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Abstract. Global optimization problems arise in many areas of science
and engineering, computational and systems biology and bioinformatics
among them. Many research efforts have focused on developing parallel
metaheuristics to solve them in reasonable computation times. Recently,
new programming models are being proposed to deal with large scale
computations on commodity clusters and Cloud resources. In this paper
we investigate how parallel metaheuristics deal with these new models by
the parallelization of the popular Differential Evolution algorithm using
MapReduce and Spark. The performance evaluation has been carried out
both in a local cluster and in the Amazon Web Services public cloud.
The results obtained can be particularly useful for those interested in the
potential of new Cloud programming models for parallel metaheuristic
methods in general and Differential Evolution in particular.

Keywords: Parallel metaheuristics · Differential Evolution · Cloud
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1 Introduction

Many key problems in computational systems biology can be formulated and
solved using global optimization techniques. Metaheuristics are gaining increased
attention as an efficient way of solving hard global optimization problems. Dif-
ferential Evolution (DE) [12] is one of the most popular heuristics for global opti-
mization, and it has been successfully used in many different areas [4]. However,
in most realistic applications, like parameter estimation problems in systems
biology, this population-based method requires a very large number of evalu-
ations (and therefore, large computation time) to obtain an acceptable result.
Therefore, several parallel DE schemes have been proposed, most of them focused
on traditional parallel programming interfaces and infrastructures.

The aim of this paper is to investigate how parallel metaheuristics could be
handled based on the recent advances in Cloud programming models. Distributed
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frameworks like MapReduce or Spark, provide advantages such as higher-level
programming models to easily parallelize user programs, support for data dis-
tribution and processing on multiple nodes/cores, and run-time features such as
fault tolerance and load-balancing. The goal of this paper is to explore this direc-
tion further considering a parallel implementation of DE in both frameworks and
evaluating their performance in a real testbed using both a local cluster and the
Amazon Web Services (AWS) public cloud.

The organization of the paper is as follows. Section 2 presents the background
and related work. The proposed implementations of DE using both MapReduce
and Spark are described in Sect. 3. The performance of these implementations
and a comparison between them are assessed in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Background and Related Work

Since its appearance, MapReduce [5] (MR from now on) has been the distributed
programming model for processing large scale computations that has attracted
more attention. In short, MR executes in parallel several instances of a pair of
user-provided map and reduce functions over a distributed network of worker
processes driven by a single master. Executions in MR are made in batches,
using a distributed filesystem to take the input and store the output. MR has
been applied to a wide range of applications, including distributed sorting, graph
processing or machine learning. But for iterative algorithms, as those typical
in parallel metaheuristics, MR has shown serious performance bottlenecks [6]
because there is no way of reusing data or computation from previous iterations
efficiently when several of these single batches are executed inside a loop.

Spark [15] is a recent proposal designed from the very beginning to provide
efficient support for iterative algorithms. Spark provides a distributed mem-
ory abstraction denominated resilient distributed datasets (RDDs) for support-
ing fault-tolerant and efficient in-memory computations. Formally, an RDD is a
read–only fault–tolerant partitioned collection of records. RDDs are created from
other RDDs or from data in stable storage by applying coarse-grained transfor-
mations (e.g., map, filter or join) that can be pipelined to from a lineage. Once
created, RDDs are used in actions (e.g. count, collect or save) which are opera-
tions that return a value to the application or export data to a storage system.
Spark runtime is composed of a single driver program and multiple long-lived
workers that persist RDD partitions in RAM across operations. Developers write
the driver program where they define one or more RDDs and invoke actions on
them. Lineages are used to compute RDDs lazily whenever they are used in
actions or to recompute them in case of failure.

There are some proposals which investigate how to apply MR to parallelize
the DE algorithm. In [16] the Hadoop framework (the most widely used open
source implementation of MR) is used to perform in parallel the fitness evalua-
tion. However, the experimental results reveal that HDFS (Hadoop Distributed
File System) I/O and system bookkeeping overhead significantly reduces the
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benefits of the parallelization. In [13], a concurrent implementation of the DE
based on MR is proposed which was only evaluated on a multi-core CPU taking
advantage of the shared-memory architecture. In [3] a parallel implementation
of DE based clustering using MR is also proposed. This algorithm was imple-
mented in three levels, each of which consists of DE operations. To the best
of our knowledge, there is no previous work that explores the use of Spark for
parallel metaheuristics.

There are also a few references comparing MR and Spark performance for
iterative algorithms. In [15] Spark authors compare their proposal to MR (using
Hadoop) for different types of iterative algorithms on Amazon EC2. They imple-
mented two machine learning algorithms, logistic regression which is more I/O-
intensive and k-means which is more compute-intensive, and found that scaling
up to 100 nodes Spark outperformed MR from 12.3x up to 25.3x for logistic
regression and from 1.9x up to 3.2x for k-means. They also tested the well-
known PageRank algorithm finding that Spark outperformed MR by up to 7.4x,
scaling well in up to 60 nodes. In [8] performance of several distributed frame-
works including Hadoop (v.1.0.3) and Spark (v.0.8.0) were assessed in Amazon
EC2 for iterative scientific algorithms. The Partitioning Around Medoids (PAM)
clustering algorithm and the Conjugate Gradient (CG) linear system solver were
implemented for evaluation. Results show that scaling up to 32 nodes and using 3
datasets of different sizes, Spark outperformed MR from 1.3x up to 48x for PAM
and from 23x up to 99x for CG. Authors concluded that Spark results seemed
to be greatly affected by the characteristics of the benchmarking algorithms and
their dataset composition. In [11] Hadoop (v.2.4.0) and Spark (v.1.3.0) major
architectural components are thoroughly compared using a set of analytic work-
loads. Results show that, using a 4 node (32 cores, 190 GB RAM, 9x1TB disk
each) cluster with a 1GB Ethernet network, Spark outperformed MR by 5x for
k-means, linear regression and PageRank. Authors conclude that, for iterative
algorithms, caching the input as RDDs in Spark can reduce both CPU and disk
I/O overheads for subsequent iterations and that RDD caching is much more
efficient than other low-level caching approaches such as OS buffer caches, and
HDFS caching, which can only reduce disk I/O.

3 Implementing DE on MR and Spark

Differential Evolution [12] is an iterative mutation algorithm where vector dif-
ferences are used to create new candidate solutions. Starting from an initial
population matrix composed of NP D-dimensional solution vectors (individu-
als), DE attempts to achieve the optimal solution iteratively through changes in
its vectors. Algorithm 1 shows the basic pseudocode for the DE algorithm. For
each iteration, new individuals are generated in the population matrix through
operations performed among individuals of the matrix (mutation - F), with old
solutions replaced (crossover - CR) only when the fitness value of the objective
function is better than the current one. A population matrix with optimized
individuals is obtained as output of the algorithm. The best of these individuals
are selected as solution close to optimal for the objective function of the model.
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Algorithm 1. Differential Evolution algorithm

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element x of the P matrix do

−→a ,
−→
b ,−→c ⇐ different random individuals from P matrix

for k ⇐ 0 to D do
if random point is less than CR then−−→

Ind(k) ⇐ −→a (k) + F (
−→
b (k) - −→c (k))

end

end

if Evaluation(
−−→
Ind) is better than Evaluation(

−−−→
P (x)) then

Replace Individual(P ,
−−→
Ind)

end

end

until Stop conditions;

However, typical runtimes for many realistic problems are in the range from
hours to days due to the large number of objective function evaluations needed,
making the performance of the classical sequential DE unacceptable. In the
literature, different parallel models can be found [2] aiming to improve both
computational time and number of iterations for convergence. The master-slave
and the island-based models are the most popular. In the master-slave model
the behavior of the sequential DE is preserved by parallelizing the inner-loop
of the algorithm, where a master processor distributes computation between
the slave processors. In the island-based model the population matrix is divided
in subpopulations (islands) where the algorithm is executed isolated. Sparse
individual exchanges are performed among islands to introduce diversity into
the subpopulations, preventing search from getting stuck in local optima.

The implementation of the DE master-slave model does not fit well with the
distributed nature of programming models like MR or Spark [14]. The reason is
that when the mutation strategy is applied to each individual, random different
individuals have to be selected from the whole population. Considering that the
population would certainly be partitioned and distributed among slaves, any
solution to this problem would introduce an unfeasible communications over-
head. In the rest of this section we briefly describe our island-based parallel
implementations of the DE algorithm, which in advance seemed to be a more
promising approach, for both MR and Spark.

Algorithm 2 shows the pseudocode for the driver (the user-provided code run
by the master) of our island-based parallel implementation of the DE algorithm
using MR. The driver is responsible for randomly generating the initial popula-
tion and for evolving it repeating a loop until the termination criterion is met.
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Algorithm 2. Driver pseudocode

input : DE configuration parameters
output: A population P whose individuals were optimized

P ⇐ initial random population
#i ⇐ number of islands

repeat−−−−−→
Islands ⇐ PartitionPopulation(P , #i) // with shuffling

P ⇐ EvolveIslands(
−−−−−→
Islands) //the MR job

until Stop conditions;

Algorithm 3. Map pseudocode

inputs : An island I; DE configuration parameters
output: An island I whose individuals were optimized

repeat
I ⇐ EvolveIsland(I) // apply the DE mutation strategy

until number of evolutions;

for each individual
−−→
Ind of the island I do

Emit(Evaluation(
−−→
Ind),

−−→
Ind)

end

In each loop iteration the population is randomly partitioned into islands all
with the same number of individuals, islands are written to HDFS one file each,
a MR job for evolving the islands is configured and launched and the evolved
global population is gathered from HDFS after the MR job finished. Algorithm3
shows the pseudocode of the map functions executed in each MR job. Each map
is responsible for the evolution of exactly one island isolated from the rest dur-
ing a predefined number of evolutions, the same for all islands. The map starts
by reading the island individuals from HDFS and storing them in local memory,
then applying the DE mutation strategy taking random individuals only from its
island until the predefined number of evolutions is reached and, finally, emitting
an output record for each individual of the evolved island using its fitness value
as key. The MR job implementation is completed with a single identity reducer
which simply receives the individuals from all the islands ordered by their fitness
value and writes them to an HDFS file. Note that, as individuals are ordered by
fitness, the first record in the output file will be the best individual. To introduce
diversity a migration strategy that randomly shuffles individuals among islands
without replacement is applied by the driver during the partition of the popula-
tion in islands. This is a naive strategy intended only to evaluate the migration
overhead and not to improve the searching quality of the algorithm.

Figure 1 shows the scheme of our island-based parallel DE implementation
using Spark. In the figure, boxes with solid outlines are RDDs. Partitions are
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Fig. 1. Spark-based island implementation of the DE algorithm.

shaded rectangles, darker if they are persisted in memory. A key-value pair RDD
has been used to represent the population where each individual is uniquely
identified by its key. The algorithm starts by distributing the random gener-
ation and initial evaluation of individuals that form the population using an
Spark map transformation, then an evolution-migration loop is repeated until
the termination criterion implemented as an Spark reduce action (a distributed
OR operation) is met and, finally, the selection of the best individual is done by
using an Spark reduce action (a distributed MIN operation). In the evolution-
migration loop every partition of the population RDD has been considered to
be an island, all with the same number of individuals. Islands evolve isolated
during a predefined number of evolutions, the same for all islands, and in order
to introduce diversity the same migration strategy as in the MR implementation
is executed after an evolution. We have developed a custom Spark partitioner
that randomly and evenly shuffles elements among partitions for implementing
the migration strategy.

It must be noted that although the migration strategy is the same for both
implementations, the overhead they add is not. In MR migration is implemented
in the driver that reads the population from HDFS, shuffles the individuals
among islands and writes back the islands to HDFS, so the overhead is mainly
caused by accessing HDFS. In Spark migration is implemented as a partitionBy
operation, so the overhead is mainly caused by communications.

4 Experimental Results

In order to evaluate and compare the island-based implementation of DE using
MR and Spark, different experiments have been carried out. Their behavior,
in terms of execution time and overhead, has been compared with the sequen-
tial implementation. Programming languages used have been Scala (v2.10) for
the sequential and Spark implementations, and Java (v1.7.0) for the MR imple-
mentation. Spark (v.1.4.1) and Hadoop (v2.7.1) frameworks were used for the
experiments.
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Two sets of benchmark problems were used: on the one hand, two problems
out of an algebraic black-box optimization testbed, the Black-Box Optimization
Benchmarking (BBOB) data set [7]: Rastringin function (f15) and Gallagher’s
Gaussian 21-hi Peaks function (f22); on the other hand, a challenging parameter
estimation problem in a dynamic model of the circadian clock in the plant Ara-
bidopsis thaliana, as presented in [9]. Table 1 shows the configurable parameters
used for the reported experiments.

Table 1. Benchmark functions. Parameters: dimension (D), population size (NP),
crossover constant (CR), mutation factor (F), mutation strategy (MSt), value-to-
reach/ftarget (VTR).

B Function D NP CR F MSt VTR

f15 Rastrigin function 5 1024 .8 .9 DE/rand/1 1000

f22 Gallagher’s Gaussian 10 1600 .8 .9 DE/rand/1 −1000

circadian Circadian model 13 640 .8 .9 DE/rand/1 1e−5

For the experimental testbed two different platforms has been used. First,
experiments were conducted in our multicore local cluster Pluton, that consists
of 16 nodes powered by two octa-core Intel Xeon E5-2660 CPUs with 64 GB of
RAM, and connected through an InfiniBand FDR network. Second, experiments
were deployed with default settings in the AWS public cloud using virtual clusters
formed by 2, 4, 8 and 16 nodes communicated by the AWS standard network
(Ethernet 1 GB). For the nodes the m3.medium instance (1 vCPU, 3.75 GB RAM,
4 GB SSD) was used. In both testbeds, each experiment was executed a number
of 10 independent runs, and the average and standard deviation of the execution
time are reported in this section. Note that, since Spark and MR programs run
on the Java Virtual Machine (JVM), usual precautions (i.e. warm-up phase,
effect of garbage collection) have been taken into account to avoid distortions
on the measures.

Comparing the sequential and the parallel metaheuristics is not an easy task,
therefore, guidance of [1,7] has been followed when analyzing the results of these
experiments. Since the parallel strategy followed is the same in both MR and
Spark implementations, the best way to fairly compare the performance of both
implementations is to stop at a predefined effort, that is, for a vertical view.
Results obtained in the local cluster Pluton and in the AWS public cloud, both
in terms of execution times and speedups, are shown in Fig. 2 using a prede-
fined number of evaluations as stopping criterion. All the experiments execute
two iterations of the algorithm (each iteration corresponding to an evolution-
migration). To assess the scalability up to 16 islands have been used for the
parallel implementations. We do not use more than 16 islands due to the small
population size in this benchmarks. As it can be seen, the Spark implementation
achieves good results, both in time and speedup, versus the sequential algo-
rithm, and a good scalability when the number of islands grows. However, the
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MR implementation presents poorer results, specially for f15, the shortest of the
two benchmarks, because it introduces a high overhead. Note that the execution
times are larger in AWS than in cluster Pluton, even for sequential executions.
Virtualization overhead, use of non-dedicated resources in a multi-tenant plat-
form, and differences in node characteristics can explain these results. Even so,
the Spark implementation achieves good results in terms of speedup versus the
sequential implementation in AWS. However, the MR implementation presents
even poorer results than in the experiments carried out in the local cluster.

Fig. 2. Execution time and speedup results comparing MR vs Spark implementation in
cluster Pluton and the AWS public cloud. Stopping criterion: Nevalsf15 = 1, 025, 024
and Nevalsf22 = 3, 200, 000.

To evaluate the overhead introduced by MR and Spark we have used modified
versions of our implementations in which the evolution of the population was
removed. Each modified implementation was executed for a total of 8 evolution-
migration iterations and the overhead of each iteration was measured separately
in order to assess differences between them. Figure 3 shows the results obtained.
The first iteration in the Spark implementation is always the most time con-
suming (it corresponds to the outliers in the box plots), being the mean of the
experiments 0.050 ± 0.009 s in the local cluster. However, the rest of the iter-
ations present even lower overhead and lower dispersion in the results, being
the mean overhead of each iteration of 0.023 ± 0.004 s. In the case of MR there
is no significant difference between iterations, and the figures clearly indicate a
higher overhead and large dispersion in the results, being the mean overhead of
each iteration 17.95 ± 2.50 s in Pluton. This explains why, in Fig. 2, execution
times of MR implementation stagnate around 40 s (close to the overhead of the
two iterations) when the number of cores grows. The experiment confirms that
Spark has lower overhead and better support for iterative algorithms than MR.

Figure 3 shows also that, both for MR and Spark, the overhead in AWS is
larger than in the local cluster. The first iteration in Spark is again the most
time consuming, being the mean of the experiments of 0.26 ± 0.12 s. However,
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Fig. 3. Box plot of the overhead times per evolution-migration iteration in MR and
Spark.

the rest of the iterations present low overheads, being the mean overhead of
each iteration of 0.09 ± 0.04 s. Also, it must be noted that the Spark overhead
slightly increases when the number of nodes grows, which is in tune with what
was expected. Results in the local cluster does not clearly show this increase, but
it should be noted that differences are very small and we are shuffling very few
data among a small number of physically close nodes using a high-throughput
and low-latency InfiniBand network.

In the case of MR there is again no significant difference between the first
and the subsequent iterations, but overheads are higher than in the local cluster,
being the mean overhead for each iteration of 51.03 ± 5.07 s. In addition to the
overhead due to the virtualization and the differences in node characteristics,
these results could be explained by the use of HDFS with Amazon EBS volumes
which are mounted over a non-dedicated 1GB Ethernet network. These boxplots
also show that the variability in the MR overhead between independent experi-
ments is much more noticeable in AWS. For instance, experiments with 2, 4, 8
and 16 nodes were performed at different moments and, although they obtain
similar mean overhead, the standard deviation is significantly different.
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Previous results explain why Spark outperforms MR for short execution
benchmarks. In order to honestly evaluate the performance in long real applica-
tions, we have considered a parameter estimation problem, the circadian bench-
mark, and we have used as stopping criterion a value-to-reach to assess the
performance form an horizontal view. Figure 4 shows a bean plot that allows
for an easy comparison of the execution times obtained using the MR and the
Spark implementations in the local cluster. Note that not only the execution
time is larger for the MR implementation but also the dispersion of the results
obtained is bigger. Figure 4 also shows the speedup achieved. The improvement
of the parallel versions against the sequential one is due both to the distribution
of computations among the workers, and to the effectiveness of the parallel algo-
rithm, since the diversity introduced by the migration phase actually reduces
the number of evaluations required for convergence. The harder the problem is,
the more improvement is achieved by the parallel algorithm. Thus, for the circa-
dian benchmark, when using Spark, superlinear speedups are obtained. The MR
implementation also achieves a reduction in the number of evaluations required
when the number of islands grows, however, the overhead introduced by MR
restrain it from attaining such speedups.

It must be noted that for problems with long execution times where the
iteration selectivity (as defined in [11]) is very low, like it is the case for the DE
algorithm, MR is favoured because the overhead accessing HDFS is very small.
For long-execution applications, such as the circadian benchmark, where the
computation time dominates the overhead introduced by the iterations in MR,
MR is competitive with Spark, though the latter still presents better scalability,
since increasing the number of resources decreases the computation time but, as
we have seen, the overhead does not decrease.

Fig. 4. Circadian benchmark. Comparing MR vs Spark implementation in cluster
Pluton: bean plots of the execution time and speedup results vs the sequential imple-
mentation in Scala.
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Finally, although it is not the aim of this work, we have performed several
preliminary tests to assess how competitive the Spark parallel implementation
can be with respect to traditional HPC solutions. The same previous experi-
ments were carried out with the implementation of the asynchronous parallel
DE described in [10]. This implementation is coded in C and uses the OpenMPI
library. Directly comparing the execution times of both implementations is not
fair, since the implemented algorithms are not the same: (i) the MPI implemen-
tation includes some heuristics to improve the convergence rate of the DE, and
(ii) the migration strategy is not the same in both algorithms. Thus, we have
estimated the execution time per evaluation such as Teval = Ttotal/Nevals. Note
that this estimated Teval includes not only the CPU time for the evaluation itself
but also the communication time and other overheads introduced by the algo-
rithm implementation. We encountered that execution time per evaluation of the
Spark implementation was between 2.24x and 2.57x the execution time per eval-
uation of the MPI implementation. It must be noted that, as already available
implementations in C/C++ and/or FORTRAN existed for all the benchmarks,
we have wrapped them in our code by using Java/Scala native interfaces (i.e.
JNI, JNA, SNA). Further studies to determine a more accurate interpretation
of this overhead are left for future work.

5 Conclusions

In order to explore how parallel metaheuristics could take advantage of the
recent advances in Cloud programming models, in this paper MR and Spark
island-based implementations of the DE algorithm are proposed and evaluated.
The performance evaluation of both implementations was conducted on a local
cluster and on the AWS public cloud. Both synthetic and real biology-inspired
benchmarks were used for the testbed.

The experimental results show that MR has significant higher overhead per
iteration than Spark mainly caused by longer task initialization times and HDFS
access, and that Spark has best support for iterative algorithms as it reduces
the overhead between the first and subsequent iterations. For short benchmarks
Spark clearly outperforms MR, which speedup is limited by its overhead. For
long running benchmarks, in which computation time prevails over iteration
overhead, MR is competitive with Spark. In addition, MR would be favoured
by algorithms with low iteration selectivity (i.e. small population size) like DE,
but on the contrary, it would be harmed by algorithms with short iterations and
higher iteration selectivity.
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