Optimized Execution Strategies for Sequence
Aligners on NUMA Architectures

Josefina Lenis and Miquel Angel Senar®™)

Universitat Autdonoma de Barcelona (UAB), 08193 Bellaterra, Spain
{josefina.lenis,miquelangel.senar}Quab.es

Abstract. Alignment applications are essential for solving genomic vari-
ant calling studies. We have analyzed performance problems of four pop-
ular aligners from the literature. They constitute representative exam-
ples of the two most commonly used algorithmic strategies: hash tables
and Burrows-Wheeler Transform. Although they take advantage of mul-
tithreading execution, they exhibit significant scalability limitations on
systems with a non-uniform memory architecture (NUMA). Data shar-
ing between independent threads and irregular memory access patterns
constitute performance limiting factors that affect the studied aligners.
We have also evaluated various data distribution strategies that do not
require changes to the applications. Significant improvements in speedup
were achieved when these techniques were applied to the execution of
these aligners on a NUMA system.

Keywords: NUMA - Memory system performance + Genomic aligners *
NGS

1 Introduction

New sequencing technologies set the pace of the rapid progress in genomic stud-
ies. The steady trend of reducing the sequencing cost and increasing the length of
reads force developers to create and maintain more accurate, faster and updated
software. Numerous sequence aligning tools have been developed in recent years.
They exhibit differences in sensitivity or accuracy [16] and most of them can
execute in parallel in modern multicore systems. In general, writing parallel
programs that exhibit good scalability on non-uniform memory architectures
(NUMA) is far from easy. Achieving good system performance requires that
computations are carefully designed in order to harmonize execution of multiple
threads and data accesses over multiple memory banks.

This paper is aligned with our previous work where we analyzed the perfor-
mance of BWA-ALN, (Burrows-Wheeler Aligner) [11], on NUMA architectures.
In that study, we detected scalability problems exhibited by BWA-ALN and we
proposed simple system-level techniques to alleviate them. We obtained results
up to 4-fold speed up over original BWA-ALN multithread implementation. In
the present work, we extend the study to BWA-MEM [10] (a newer version of
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BWA specially suited to deal with longer reads) and to other three well-known
mappers, namely, BOWTIE2 [8], GEM [13] and SNAP [18]. These mappers
are widely used by the scientific community and real production centers, and
frequently updated by its developers. We have applied various data distribu-
tion strategies to these mappers, as we did with BWA-ALN, and we obtained
promising results on all cases, reducing memory-bound drawbacks and increasing
scalability.

The paper is structured as follows. Section 2 presents related work. Section 3
describes basic concepts of NUMA systems and provides concrete details of the
system used in our experiments. Section4 introduces the problem of sequence
alignment and a behavioral characterization of mappers used in this study. In
Sect. 5, we introduce the methodology and all data distribution scenarios used to
improve the performance of the aligners under study. Section 6 shows the results
obtained in our experiments. Last section summarizes the main conclusions of
our work.

2 Related Work

Genome alignment problems have been considered by Misale [14]. The author
implements a framework to work under BOTWIE2 and BWA improving local
affinity of the original algorithm. Herzeel et al. [4] replaces the pthread-based
parallel loop in BWA by a Cilk for loop. Rewriting the parallel section using
Cilk removes the load imbalance, resulting in a factor 2x performance improve-
ment over the original BWA. On both cases - Misale and Herzeel et al. - the
source code of the applications -aligners- are modified, which might be a costly
action and dependent on the application version. Abuin et al. [1] presented a big
data approach to solve BWA scalability problems. They introduce a tool name
BigData that enables to run BWA in several machines although it does not pro-
vide a clear strategy to divide the data or to set the number of instances. In
contrast, our approach can be applied to different aligners with minimum effort
and, although not tested yet, it can be easily applied to distributed memory sys-
tems. Our work is complementary to all the works mentioned above. We present
user-level guidelines of execution that help improving memory-bound aligners
without modifying their source code, and, in some cases, without increasing
the application initial requirements. Our contribution is based on the idea that
application performance can be improved taking into account architecture char-
acteristics and application’s memory footprint.

3 NUMA Systems

In NUMA systems, main memory is physically distributed in banks among dif-
ferent processors but it looks like one single large memory from a logical per-
spective, so accesses to different parts is done using global memory addresses
[3]. Each processor has its own memory bank and can access to it through its
memory controller. A processor and its respective memory bank is called NUMA
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node. A program running in a particular processor can also access data stored
in memory banks associated to other processors in a coherent way but at the
cost of increased latency compared to accesses to its own local memory bank.
In general, parallel applications that may run using multiple processors are not
usually designed taking into account the NUMA architecture. Mainly, because
creating a program that uses efficiently NUMA memory subsystems is not a
trivial task. Figure 1 shows an example of NUMA architecture that corresponds
to the system that we used in this study.
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Fig. 1. AMD Bulldozer micro-architecture

It is a four-socket AMD Opteron Processor 6376 (Bulldozer microarchitec-
ture), each socket containing 2 dies packaged onto a common substrate, referred
to as a Multi-Chip Module (MCM). Each die (processor) consists of 8 physical
cores that share a 6 MB Last Level Cache (LLC) and a memory bank. Only one
thread can be assigned to one core and, therefore, up to 64 threads can be exe-
cuted simultaneously. The system has 128 GB of memory, divided into 8 modules
of 16 GB DDR3 1600 MHz each. Nodes are connected by HyperTransport links.
Information about the NUMA system configuration can be retrieved on Linux
systems by using the numactl — hardware command. This command displays the
available nodes and access costs to different NUMA nodes. As seen in Table 1,
access (or distance) costs within a local NUMA node is 10; this is shown in the
diagonal values of the table. According to this information, access to an interme-
diate distance node costs 1.6x more, and access to the more distant nodes costs
more than twice (2.2x). Distance between NUMA nodes is frequently referred to
as hops. Where 0 hop is the minimum distance and 2 hops is the maximum.

Table 2 shows the results of a small experiment that we carried out on our
system to bear out the accuracy of the information obtained. We modified an
available open source benchmark [6], and adapted it to our architecture. The
program is written in C and was compiled with GCC version 4.9.1, without
optimization flags (—00). The experiment consisted in reading an array of 100M
elements. Each access was performed in such a way that prefetching was skipped
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Table 1. Distance map on AMD 6376. Table 2. Bandwidth per thread [MiB/s]
NUMA|O0 |1 |2 |3 |4 |5 |6 |7 Source|l Thread|64 Threads
0 10|16|16{22|16|22|16|22 0 3300 700
1 16|10|22{16|16|22|22|16 1 2450 250
2 16|22|10{16(16|16|16|16 2 2200 330
3 22]16(16|10|16|16|22|22 3 1700 220
4 16|16|16{16(10|16|16|22 4 2200 250
5 22]22]16|16|16|10(22|16 5 1700 220
6 16|22|16(22|16|22|10|16 6 2200 330
7 22]16(16|22|22|16(16|10 7 1700 208

and a memory access (and a last level cache miss) was ensured every time. The
array was allocated in node 0 and accessed by threads allocated in all cores
(64). In the first column, we can see the bandwidth achieved when the array was
accessed sequentially by one thread at a time. The “source” indicates to which
NUMA node the thread was bound to. Second column shows bandwidth mea-
surements when the same array was accessed by all the available threads at the
same time. It is worth mentioning that the displayed values of the bandwidth cor-
respond to the worst case scenarios. According to Table 2 accessing a local node
is approximately 3300 MiB/s; bandwidth for medium distance nodes (1 hop) is
2200 MiB/s, the penalty being 1.5x; and accesses from a two-hops node incurs
a penalty of 1.9x (bandwidth equals to 1700 MiB/s). Table2 shows a case that
is not revealed in Table 1: accesses from a thread running on the node located
at the same socket exhibits a bandwidth of 2450 MiB/s (that might be seen as a
node between 0 and 1 hop). Penalty in access latencies between processors and
memory is one of the main problems suffered by NUMA-unaware applications.
However, another problem arises when applications use a centralized data struc-
ture that is located in a single memory bank. When a large number of threads
needs to access to this shared data structure, congestion problems might gener-

ate a significant degradation in memory accesses, as shown in the second column
of Table 2.

4 Sequence Aligners

Sequence aligners - or aligners, for the sake of simplicity - can be classified into
two main groups: based on hash tables or based on Burrow Wheeler Transform
(BWT) [12]. In hash table based algorithms, given a query P every substring of
length s of it is hashed, and can be later easily retrieved. SNAP is an example of
hash table based aligner, where given a read to align draws multiple substrings
of length s from it and performs an exact look up in the hash index to find
locations in the database that contain the same substrings. It then computes
the edit distance between the read and each of these candidate locations to
find the best alignment. On the other hand, BWT is an efficient data indexing
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technique that maintains a relatively small memory footprint when searching
through a given data block. BWT is used to transform the reference genome into
an FM-index, and, as a consequence, the look up performance of the algorithm
improves for the cases where a single read matches multiple locations in the
genome [12]. Examples of BWT base aligners are BWA, BOWTIE2 and GEM.
Hash tables are a straight forward algorithm and are very easy to implement
but memory consumption is high; BWT algorithms, on the other hand, are
complex to implement but have low memory requirements and are significantly
faster [17]. The computational time required by an aligner to map a given set of
sequences and the computer memory required are critical characteristics, even
for aligners based on BWT. If an aligner is extremely fast but the computer
hardware available for performing a given analysis does not have enough memory
to run it then the aligner is not very useful. Similarly, an aligner is not useful
either if it has low memory requirements but it is very slow. Hence, ideally, an
aligner should be able to balance speed and memory usage while reporting the
desired mappings [2]. In [14], Misale et al. defines three distinguishing features
among the parallelization of sequence aligners:

1. There is a reference data structure indexed (in our study, the human genome
reference). Typically this is read-only data.

2. There is a set of reads that can be mapped onto the reference independently.

3. The result consists in populating a shared data structure.

From a high level point of view, this is the behavior of all aligners that we used
in this study. Therefore, continuous accesses to the single shared data struc-
ture -index- by all threads can increase its memory degradation performance.
Additionally, read mapping exhibits poor locality characteristics: when a partic-
ular section of the reference index is brought to the local cache of a given core,
subsequent reads usually require a completely different section of the reference
index and, hence, cache reuse is low.

5 Allocation Strategies and Data Partitioning

In our previous work [9], we presented a series of execution strategies to improve
BWA-ALN performance without modifying its source code. In this paper, we
have applied our methodology to 4 aligners (GEM3, BOWTIE2, BWA-MEM
and SNAP) in order to assess its benefits as a general methodology that can be
applied to aligners that exhibit the features mentioned at the end of the previous
section. We have developed a series of steps to characterize the behaviour of a
memory-bound application and define its best execution strategy (see Fig. 2).

5.1 Analysis and Optimization of Shared Data Distribution

(Part A)

Part A of our methodology consists in analyzing whether an aligner is sensi-
tive to different memory allocations. In order to achieve this we carried out 3
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Fig. 2. Proposed methodology to find the best execution strategy

experiments: The first is a traditional scalability study in which we focused on 5
particular cases: using 8, 16, 32, 48 and 64 threads, because each processor has
8 cores and 1 memory bank associated; so 8, 16, 32, 48 and 64 threads implies
a minimum usage of 1, 2, 4, 6 and 8 NUMA nodes, respectively. For the other
two cases we used the Linux Tool numactl to set a memory policy allocation.
With the parameter — localalloc the data was allocated in the current node where
the program is being executed. The idea behind this is to maximize local data
affinity, keeping data onto the closest memory to the running processor. Finally,
in the third case the — interleave parameter is used so that memory is allocated
using a round robin fashion between selected nodes. All aligners that we used
need two input data files: one that contains all the reads that need to be mapped
and a second one that contains the reference genome index.

The objective of this part is, firstly, to gain insight into the level of scalability
of the aligner. Additionally, re-running the aligner using different parameters of
numactl provides us information about the behavior of the application and its
data allocation sensitivity by using two extreme cases: when the locality and
concurrency increase (localalloc) and vice-versa (interleave).

5.2 Data Replication and Partitioning Strategies (Part B)

The objective for part B is to reduce the usage of the interconnection bus.
This is achieved by data replication and partitioning techniques that imply the
execution of simultaneous instances of the application (aligner). For aligners
that have a small index as BOWTIE2 and BWA, data partitioning is not that
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challenging because the entire index fits in one memory bank. In these cases,
we can consider each NUMA node as a symmetric multi-processor unit, capable
of running an independent instance of an aligner. Independent instances were
created, each one running in a single NUMA node (all independent instances
were running with 8 threads). For GEM and SNAP we also run independent
instances but the index does not fit in one NUMA node. Each one of these
instances is multithread. The input file with all the reads was divided into the
number of instances. Figure 3, illustrates this configuration with 4 independent
instances that are being executed simultaneously. Input data is 1/4 the size of
the original and the reference genome is replicated 4 times.

NUMA NODE _—
0

NUMA NODE

1 —

_ORIGINAL
i INPUT

NUMA NODE "

2

(INDEX)

GENOME REFERENCE

NUMA NODE

3 \

Fig. 3. Data partitioning

For aligners like GEM and SNAP, where the index size is equal or larger than
the size of a memory bank, data partitioning becomes more complex because it
involves more than one NUMA node. In Table3, we can see the sizes of the
indexes used. This information is crucial for designing how to split the data.
Knowing the underlying architecture is also critical. Our system has memory
banks of 16 GiB, which is not enough to run SNAP, even if two memory banks
are used, the index would barely fit in. This is why we only run 2 simultaneous
instances of SNAP (64 GiB each) and 4 instances of GEM (32 GiB each).

6 Experimental Results

In this section, we show the main results obtained during the experimentation.
For all the experiments we used the reference human genome GRCh37, main-
tained by The Genome Reference Consortium, and two data sets were used as
input data:
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— Synthetic benchmark [5]:

Single end, base length =100, number of reads =11M Size =3.1 GB
— Segment extracted from NA12878 [19]:

Single end, base length =100, number of reads =22M Size =5.4 GB

All aligners were compiled using GCC 4.9.1 and we used the latest version
available for each, as shown in the second column of Table 3. All results were
obtained as an average of five executions.

Table 3. Detailed information about the aligners.

Aligner Version | Index (GB) | Data partitioning
BOWTIE2 |2.2.6 3.9 8x8 threads
BWA-MEM | 0.7.12 5.1 8x8 threads
GEM 3.0 15.0 4x16 threads
SNAP 1.0.18 [29.0 2x32 threads

In the first part of our experimentation (Part A), we obtained the execution
times of the four different aligners shown in Fig. 4. By original we refer to the
execution of a given aligner with its default parameters without any particular
allocation policy or NUMA control, and letting the operating system handle the
allocation. On Linux systems this will normally involve spreading the threads
through the system and using first-touch data allocation policy, which means
that when a program is started on a CPU, data requested by that program
will be stored on a memory bank corresponding to its local CPU [7]. Allocation
policy takes effect only when a page is first requested by a process. If we focus on
the original execution (shown by a light blue line in Fig. 4), scalability decreases
significantly beyond 32 threads in all four aligners. When aligners run on more
than 32 cores at least one NUMA node at two-hops distance are used. Therefore,
all the speed up gain due to multithreading is mitigated by the latency of remote
accesses and traffic saturation of interconnection links. For aligners BWA-MEM
Fig. 4b, GEM3 Fig. 4c and SNAP Fig.4d it can be clearly seen that interleave
policy reduces the execution time, specially for the limited scalability scenarios
(with 48 and 64 threads).

As explained in Sect. 4, aligners share a common data structure -an index-
among all threads. This structure is loaded in memory by the master thread (by
default, Linux will place this data on its local memory bank). Therefore, as the
number of threads increases, the memory bank that allocates the index becomes a
bottleneck. Allocating data in an interleave way does not reduce remote accesses
but guarantees a fair share of them between all memory banks and, therefore,
prevents access contention, a phenomenon specially prone to happen in this
architecture due to reduced memory bandwidth between NUMA nodes [15]. This
reason explains why using localalloc policy does not produce any improvement in
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Fig. 4. Different memory allocation policies. DATASET: synthetic benchmark (Color
figure online)

execution times. BOWTIE2 Fig. 4a does not follow this trend; BOWTIE2 run-
ning on its defaults configuration performs better than using a explicit memory
policy. We could infer some memory optimization might take place at the index
load stage but a move precise analysis of the source code would be required to
provide more accurate conclusions. In the second part of our experimentation
(part B), we use data partitioning and data replication techniques to create mul-
tiple instances and run them simultaneously. We found, in our previous work,
that this was the best solution for BWA-ALN. Figure 5 shows a complete com-
parison of all strategies, calculated using the wall time of the original execution
with 64 threads (max resources).

Replication of the reference genome index reduces at the same time latency
and contention problems while the benefits from multithreading paralleliza-
tion are maintained: queries are distributed in different groups of threads that
share a particular copy of the index stored in a local bank. BOWTIE2 and
GEM also increase their performance when creating instances. Although for
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Aligner Policy Execution time [s] SpeedUp
Number of threads Max. threads
8 16 32 48 64 64
BOWTIE2 | Original 679.89|361.20 | 223.74 | 279.13 | 431.11 | 1.1
LocalAlloc | 826.56 | 476.09 | 296.53 | 305.50 | 433.93 | 0.99
Interleave |834.58 | 486.59 | 314.99 | 290.75 | 471.62 | 0.914
Instances |— - - - 111.113.38
BWA-MEM | Original | 537.77|340.97 | 312.95 | 315.26 | 307.18 | 1
LocalAlloc | 618.67 | 329.11 | 344.84 | 354.91 | 296.83 | 1.03
Interleave |482.20|300.89 | 233.23 | 193.21 | 170.23 | 1.80
Instances |— - - - 61.93 | 4.96
GEM3 Original | 246.30 | 132.56 | 80.82 | 66.016 | 60.94 |1
LocalAlloc | 405.15 | 256.65 | 303.17 | 202.25 | 273.75 | 0.22
Interleave |327.24 | 187.32|100.40 | 64.74 | 52.58|1.21
Instances |— - - - 57.46 | 1.06
SNAP Original | 465.72|237.83 | 218.67 | 297.17 | 297.17 | 1
LocalAlloc | 705.76 | 923.40 | 393.85 | 343.18 | 361.02 | 0.92
Interleave |199.97|396.54 | 98.43 |79.04 65.27 | 4.5
Instances |— - - - 223.391.33
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GEM this strategy is only slightly better than using interleave. This can be
explained because the index does not fit into one memory bank; even when
multiple instances are created inter-node traffic can not be avoided. A simi-
lar result is observed with SNAP where instances represent an improvement of
40% over Original SNAP but its large index data structure forces it to use four
NUMA nodes per instance and to have two-hops distance accesses. Complemen-
tary results for dataset NA12878 can be found in Table4. These results are in
line with the results discussed above.

7 Conclusions

Knowing the underlying architecture where applications are running is a key
aspect to achieve their optimal performance. If an application is memory-bound,
might suffer drawback in performance when executed in NUMA systems. In
this paper, we presented an approach to detect whether an aligner is being
penalized by contention or/and remote memory bank accesses and whether it
is susceptible to improve its execution time, by applying some simple system-
level techniques that do not require changes on the original application code.
When interleave or instances based techniques were applied, execution time was
reduced in all cases tested. Aligners in which the index size is less than half
the size of a single memory bank, data partitioning arises as the best solu-
tion because it completely avoids traffic between nodes and ensures only local
accesses. In this case, a speedup of 2.5x and 3.1x was obtained for BOWTIE2
and BWA-MEM respectively. It is noteworthy that instances based implies an
increment on memory requirements. BOWTIE2 and BWA-MEM can easily meet
this requirement in modern systems. For other aligners with larger indexes (i.e.
SNAP and GEM), interleave technique might be a better choice because the
index is distributed across the system memory banks, and mitigates the con-
tention produced when all threads try to access the same data structure albeit
HyperTransport traffic cannot be reduced. Improvements of 2.5x and for SNAP
is 3.6x were obtained for SNAP and GEM, respectively. GEM still achieved and
additional slight improvement when the instance based technique was applied
because its memory requirements are larger than BWA-MEM and BOWTIE2
but smaller than SNAP. These techniques can be implemented easily and do not
require modifying the source code of the applications neither to have privilege
permissions. Any user can add these strategies to its current running jobs. As
we have seen, very simple configurations at the time of executing an application
can generate significant differences in execution times when running on NUMA
systems. This adds an extra layer of complexity to the basic techniques of par-
allelism and performance evaluations. It is an important factor to be taken into
account when improving the overall performance of any application.
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