Li, W., Lv, Z., Guan, F.: Hardware/software partitioning based on
hybrid genetic and tabu search in the dynamically reconfigurable system. Int. J.
Control Autom. 8(1), 29–36 (2015)

18. Papadimitriou, C.H.: Computational Complexity. Wiley, Chichester (2003)
19. Everitt, T., Hutter, M.: Analytical results on the BFS vs. DFS algorithm selection

problem. Part I: tree search. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS,
vol. 9457, pp. 157–165. Springer, Cham (2015). doi:10.1007/978-3-319-26350-2 14

20. Chattopadhyay, S.: Embedded System Design. PHI Learning Pvt. Ltd., Delhi
(2013)

21. Davidson, S.: Itc’99 benchmark circuits-preliminary results. In: Proceedings of
International Test Conference 1999, pp. 1125–1125. IEEE (1999)

http://dx.doi.org/10.1007/978-3-319-26350-2_14

	Task Allocation Strategies for FPGA Based Heterogeneous System on Chip
	1 Introduction
	2 Related Work
	3 System Model and Assumptions
	4 Problem Formulation
	5 Branch and Bound Based Allocation Strategy
	5.1 An Example of Branch and Bound (BnB) Based Strategy

	6 TAMF-Working Principle
	6.1 TAMF in Work: An Example

	7 Experiments and Results
	8 Validation in Physical ZYNQ Platform
	8.1 Customization of the Platform
	8.2 Synthetic Task Set Creation
	8.3 Implementation and Outcomes

	9 Conclusion
	References

