
Automatic Generation of OpenCL Code
for ARM Architectures

Sergio Afonso(B), Alejandro Acosta, and Francisco Almeida

Universidad de La Laguna, San Cristóbal de La Laguna, Spain
{safonsof,aacostad,falmeida}@ull.es

Abstract. The efficient exploitation of the increasing computational
capabilities of mobile devices is still a challenge. The heterogeneity of
Systems on Chip (SoC) makes necessary a very specific knowledge of
their hardware in order to harness their full potential. OpenCL is a well
known standard for cross-platform usage of accelerator devices. We follow
an annotation-based approach for solving the problem of high develop-
ment cost of OpenCL programming for mobile devices. With our app-
roach, the programmer can select from different programming models the
one that offers the best performance for each section of the application.
Computational results show that our automatically-generated OpenCL
code can outperform Renderscript when running on the GPU of Android
devices, making it the best choice for a range of parallel algorithms.

Keywords: Parallelizing compiler · Source-to-source translation ·
Annotation based · OpenCL · Android · ARM

1 Introduction

Technologies previously only available in desktop computers are now imple-
mented in embedded and mobile devices. In this scenario, we can find that new
processors integrating multicore architectures, GPUs and DSPs are being devel-
oped for this market. The Nvidia Tegra [15], the Qualcomm Snapdragon [16]
and the Samsung Exynos [17] are some examples of platforms that go in this
direction. Conceptually, the architectural model can be viewed as a traditional
heterogeneous CPU/GPU system where memory is shared between processing
units and acts as a high-bandwidth communication channel.

In non-unified memory architectures, it is common to have a subset of system
memory addressable by the GPU. Technologies like Algorithmic Memory [12],
GPUDirect [14] and Unified Virtual Addressing from Nvidia and HSA from
AMD [5] are working towards a unified memory system for CPUs and GPUs on
top of traditional memory architectures. At the same time, memory performance
continues to be outpaced by the ever increasing demand of faster processors.

Many frameworks have been created to support the development of software
for these devices. The main companies competing in this market have their own
platforms: Android from Google [9], iOS from Apple [7] and Windows Phone
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 96–107, 2017.
DOI: 10.1007/978-3-319-58943-5 8



Automatic Generation of OpenCL Code for ARM Architectures 97

from Microsoft [13]. Each of these platforms provide a high-level development
framework that makes easier the creation of applications. However, they are more
geared towards fast development of interactive applications than to reduce the
difficulty of efficiently exploiting the underlying parallel architecture. Given the
high heterogeneity existent among these devices, the creation of tools is needed
to improve the development productivity while exploiting the computational
capabilities of their different architectures.

Android provides three development models with distinct features that have
to be used in different parts of the application in order to get the best overall
performance. In [20] a detailed comparative of these models was presented and
the necessity of a unified programming model for Android is highlighted.

– Java: A very comprehensive API is provided, so it is the easiest model to pro-
gram. Most Android applications are written in Java, so Android developers
should be familiar with this language.

– Renderscript: It is designed for computationally intensive tasks, mainly
SPMD. It requires to learn a new language based on C.

– Native C: It provides access to native libraries, suffering from less runtime
overhead than Java, which sometimes compensates the extra development
cost that it supposes.

Paralldroid [1,2,4] is a development framework that allows the automatic
creation of Native C and Renderscript applications—sequential and parallel—
for mobile devices. Under Paralldroid, the developer annotates the main com-
ponents of each Java class that has to be optimized. It uses the information
provided by the annotations to generate a new program that incorporates the
code sections to run on the CPU or GPU, using a specified target language.
Therefore, Paralldroid unifies the different programming models of Android.

Paralldroid is an evolution of other annotation-based approaches to auto-
matic parallelization, such as OpenMP or OpenACC, because it is higher level.
OpenMP and OpenACC annotations still require the developer to annotate
blocks of code inside the algorithm’s implementation, whilst Paralldroid sep-
arates more clearly the implementation from the parallel semantics by applying
annotations to classes, fields and methods. Our goal is to obtain comparable
performance to these approaches while making it easier for the developer.

In this paper we present a new backend system for Paralldroid to support
the generation of OpenCL code. OpenCL is a native library and programming
language for writing high performance applications for heterogeneous systems,
supporting many kinds of accelerators [10]. It provides a mechanism for parallel
programming and a low-level API for communicating data and handling the dif-
ferent computing devices present in the hardware platform. Currently, OpenCL
is not supported by the Android implementations provided by Google. How-
ever, given the heterogeneity of the mobile ecosystem, some manufacturers offer
OpenCL in their devices, so it is still interesting to generate OpenCL for those.

The main contributions of this paper are:

– The importance of OpenCL in desktop systems is well known. Now, this
programming model is extended to mobile devices. The code generation



98 S. Afonso et al.

methodology proposed allows OpenCL code to be transparently executed
from Android applications written in Java.

– The support of OpenCL opens the possibility to extend Paralldroid to plat-
forms other than Android. The only requirements that this platform needs to
meet are support for Java and an OpenCL driver.

– We analyze the performance of the different programming models supported
to prove the benefits of our tool. Computational results show that this new
backend improves the performance of Paralldroid-generated programs when
ran in GPUs.

– Our new approach lets high-level Java application developers take advan-
tage of more efficient GPU executions without modifying the annotated Java
source code. The improvements in performance come from the use of a lower-
level library for heterogeneous computing and, as a result, the increase in
complexity of the code generation process.

Some tools that generate parallel code from an extension to Java have been
presented in [8,18,19]. In all those cases, the Java syntax is modified to intro-
duce new syntactic elements into the language. The main disadvantage of this
approach is that those new elements are not compatible with the definition of
Java, so a standard Java compiler cannot compile the source code with these
extensions. Paralldroid definitions are compatible with Java, because they are a
set of new annotations that a standard Java compiler can just ignore. However,
the semantics of parallel methods are not preserved in that case. In [11], authors
present a Domain Specific Language for generating Renderscript code. It is spe-
cific for image processing languages, and it has the downside of requiring the
user to learn a new programming language. Our proposal, in contrast, is based
on the main language for Android, and our target users know this language.

This paper is structured as follows: Sect. 2 introduces the development mod-
els in Android and the different alternatives it offers for exploiting mobile
devices, and some of the difficulties associated to each development model are
shown. Section 3 gives an overview of the methodologies proposed by Paralldroid.
Section 4 presents our new backend to Paralldroid to support the generation of
OpenCL code. The performance of our automatically generated OpenCL code is
validated in Sect. 5 using four different image-processing applications. We mea-
sure execution times of a sequential Java implementation and of Renderscript
and OpenCL implementations automatically generated by Paralldroid. We finish
with some conclusions and future work in Sect. 6.

2 The Development Model in Android

Android is a Linux based operating system mainly designed for mobile devices
such as smartphones and tablets. Android applications are written in Java, and
the Android Software Development Kit (SDK) provides the libraries and tools
needed to build, test, and debug applications. Starting in version 5.0 applications
run in the Android Run Time (ART), which manages system resources allocated
to each application.



Automatic Generation of OpenCL Code for ARM Architectures 99

Besides the development of Java applications, Android provides packages
of development tools and libraries to develop native applications: The Native
Development Kit (NDK). The NDK enables to implement parts of the applica-
tion running in ART using native programming languages such as C and C++.
Native code communicates with the main class written in Java by using the Java
Native Interface (JNI). Files of native source code are compiled using the GNU
compiler (GCC). Note that using native code does not result in an automatic
performance increase, but it always increases application complexity. Hence, its
use is only recommended in CPU-intensive operations that don’t allocate much
memory, such as signal processing and physics simulations. Native code is also
useful for porting an existing native library to Android. We can access OpenCL
from the native context if the OpenCL runtime libraries are present in the device.

In order to exploit the high computational capabilities on current devices,
Android provides Renderscript, which is a high performance computation API
and a programming language based on the C language (C99 standard). Render-
script allows the execution of parallel applications under several types of proces-
sors such as the CPU, GPU or DSP, selecting one of them at runtime depending
on the hardware’s features. Renderscript (.rs files) codes are compiled using an
LLVM compiler based on Clang. Moreover, it generates a set of Java wrapper
classes around the Renderscript code. Again, the use of Renderscript code does
not result in an automatic performance increase, but it is useful for applica-
tions that do image processing, mathematical modelling, or any operations that
require lots of parallel computation.

3 Paralldroid

Paralldroid is designed to ease the development of parallel applications on the
Android platform. We assume that mobile platforms feature a classical CPU and
other kind of co-processor, like a GPU, that can be exploited through OpenCL or
Renderscript. The way Paralldroid does this is by transforming the original Java
source code into another code that, preserving the same semantics, is executed in
a more efficient way. The generation of code on other languages is also required
in order to take advantage of all the programming models in Android, but in
each algorithm the best programming model to use can be a different one due
to their different features. This is why the target language is something the user
explicitly indicates when using Paralldroid.

Directive based parallelism has been successfully used in applications for
High Performance Computing (HPC) systems for years, and Paralldroid takes
the same approach in the mobile application development world.

The methodologies proposed by Paralldroid can be defined in two points:

– Annotation methodology: The Target annotation creates a data envi-
ronment that allows the memory management and the execution of code in
the target context. Elements inside a class (fields and methods) can be used
to define the data and execution models in the target context. Paralldroid



100 S. Afonso et al.

Table 1. Paralldroid annotations

Annotation Applied to Parameters Scope

@Target Classes Value —

@Map Fields, method parameters Value @Target

@Declare Fields, methods — @Target

@Parallel Methods — @Target

@Input Method parameters — @Parallel

@Output Method parameters — @Parallel

@NumThreads Methods, method parameters Field @Parallel

@Index Method parameters — @Parallel

defines a set of annotations that are applied to the class fields and method
definitions. These annotations allow the creation of a device data environ-
ment, specify how a variable is mapped in the device data environment (data
model) and also specify how a section of code is executed in the device envi-
ronment (execution model), see Table 1.

– Generation methodology: The Paralldroid code generation process is inte-
grated in the OpenJDK Java compiling process. It adds a set of stages in
which the Paralldroid annotations are detected and new ASTs are generated
according to these annotations. For each implementation to generate from a
single annotated Java source, a translator class has to be created, which takes
the original AST as input and outputs another AST. To add support for a
new language, only is needed a new translator for the modified Java code and
the target language. This makes Paralldroid easily extensible.

4 OpenCL Code Generation

The OpenCL standard represents the most important effort to create a common
high performance programming interface for heterogeneous devices. The main
issue of OpenCL is the complexity of its programming model, which makes it
difficult to use and to keep the maintainability of the application.

The annotation methodology proposed by Paralldroid simplifies the complex-
ity associated to OpenCL. Based on a Java class definition, the programmer can
add a set of annotations to generate OpenCL code that can be executed trans-
parently, because it is integrated into the Java workflow. This simplifies the
development of OpenCL powered Android applications and helps this standard
to have a major adoption on the Android development community.

Figure 1 shows the different sets of translations classes of Paralldroid. As with
any of the other target languages of Paralldroid, the way to generate new ASTs
from the original source code is to create a translation class for each output
AST. The Java AST translator generates the modified Java code that manages



Automatic Generation of OpenCL Code for ARM Architectures 101

Fig. 1. Paralldroid translator classes. Our contribution is highlighted.

the data and execution models of OpenCL and forwards the implementation
of methods to the target context, according to the methodology explained in
Fig. 2. However, there is a noticeable difference between the set of translators
for OpenCL and the others. That difference is the fact that there is one extra
translator class. The OpenCL context is not directly accessible from the Java
context so, in addition to generating Java and OpenCL code, native code has
also to be created to work as a bridge between the two contexts. The OpenCL
Kernel Translator, is also unlike all other translators in that it can only generate
code for annotated methods, so it is not an “standalone” translator. This means
that it has to be called from other translator when a parallel method is found.
The OpenCL Kernel Translator outputs OpenCL C code that is inserted into the
native code as a string literal. This complex model is hidden by Paralldroid; the
programmer must only create a Java class and use the Paralldroid annotations.

(a) Execution model (b) Data model

Fig. 2. Execution and data models.



102 S. Afonso et al.

4.1 Execution Model

As shown in Fig. 2(a), the execution model consists of three basic operations,
which are creating and releasing the OpenCL context and the execution of ker-
nels. These operations are carried out in the constructor, finalizer and parallel
methods of the class, respectively.

– Static initializer: Every class annotated with @Target(OPENCL) has many
of its methods defined as native, so the library containing the implementation
of those has to be loaded so that the user can call them.

– Constructor: The first time an instance of the class is created, in the con-
structor the OpenCL shared objects are initialized (context, command queue,
. . . ), and the OpenCL C kernels are compiled.

– Parallel methods: The signature of the generated @Parallel methods dif-
fers from the original methods in that the @Index parameters have been
stripped, since they are assigned at runtime by the OpenCL driver. More-
over, the method body is substituted by a kernel execution enqueued in native
code. The actual code of the method is translated to an OpenCL C kernel
that is embedded in the native code as a string constant.

– Methods: All @Declare methods are removed from the Java class and only
accessible from the target context. Every other method can also be called
from Java. For methods to be callable from the target context, they have to
be defined in native code and in OpenCL C code as support functions. This
makes it possible to call them from sequential and parallel methods.

– Finalizer: All the shared OpenCL objects that were created in the first
instantiation of the class have to be released when the last instance of the
class is garbage-collected.

4.2 Data Model

The data model of our approach to automatically offloading computation to
accelerators is shown in Fig. 2(b). The user annotates fields and method para-
meters in order to specify the data movements between the different contexts.

– Constructor: The first time an instance of the class is created, all static fields
are initialized according to the default values the user might have provided.
Then, each time an instance is created, the native context has to be initialized
with the same values that were used in the constructor. These two things are
achieved by creating two native initialization functions that take as arguments
the set of initialized fields in each case.

– Fields: Fields annotated as @Declare are deleted from the Java class and
only exist in the native context. The rest of fields, however, need to be
accessible from external Java code, even though they exist in the native
context. We accomplish this by automatically generating getter and setter
methods depending on the specified annotations. When a field is annotated
as @Map(TO) or @Map(TOFROM), a setter is generated, and when it is annotated



Automatic Generation of OpenCL Code for ARM Architectures 103

as @Map(TOFROM) or @Map(FROM), a getter is generated. As arrays are repre-
sented in OpenCL as memory objects, these methods enqueue the required
memory operations into the OpenCL command queue and transform the data
format from Java to OpenCL and vice versa.

– Methods: When a native method that receives arrays as arguments is called,
a conversion is needed between the Java and native formats and between the
native and OpenCL formats. Data transfers are performed according to the
@Map annotation applied to each array before and after running the body of
the method. The semantic in this case is the same as that of fields.

– Finalizer: All memory allocated when initializing the instance is released
when the garbage collector deletes it. When the last instance of the class is
being deleted, then also global objects and native static fields are released.

1 @Target(OPENCL)
2 public class GrayScale {
3 @Declare
4 private float gMonoMult[] =
5 {0.299f, 0.587f, 0.114f};
6 @Map(TO)
7 private int width;
8 @Map(TO)
9 private int height;

10
11 public GrayScale(int width, int height){
12 this.width = width;
13 this.height = height;
14 }
15 @Parallel
16 public void test(@Map(TO) int[] srcPxs,
17 @NumThreads @Map(FROM) int[] outPxs,
18 @Index int x){
19 int acc;
20
21 acc = (int)(((srcPxs[x] ) & 0xff)
22 * gMonoMult[0]);
23 acc += (int)(((srcPxs[x]>> 8) & 0xff)
24 * gMonoMult[1]);
25 acc += (int)(((srcPxs[x]>>16) & 0xff)
26 * gMonoMult[2]);
27
28 outPxs[x] = (acc) + (acc << 8)
29 + (acc << 16)
30 + (srcPxs[x] << 24);
31 }
32 }

Listing 1.1. GrayScale in Paralldroid

public class GrayScale {
static {

System.loadLibrary("grayscale");
}
private static int instanceCount = 0;
private long instanceDataPtr;
private float[] gMonoMult =
{0.299F, 0.587F, 0.114F};

private int width;
private int height;
public GrayScale(int width, int height){

this.width = width;
this.height = height;
if (instanceCount == 0) initJNI();
++instanceCount;
initGrayScale(gMonoMult, width, height);

}
public native void test(int[] srcPxstest,
int[] outPxstest);

public native void setWidth(int width);
public native void setHeight(int height);
protected void finalize(){

destroyGrayScale();
--instanceCount;
if (instanceCount == 0) releaseJNI();

}
private native void initGrayScale(
float[] gMonoMult, int width, int height);

private native void destroyGrayScale();
private static native void initJNI();
private static native void releaseJNI();

}

Listing 1.2. Generated Java code

4.3 Paralldroid Example

Listing 1.1 shows a Java implementation for the algorithm of conversion of an
image to gray scale using Paralldroid. The @Target directive (line 1) specifies
that the class has to create an OpenCL context definition and that the elements
of the class have to be defined in that context. Lines 3 to 9 define its fields. The
constructor is defined in lines 11 to 14. The method test (lines 16 to 31) defines



104 S. Afonso et al.

the algorithm to transform an image to gray scale. The @Parallel directive
specifies that this method will be executed in parallel. srcPxs and outPxs are
the vectors which contain the input image and output buffer, respectively. Note
the usage of the appropriate @Map directive parameter in each of them. The
@NumThreads directive applied to an array means that the parallel method will
be executed with as many threads as elements there are in the array, but it
is also possible to specify an integer variable. The @Index directive defines the
index used in the parallel execution, which is used to access the elements of the
input and output vectors. The value of this variable is assigned at runtime, and
its values range from zero to the number of threads minus one.

Listing 1.2 shows the code generated by our Java translator, as described in
Sects. 4.1 and 4.2. The library that it loads is obtained from compiling the native
code that we also generate. A set of fields have been added. instanceCount
lets us initialize and release native global variables before the first instance is
created and after the last one is deleted, respectively. instanceDataPtr is a
field only accessed from the native code that keeps a reference to a dynamically
allocated struct holding the native instance data. The constructor (lines 11 to
17) is modified to call the native global and instance initializer function.

4.4 Error Handling

A new methodology for error handling has been developed as part of this new
backend for Paralldroid. This methodology was designed to ease the detection
and handling of errors that could occur in the target context to make the applica-
tion fail gracefully, notify or solve these problems at runtime. This methodology
could be adapted to other target languages of Paralldroid providing the user with
a seamless and unified way of handling errors that occur in the target contexts.

An OpenCLException class was created, which is a RuntimeException that
holds specific data of the OpenCL error. This exception contains an OpenCL
error code that could be used to troubleshoot the reason of the problem, and a
message with either the name of the file and line number where the error was
detected or the compilation log in case the error occured when compiling the
OpenCL C code at runtime.

After every call to a function of the OpenCL API in the generated native
code, the error code returned by the function is checked and an OpenCLException
is raised if there was an error. These exceptions can be handled from the calling
Java code, without any need of knowing what the native code is actually doing.

5 Computational Results

Leaving aside to future researches other relevant metrics for smartphones and
tablets (e.g., power management, network management, . . . ), we validate the
performance of the generated code using four different applications. These are
based on the Renderscript image processing benchmark [6] (transforming an
image to gray scale, changing contrast and saturation levels of an image and



Automatic Generation of OpenCL Code for ARM Architectures 105

convolutions with window sizes 3 × 3 and 5 × 5). In all cases, we implemented
two versions of the code: a Java sequential version and a Java version with
Paralldroid annotations. From the same annotated Java code two versions were
automatically generated by Paralldroid: Renderscript and OpenCL. As it was
shown in [3], automatically generated Renderscript code performance was com-
parable to its handwritten counterpart, so we compare our generated OpenCL
code to that generated Renderscript code. Our implementations were tested over
a Sony Xperia Z (labelled SXZ) and an Odroid-XU3 (labelled XU3). Sony Xperia
Z is based on a Qualcomm APQ8064 Snapdragon S4 Pro SoC with a Quad-core
Krait CPU @ 1.5 GHz and an Adreno 320 GPU, whilst Odroid-XU3 is based on
a Samsung Exynos 5422 Octa SoC with dual ARM CPUs (Cortex-A15 @ 2GHz
and Cortex-A7 @ 1.3 GHz) and an 8-core ARM Mali-T628 MP6 GPU. Both
devices have 2GB of RAM shared by CPU and GPU, and support OpenCL
execution in their GPU.

In Fig. 3 we observe the speed-ups obtained relative to the sequential Java
implementation. We depicted results for our smallest and biggest image sizes
and for the finest and coarsest grain algorithms benchmarked. All OpenCL exe-
cutions are done in the GPU of the device, whilst the operating system can
decide at runtime where Renderscript is executed. In all our tests on the XU3,
Renderscript executions were carried out on the CPU of the device, which turns
out to be faster than the GPU. This may be due to the fact that XU3’s GPU is
not fully cache coherent, so the OpenCL driver reports that the system contains

Fig. 3. Speed-up obtained with respect to the sequential Java version



106 S. Afonso et al.

two GPU devices and our generated OpenCL host code only uses one of these
partitions of GPU cores. However, in almost every other case where both codes
were run in a GPU our generated OpenCL code was faster.

We noticed that the input size was not as relevant as the problem’s gran-
ularity regarding the performance. Coarser grain problems always experienced
higher speed-ups. It is also clear from the graphs that the performance of our
generated OpenCL code is more unstable than Renderscript. This could be in
part due to the fact that one of the main design goals of Renderscript is to
provide stable speed-ups at the expense of peak performance.

6 Conclusion

In this paper we have presented a new methodology for automatically generating
OpenCL code for mobile devices. Our approach lets the developer write the
whole application in a high-level programming language and, through a simple
set of annotations, let the compiler take care of offloading to GPUs. Calling the
offloaded code is transparent from the developer’s point of view.

The Paralldroid framework has proven to ease the development of such auto-
matic code generation tool due to its extensible design based on translator
classes. It also provides us with the added value of letting the programmer
choose a different target language for each class in the application, or testing
and deciding the one that gives the best performance for a particular problem.

Results show that our generated OpenCL code achieves the best performance
in most of the benchmarks where the GPU was used to run Renderscript com-
putations. The differences with respect to Java code are clear, even though dif-
ferences in the code are very small. Our approach greatly reduces the costs of
developing high performance code for mobile devices.

There is still room for improvement in our proposal for automatic generation
of OpenCL code. There are a number of optimizations that we can add to make
the generated code run faster and use the available resources more efficiently:

– To reduce data transfer overheads between the CPU and accelerator devices.
– Implementing task parallelism by executing kernels asynchronously and man-

aging a runtime dependency graph. This could improve the occupancy of the
GPU when running complex heterogeneous workloads.

– Usage of a global OpenCL context shared by all generated classes. Currently
we create an OpenCL context for each of the generated classes, even though
it would be better to have a single set of global OpenCL objects, such as the
context or the command queue, shared throughout the whole application.
This could result in a smaller overhead, since all these objects refer to the
same hardware.

Acknowledgement. This work was supported by the EC (ERDF), the NESUS
IC1315 COST Action, the Spanish Ministry of Education and Science through the
TIN2011-24598 project, and the Spanish CAPAP-H network.



Automatic Generation of OpenCL Code for ARM Architectures 107

References

1. Acosta, A., Afonso, S., Almeida, F.: Extending paralldroid with
object oriented annotations. Parallel Comput. 57, 25–36 (2016).
http://www.sciencedirect.com/science/article/pii/S0167819116300126

2. Acosta, A., Almeida, F.: Towards a unified heterogeneous development model in
android. In: 11th International Workshop HeteroPar 2013: Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms (2013)

3. Acosta, A., Almeida, F.: Paralldroid: performance analysis of GPU executions. In:
Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 387–399. Springer,
Cham (2014). doi:10.1007/978-3-319-14313-2 33

4. Acosta, A., Almeida, F.: Performance analysis of paralldroid generated programs.
In: 2014 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pp. 60–67 (2014)

5. Anandtech: AMD Outlines HSA Roadmap: Unified Memory for CPU/GPU in
2013, HSA GPUs in 2014. http://www.anandtech.com/show/5493/

6. AOSP: Android Open Source Project. http://source.android.com/
7. Apple: iOS: Apple mobile operating system. http://www.apple.com/ios
8. Dubach, C., Cheng, P., Rabbah, R., Bacon, D.F., Fink, S.J.: Compiling a high-

level language for GPUs: (via language support for architectures and compilers).
SIGPLAN Not. 47(6), 1–12 (2012)

9. Google: Android mobile platform. http://www.android.com
10. Khronos Group: The open standard for parallel programming of heterogeneous

systems. https://www.khronos.org/opencl/
11. Membarth, R., Reiche, O., Hannig, F., Teich, J.: Code generation for embedded

heterogeneous architectures on android. In: DATE, pp. 1–6 (2014)
12. Systems, M.: Algorithmic Memory TMTechnology. http://www.memoir-systems.

com/
13. Microsoft: Windows Phone: Microsoft mobile operating system. http://www.

microsoft.com/windowsphone
14. NVIDIA: GPUDirect Technology. http://developer.nvidia.com/gpudirect
15. NVIDIA: Tegra mobile processors: Tegra 2, Tegra 3 and Tegra 4. http://www.

nvidia.com/object/tegra-superchip.html
16. Qualcomm: Snapdragon mobile processors. http://www.qualcomm.com/

snapdragon
17. Samsung: Exynos mobile processors. http://www.samsung.com/global/business/

semiconductor/minisite/Exynos/
18. Valentin, C., Christian, S., Pierre, K., François, K.P., Jean-François, R.: Parallel

object programming with Java. http://gridgroup.hefr.ch/popj/doku.php
19. Viry, P.: Ateji PX for Java-parallel programming made simple. Ateji White Paper

(2010)
20. Qian, X., Guangyu Zhu, X.F.L.: Comparison and analysis of the three program-

ming models in Google android. In: 1st Asia-Pacific Programming Languages and
Compilers Workshop (APPLC), June 2012

http://www.sciencedirect.com/science/article/pii/S0167819116300126
http://dx.doi.org/10.1007/978-3-319-14313-2_33
http://www.anandtech.com/show/5493/
http://source.android.com/
http://www.apple.com/ios
http://www.android.com
https://www.khronos.org/opencl/
http://www.memoir-systems.com/
http://www.memoir-systems.com/
http://www.microsoft.com/windowsphone
http://www.microsoft.com/windowsphone
http://developer.nvidia.com/gpudirect
http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-superchip.html
http://www.qualcomm.com/snapdragon
http://www.qualcomm.com/snapdragon
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/
http://gridgroup.hefr.ch/popj/doku.php

	Automatic Generation of OpenCL Code for ARM Architectures
	1 Introduction
	2 The Development Model in Android
	3 Paralldroid
	4 OpenCL Code Generation
	4.1 Execution Model
	4.2 Data Model
	4.3 Paralldroid Example
	4.4 Error Handling

	5 Computational Results
	6 Conclusion
	References


