
Two-Level Parallelism to Accelerate Multiple
Genome Comparisons

Oscar Torreno(B) and Oswaldo Trelles

Department of Computer Architecture, University of Málaga,
Campus de Teatinos, 29071 Málaga, Spain

{oscart,ortrelles}@uma.es

Abstract. We present a two-level parallel strategy focused in the
enhancement of GECKO software for multiple and pairwise genome com-
parisons. GECKO was developed to break the computational barriers on
search space and memory demands faced by equivalent software. How-
ever, although being faster than equivalent software for comparing long
sequences, its execution time attracted our interest to develop a paral-
lel strategy. Additionally, the execution time is even higher in multiple
genome comparisons where several independent pairwise comparisons
are typically performed sequentially. After a careful study of the inter-
nal data dependencies of the GECKO modules, we noticed that most of
them were subject to an easy and efficient parallelization. The result is a
two-level parallel approach to accelerate multiple genome comparisons.
The first level is aimed at parallelizing each independent pairwise genome
comparison of a multiple comparison study to a different core. This level
is application-independent, we are using GECKO but any other equiv-
alent software can be used. The second level consists on the internal
parallelization of GECKO modules with evident enhancements in per-
formance while results remain invariant. After solving the problems of
combining the big amount of I/O operations overlapped with compu-
tation, the obtained speedups reflect the good efficiency of the devised
strategy.

1 Introduction

Two-level and more generally multi-level parallelism have been already applied
in a number of different fields including video coding, aerodynamics and shape
design [3,6,7]. After analysing the specifics of the application to be parallelized,
these multi-level approaches use either only message passing implementations
applied to the different levels, or merge the usage of MPI with OpenMP for
multi-core shared memory machines. In addition, some approaches such as [7]
use hybrid CPU-GPU implementations to accelerate the computation. Examples
of reasons motivating the use of these multi-level strategies are the mixture of
lightweight and heavyweight tasks or the dissimilar combination of computation
and I/O operations.

We have found that multiple and pairwise genome comparisons have the
mentioned computation patterns and are therefore suitable to be parallelized
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 445–456, 2017.
DOI: 10.1007/978-3-319-58943-5 36



446 O. Torreno and O. Trelles

in multiple levels. The computational space and memory demands of current
software is significantly high for just comparing two long sequences. GECKO
[9] was designed to overcome these limitations of equivalent software. However,
although reporting shorter execution time compared to equivalent software, its
execution time is still big enough to study potential parallel approaches.

The problem becomes even more notorious when we aim at comparing a
set of genome sequences in what is referred as a multiple genome comparison
study. For such studies, pairwise genome comparison software is used, executing
it sequentially several times depending on the number of genomes under study.
If already at pairwise genome comparison level the execution time is important,
at the multiple genome comparison level it becomes even higher and therefore
more interesting from the computational point of view.

After analysing in more detail the parallelization possibilities, we noticed it
was possible to apply a two-level strategy. First, we observed that each pair-
wise genome comparison inside a multiple genome comparison is independent so
it represents an embarrassingly parallel problem. Second, and less obvious, we
detected that some of the GECKO modules were subject to be parallelized. For
instance, the first step of GECKO calculates a dictionary of K-mers (words of
length K), which may consume a significant amount of time for long sequences.
In this case, splitting the calculation of given word prefixes to different processors
could be a solution. Similarly, the rest of GECKO steps could be parallelized
with relatively simple strategies.

In this work, we present a two-level parallelization strategy designed to speed
up multiple and pairwise genome comparisons. Efficiency in both levels has been
obtained by using dynamic scheduling algorithms which generate the sufficient
number of tasks to overlap I/O and computation. Hybrid solutions using GPUs
are not considered in this work (but will be possibly considered in the future)
because the application is data intensive and the loading time to GPU memory
would govern the performance. The resulting strategy reduces the execution
time when the number of processors increase, especially while working with long
sequences. The code has been developed in C using the Open MPI library [1] (it
will be available under request). The associated binaries can be obtained from
http://bitlab-es.com/gecko.

2 Related Work

In the literature, several papers provide a review on HPC solutions applied to
pairwise and multiple sequence comparisons such as [8]. The solutions mentioned
in these papers use different architectures such as GPUs, FPGAs, multicores
and/or Intel Xeon Phi being able to compare at most sequences of up to hundreds
of millions of characters (108), as stated in [8]. The CPU implementations employ
fine-grained parallelism using different data distribution techniques. Some of the
CPU techniques report memory consumption of quadratic order, thus limit-
ing the size of the input sequence. FPGA implementations clearly accelerate
the process but they have important limitations. First, they can only handle

http://bitlab-es.com/gecko


Two-Level Parallelism to Accelerate Multiple Genome Comparisons 447

sequences up to 105 base pairs (bp), and second, almost all of them only report
the alignment score as output. GPU-based solutions accelerate the process as
well, but they also are limited in the length of the input sequence (108 bp). In
addition, most GPU implementations require quadratic space to report the align-
ment. A small number of Intel Xeon Phi implementations exist, which already
report better performance than GPU implementation in some cases.

Trying to benefit from the best part of each architecture, there already exist
a number of hybrid approaches using various devices simultaneously. Such solu-
tions implement two-level parallelization, in which in a first coarse-grained level
a set of sequences is assigned to each device. The second level (i.e. fine-grained)
often uses previously proposed algorithms/tools to compare the sequences. We
considered this two-level approach suitable to multiple genome comparisons
using GECKO. The reason why we are not using GPUs, FPGAs or Intel Xeon
Phi in this work is because of the mentioned input sequence size limitation faced
in such devices.

As reported in [8], even with the performance improvement of the HPC tech-
niques applied to the research field, the comparison of long sequences such as
human chromosomes still takes more than 9 h to complete. Therefore, our effort
in this paper concentrates in both reducing such execution time, removing the
input sequence size limitation and reporting the alignment together with quality
information such as the score (i.e. the main limitations of related approaches).

3 System and Methods

3.1 The Pairwise Genome Comparison Application

The latest release of GECKO program has been used in this work as the base
sequences comparison algorithm (see Algorithm 1). GECKO is a modular appli-
cation which calculates a set of conserved segments or High-scoring Segment
Pairs (HSPs) shared by two given input sequences. It has not been modified in
terms of functionality, however a number of minor changes were introduced in
order to be able to parallelize it.

The program starts by calculating a dictionary of words of length K (K-mers)
for each of the input sequences to be compared. The dictionary calculation scans
the sequence with a sliding window of length K and a step of 1 producing an
alphabetically sorted dictionary of K-mers together with their frequencies and
occurrence positions.

Using the dictionaries of both input sequences, a set of exact word matches
(seed points or hits) is produced. A hit is defined by the coordinates of the same
word in the input sequences, therefore, a given word Wi with frequencies f1 and
f2 in sequences 1 and 2 respectively, will produce f1 × f2 hits following all the
combinations.

In order to reduce the previously generated hits set, hits are sorted and
optionally filtered based on proximity. The next program compares the residues
present at each sequence starting where each hit occurs, adding or subtracting
a given value depending if the residues match or not. When the alignment score



448 O. Torreno and O. Trelles

becomes negative, the calculated alignment (using the maximum score reached)
is reported in case it passes the threshold parameters.

Algorithm 1. GECKO
1: Calculate a dictionary of K-mers for each input sequence.
2: Calculate a set of seed points based on the previously calculated dictionaries.
3: Sort (and optionally filter) the produced set of seed points.
4: Calculate the final set of HSPs based on the previous set of seed points.

As described in GECKO documentation, CPU time is mostly concentrated
in the sorting procedures ((1) and (3)) due to the amount of data to be sorted
what forces the program to use the hard disk. Therefore, our main effort will be
in the parallelization of such steps. Besides, steps (2) and (4) are also subject
to parallelization although they do not concentrate the major CPU time. The
parallelization speedup for these steps will be noticed mostly for long similar
sequences. All the steps (from (1) to (4)) have to be executed sequentially since
each step is using the output of the previous. However, there is still room to
internally parallelize each step.

3.2 Generic Overview of the Parallelization Approaches

Master-Slave. This approach has been applied to the two parallelization levels.
In the first level, we have applied a master-slave tasks distribution approach
to perform each pairwise genome comparison of a multiple genome comparison
study in a different core (see Fig. 1.A). In the second level, the slaves calculate the
partial result of the modules composing GECKO (see Fig. 1.B). This approach
considers at both levels as many slave processes as cores being used. The master
process reads the set of tasks from a workload file, which is generated by a
previous mapping process. Later the master distributes the tasks, assigning the
cores more tasks as soon as they become idle.

Considering the high number of I/O operations performed by GECKO mod-
ules, the master is assigning more than one task per core in order to overlap I/O
and computation. Additionally, this is done to reduce the overhead introduced
by sending tasks in separated messages. Depending on the number of processes
and the selected prefix size (as explained in Sect. 3.3), the task per core value
is either 2 (for number of cores power of 2) or 4 (for number of cores power of
4) in order to always have more than 1 task per core.

Balanced Splits Distribution. This strategy is similar to the master-slave
approach, but in this case the master and slaves are customised for the spe-
cific parallelized module, what contrasts with the generic ones of the previously
described strategy. Besides, the master calculates the offset coordinates of a bal-
anced set of independent data chunks, which are later processed by the slaves.



Two-Level Parallelism to Accelerate Multiple Genome Comparisons 449

Once all the partial results become available, the master produces the final out-
put. As in the previous approach, each processor is assigned either with 2 or 4
data chunks depending on the number of cores.

Fig. 1. Overview of the parallelization levels. Sub-figure A outlines how the strategy
starting from a list of genomes ends performing each independent pairwise genome
comparison in a separate worker. Sub-figure B shows the performed parallelization
within the internal modules of GECKO.

3.3 Details of the Parallelization Strategies of the Second Level

Parallelization Strategy for the ‘Dictionary Step’ [Step (1)]. The par-
allelization of this step is performed in two levels. The first and simpler level,
is the parallelization at sequence level, since the dictionary calculation of each
sequence is independent. The second level, splits the dictionary calculation in
N tasks, being N = 4PrefixSize. PrefixSize indicates the size of the prefix
to be used to split the work, so special care with its value must be taken
in order to have the correct number of tasks as explained in the Sect. 3.2.
The alphabet used for the K-mers is Σ = {A,C,G, T}, so when the paral-
lelization is made with PrefixSize = 2, 16 tasks are generated. Such tasks
calculate words starting with the following prefixes (in alphabetical order):
AA,AC,AG,AT, ..., CA,CC, ..., TT .



450 O. Torreno and O. Trelles

Parallelization Strategy for the ‘Hits Step’ [Step (2)]. This step cal-
culates the matches between the N previously calculated sub-dictionaries suit-
able to produce matches. For example, if the dictionaries were calculated with
N = 16 then we have 16 comparisons, reference.dict-AA against query.dict-AA,
reference.dict-AC against query.dict-AC, etc. The workload generation when the
dictionaries were calculated with the same parameters in both cases is straight-
forward, but when they were calculated with different values then it is a little
bit more difficult. For instance, if the dictionary was calculated using N = 4 and
N = 16 respectively for each of the input sequences, the tasks are: reference.dict-
A against query.dict-(AA, AC, AG, AT), reference.dict-C against query.dict-
(CA, CC, CG, CT), etc. At the end of the computation, a reduce task just
concatenates each partial output file. This last step needs to be done because
later the sorting step requires the input data in one single file.

Parallelization Strategy for the ‘Sorting Hits Step’ [Step (3)]. This step
has been parallelized with a message-passing implementation of the quicksort
algorithm. The master sends to the workers the coordinates of the file that they
have to sort. The workers sort these parts and write their partial sorted chunk.
Once all the chunks are sorted, the master assigns merging tasks to the workers
following a hierarchical merge algorithm.

Parallelization Strategy for the ‘FragHits Step’ [Step (4)]. In this case
the parallelization strategy splits the input hits file in groups of diagonals (i.e.
an arbitrary value defined as the difference of the positions in the query and ref-
erence sequences respectively). The reason behind this data splitting strategy is
that hits belonging to the same diagonal have data dependencies. The extension
of a hit could cover a further one within the same diagonal and this covered hit
should in turn not be extended because it will produce a fragment contained in
the previous one. In order to have a balanced set of tasks the number of diag-
onals varies depending on the numer of hits they contain. A final reduce step
concatenates the partial results producing a unique HSPs file equivalent to the
one generated by the sequential version.

4 Results

In this section, the performance of the applied paralellization strategies in terms
of speedup and reduced time is illustrated. All the speedup curves contained
in this document reflect the average execution time of 10 runs. A number of
different tests are used to illustrate the performance achievement on each of the
parallelized levels. These tests are using input data ranging from short to large
sequences and also different tasks per core values due to the high number of
I/O operations performed by some modules. In addition to the performed tests
to each step of the second parallelization level, the multiple genome comparison
and overall application speedups are shown to illustrate the gains achieved by
the presented two-level parallelization strategy.



Two-Level Parallelism to Accelerate Multiple Genome Comparisons 451

4.1 Infrastructure

This new implementation has been tested in the fat nodes of the Picasso super-
computer located at the University of Málaga (Málaga, Spain). Each fat node has
2 TB of RAM and eight Intel E7-4870 processors, which deliver 96 Gflop/s. For
the first parallelization level only one node has been used until the measurement
of 64 cores and two nodes for the 128 cores measurement. For the second paral-
lelization level only one node has been used, requiring no MPI communication
over the network, since each node has 80 cores and the speedup measurements
are made until 32 cores.

4.2 Dataset

The selected test datasets contain several public available sequences1 of different
sizes in order to thoroughly study the speedup of the two parallelization levels. In
the first level, we are using two sets of 30 and 40 small sequences of Mycoplasma
genus with an average length of 1 Mbp. Both sets contain sequences sharing
different level of similarity ranging from closely to remotely related sequences.
The dataset to test the internal parallelization level is composed of bacteria
and mammalian sequences ranging from 5 to 410 Mbp. The large mammalian
sequences (Homo sapiens (HS) and Macaca Mulatta (MM)) are used in two tests.
The first test uses the chromosome 1 of both mammalian sequences (from now
on the test will be referred as HS-MM(chr1)), while the second one compares
the concatenation of chromosomes 1 and 2 of each species in order to conform a
longer sequence (the test will be referred as HS-MM(chr1+2)).

Fig. 2. A: Total application speedup; B: Multiple genome comparison speedup

1 http://www.ncbi.nlm.nih.gov/genome/.

http://www.ncbi.nlm.nih.gov/genome/


452 O. Torreno and O. Trelles

Fig. 3. A: Dictionary step speedup; B: Hits step speedup; C: Sort hits step speedup;
D: FragHits step speedup.

4.3 Speedup of the Performed Two-Level Parallelization

The parallelization strategy of the first level applied to enhance multiple genome
comparisons follows the speedup curve shown in Fig. 2.B. This figure contains
two series, which show the speedup of the all against all comparison of the
30 and 40 genomes sets described in Sect. 4.2. The speedup curve of the 30
genomes set accounts for 435 pairwise genome comparisons, whereas the second
curve of 40 genomes set comprises 780 pairwise genome comparisons. It is worth
mentioning that an all vs. all comparison of N genomes accounts for N∗(N−1)/2
comparisons given the symmetry property of a pairwise comparison.

The devised strategies in the second parallelization level follow the speedup
curves shown in Figs. 3 (A, B, C and D; which relates in order to the steps of
Algorithm 1) and 2.A, which shows the overall application speedup.



Two-Level Parallelism to Accelerate Multiple Genome Comparisons 453

5 Discussion

5.1 Speedup of the Multiple Genome Comparison Study

The speedup of the first parallelization level (see Fig. 2.B) indicates that the
application is scalable. It is worth noting that until 16 PE, both series (i.e. 30
and 40 genomes) have a speedup close to the theoretical one or even super-linear
because of the overlap between I/O and computation produced while executing
several comparisons at the same time. From 32 PE onwards, the speedup of the
30 genomes series degrades because there are not enough tasks for the available
cores. In contrast, the 40 genomes series, which generates a higher number of
tasks, keeps scaling closer to the theoretical speedup with an efficiency of 65.98%
in the worst case.

5.2 Dictionary Step Speedup

Results are good when the sequence size is big enough as can be observed
in Fig. 3.A, having reached accelerations above the theoretical until 8 PE for
E.coli, 32 PE for HS-MM(chr1) and 16 PE for HS-MM(chr1+2). The perfor-
mance reduction that can be observed in the E.coli series is produced by its
short length, which is on of the parameters that conducts the compute time.
It is worth noting that the speedup of the longest sequence (HS-MM(chr1+2))
is not the best as it is supposed to be, based on previous assumptions, mainly
because of the higher I/O load. It is also important to note that the application
scales good until 16 PE, from where the super-linear speedup turns into normal
speedup. We believe that the cause of this behaviour could be that the required
number of I/O operations is very high, what is not giving a good computation-
I/O ratio. Furthermore, since processes within the same physical node share the
filesystem, this could be also a bottleneck in this case.

5.3 Hits Step Speedup

We can observe two interesting aspects in the speedup curves of the hits step
(see Fig. 3.B). First, the super-linear speedup achieved in the cases of 2 and
4 PE for the longer sequences (HS-MM(chr1+2) and HS-MM(chr1)). This is
caused again by the fact of having simultaneous executions in each node over-
lapping computation and I/O operations. The second aspect, the reduction of
the speedup just after obtaining the super-linear one (after 4 PE in one case
and 2 PE in the other cases). Here, we believe that writing the output file is
consuming most of the time due to its size (around 78 GB for HS-MM(chr1) and
252 GB for HS-MM(chr1+2)). In consequence, adding more cores, which provide
processing power, does not speed up the process. With regards to the shortest
sequence (E.coli), the output file is much smaller, but the situation remains the
same, because in essence the ratio between compute and I/O is similar.



454 O. Torreno and O. Trelles

5.4 Sort Hits Step Speedup

Similarly to the hits step, we can also observe in the speedup of this module (see
Fig. 3.C) a super-linear speedup until 16 PE for E.coli, 4 PE for HS-MM(chr1)
and 2 PE for HS-MM(chr1+2). However, in this case the reason resides in the
data fitting in main memory instead of working with it stored on the hard disk.
Although the curve shapes are similar, the speedup achieved in the case of HS-
MM(chr1) for 4 PE (6.13) is higher than the obtained in the hits step (5.34).
Besides super-linearity, the speedup is again reduced due to the size of the files
to be read and written. In constrast, in the short sequences series, the super-
linear speedup is also achieved for 16 PE, what confirms our assumption of the
bottleneck caused by the size of the output file.

5.5 FragHits Step Speedup

For this step, in the case of long sequences, the speedup is again super-linear until
4 PE for the HS-MM(chr1+2) case and until 16 PE for HS-MM(chr1). Although
the speedup is super-linear at the beginning, the efficiency level degrades, result-
ing in 60.06% in HS-MM(chr1) and 49.84% in HS-MM(chr1+2) with 32 PE.
Again the results for short sequences demonstrate that the computational work-
load is not big enough in such case to take profit of a parallel strategy.

5.6 Overall Application Speedup in a Pairwise Comparison

The speedup curves shown in Fig. 2.A confirm what we explained in previous
sections. The application reports super-linear speedup until 8 PE (except for
HS-MM(chr1+2), reasons in Sects. 5.3 and 5.4). In addition, starting from 16
PE, the performance does not improve, what is normal due to parallelization
overheads compared to the actual computation as well as the high I/O load
the application has. It is important to note that although for many steps the
speedup for the shortest sequence was not that good, the efficiency of the overall
application is acceptable until 16 PE (61.25%) and the speedup is even better
than the one of the two long sequences, mostly because the speedup is better in
the most time consuming step (i.e. sort hits).

5.7 Time Reduction

Although the speedup curves in some cases suggest not particularly good effi-
ciency levels, the time reduction has been considerable. In the first parallelization
level, although the efficiency for the 30 genomes series is not good, the execution
time has been reduced to 10 s compared to the 250 s of the sequential execution.
In the second parallelization level we can observe a similar situation. Although
for some GECKO modules the speedup is not good, the overall time reduction is
significant. For instance, for the case of HS-MM(chr1+2) using 16 PE the time
has been reduced to 49 min from the 5 h and 11 min of the sequential execution.



Two-Level Parallelism to Accelerate Multiple Genome Comparisons 455

6 Conclusions

In this work we have approached the parallelization of multiple genome com-
parisons following a two-level strategy. The first level is aimed at parallelizing
each independent pairwise genome comparison of the multiple comparison study
to a different core. The second level consists on the parallelization of GECKO
modules with evident time reduction while results remain invariant. Although
the second parallelization level is customised for GECKO, the first one is generic
enough to be used with any of the GECKO equivalent applications. The reason
behind selecting GECKO is that it produces results of higher quality without
computational barriers compared to current top methods such as MUMmer [5]
or Mauve [2] as stated in [9].

To decrease the scheduling cost in the master process we implement a simple
mapping of tasks to the available workers, assigning them a new set of tasks as
soon as they became idle. This scheduler introduces a tasks per core parameter
which allows the user to overlap the execution of tasks, what we found specially
useful in terms of performance while working with a disparate combination of
CPU and I/O bounded applications. In fact, the overlapping of I/O and com-
putation is producing the super-linear speedups shown in the figures included in
this document.

Tests in the first parallelization level have been performed using two different
datasets of 30 and 40 genomes respectively. The selected dataset in this case
represents the most typical multiple genome comparison study, which is the
comparison of short sequences given that around 75% of the available sequences
are short sequences2. However, the obtained results indicate that it would be
possible to use long sequences as well. The obtained speedup in the 30 genome
sequences set indicates that from 32 PE onwards the number of tasks is not
sufficient. However, in the 40 genomes set the speedup maintains good efficiency
levels beyond that point.

In the second parallelization level, tests using different sequence lengths have
been performed, since this is one of the parameters governing the execution time.
The obtained results show that all GECKO modules reduce significantly their
execution time, although in terms of speedup with a high number of cores the
results are not specially prominent. Analysing the speedup, we can extract the
correct number of PE for each of the modules. In the case of the dictionary
module this value is 32 PE (although for the short sequence the efficiency is not
good). The hits and sort hits steps report asymptotic speedups, which are good
in terms of efficiency until 8 PE in both cases. For the last application module
(i.e. FragHits), the efficiency is acceptable until 32 PE for the long sequences
cases and clearly not worthing to be parallelized for the short sequences case. The
different values of number of PE suggest that the use of auto-scaling architectures
such as cloud computing could be suitable for this application.

It is worth noting that the biological problem addressed here is really
important. In fact, in comparative genomics the core applications include the

2 https://gold.jgi.doe.gov/statistics.

https://gold.jgi.doe.gov/statistics


456 O. Torreno and O. Trelles

competitors of GECKO (e.g. MUMmer, Mauve, Lastz [4]). Using this two-level
parallel strategy for multiple genome comparisons, the researchers have a faster
way to study a given sequence. The original version of GECKO was already able
to compare two concatenated chromosomes in less time than parallel methods,
which take 9 h as reported in [8]. The parallel version presented in this document
reduces the execution time even further reducing it to 49 min. Additionally, this
faster way of comparing multiple genomes allow users contrasting the current
evolutionary models.

As future work, we plan to test it with more input sequences and in a different
system in terms of number of processors and underlying filesystem. We sincerely
hope, that this tests will reinforce the fact of the results obtained with the devised
parallelization strategies described in this document.

Acknowledgements. This work has been partially supported by the European
projects Mr. Symbiomath (grant no. 324554) and Elixir-Excelerate (grant no. 676559),
and the Spanish national projects “Plataforma de Recursos Biomoleculares y Bioin-
formáticos” (ISCIII-PT13.0001.0012) and RIRAAF (ISCIII-RD12/0013/0006).

References

1. Open MPI. https://www.open-mpi.org/
2. Darling, A.E., Mau, B., Perna, N.T.: progressivemauve: multiple genome alignment

with gene gain, loss and rearrangement. PLoS One 5(6), e11147 (2010)
3. Duvigneau, R., Kloczko, T., Praveen, C.: A three-level parallelization strategy for

robust design in aerodynamics. In: Proceedings of 20th International Conference on
Parallel Computational Fluid Dynamics, pp. 379–384 (2008)

4. Harris, R.: Improved pairwise alignment of genomic DNA. Ph.D. dissertation, The
Pennsylvania State University (2007)

5. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biol. 5(2), R12 (2004)

6. Marco, N., Lanteri, S.: A two-level parallelization strategy for genetic algorithms
applied to optimum shape design. Parallel Comput. 26(4), 377–397 (2000)

7. Momcilovic, S., Roma, N., Sousa, L.: Multi-level parallelization of advanced video
coding on hybrid CPU+GPU platforms. In: Caragiannis, I., et al. (eds.) Euro-
Par 2012. LNCS, vol. 7640, pp. 165–174. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36949-0 19

8. Sandes, E., Boukerche, A., Melo, A.: Parallel optimal pairwise biological sequence
comparison: algorithms, platforms, and classification. ACM Comput. Surv. (CSUR)
48(4), 63 (2016)

9. Torreno, O., Trelles, O.: Breaking the computational barriers of pairwise genome
comparison. BMC Bioinf. 16(1), 1 (2015)

https://www.open-mpi.org/
http://dx.doi.org/10.1007/978-3-642-36949-0_19
http://dx.doi.org/10.1007/978-3-642-36949-0_19

	Two-Level Parallelism to Accelerate Multiple Genome Comparisons
	1 Introduction
	2 Related Work
	3 System and Methods
	3.1 The Pairwise Genome Comparison Application
	3.2 Generic Overview of the Parallelization Approaches
	3.3 Details of the Parallelization Strategies of the Second Level

	4 Results
	4.1 Infrastructure
	4.2 Dataset
	4.3 Speedup of the Performed Two-Level Parallelization

	5 Discussion
	5.1 Speedup of the Multiple Genome Comparison Study
	5.2 Dictionary Step Speedup
	5.3 Hits Step Speedup
	5.4 Sort Hits Step Speedup
	5.5 FragHits Step Speedup
	5.6 Overall Application Speedup in a Pairwise Comparison
	5.7 Time Reduction

	6 Conclusions
	References


