
TRACE: Generating Traces from Mobility
Models for Distributed Virtual Environments

Emanuele Carlini1(B), Alessandro Lulli1,2, and Laura Ricci1,2

1 Istituto di Scienza e Tecnologie dell’Informazione (ISTI),
Consiglio Nazionale delle Ricerche (CNR), Rome, Italy

{emanuele.carlini,alessandro.lulli,laura.ricci}@isti.cnr.it,
{lulli,ricci}@di.unipi.it

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Abstract. The development and evaluation of a proper mobility model
is an essential feature to evaluate a system that manages a virtual world.
In distributed virtual environments, this is also more important because
each avatar requires a consistent view of the world that usually is splitted
on multiple machines. Several models have been proposed in the litera-
ture to describe avatars’ mobility, but a single environment supporting
the generation of traces from different models to enable a simple compari-
son of them is still lacking. In this work we present a tool that implements
popular mobility models and supports the generation of traces generated
by them. This may help developers to easily validate their systems using
several mobility models. Our tool provides a unified format to describe
the traces, enables the generation of traces for thousands of avatars and
defines an API enabling the integration of additional models.

1 Introduction

A common trait of many virtual environments is the fact that the behaviour of
avatars depends mostly on what happen in their immediate surroundings. This
fact, referred to as locality, has been widely exploited to optimize the manage-
ment of the virtual environments operations at system level. In the last decade
many approaches have been proposed to foster the transition of virtual environ-
ments from client-server to distributed applications, referred to as Distributed
Virtual Environments (DVEs) [14]. Most DVEs architectures heavily rely on the
concept of locality to split the virtual world and distribute each part of the world
to different machines. In this scenario, each avatar needs to reconstruct its local
view of the virtual world by interacting with the host of the nearby avatars. Also,
the machines that handle the world need to cooperate to provide a consistent
view of the virtual environment. This kind of approach holds for approaches
based on unstructured [9,15] and structured [2,10] peer-to-peer technologies, as
well as more centralized technologies like cloud computing [13]. For example, in
Voronoi-based DVE approaches, the world is assigned to the hosts of the avatars
according to a tessellation of the virtual world, which depends on the position
of the avatars [9,15]. When avatars move, the assignments change accordingly.
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 272–283, 2017.
DOI: 10.1007/978-3-319-58943-5 22



TRACE: Generating Traces from Mobility Models for DVEs 273

Therefore, the description of how avatars move in a DVE is essential to design,
validate and compare different DVE architectures.

Performing the above actions in a real setting is an expensive and difficult
task, since it requires to organize the setting on multiple machines and involve
multiple persons each moving an avatar in the virtual world. Therefore, the
solution adopted by the researchers is to simulate avatars’ movement in order
to validate the specific DVE architecture. Normally, two common ways are con-
sidered to simulate avatars’ movements, i.e. traces taken from an instance of a
real virtual environment application, or synthetic traces generated from mobility
models. Real traces are usually a good mean of validation, as they represent what
is the actual behaviour of avatars in the virtual worlds [7]. However, they suffer
from the same issues of testing a DVE in a real setting: it is difficult to collect
real traces and, in particular, they may be not suitable to validate the system
on an extreme or specific scenario. Synthetic traces are usually not extremely
precise in simulating avatars’ movement but present many clear advantages in
contrast with real traces [17], such as (i) scalability, to stress the DVE support in
limit situations, (ii) reproducibility, as synthetic traces can be reused on different
systems in order to have a common ground for comparison.

As a consequence the best way to evaluate a DVE architecture is to exploit
a combination of real and synthetic traces. In this paper we focus on the latter,
and we provide the description of a software library we developed to gener-
ate synthetic traces using mobility models. Mostly, all the approaches generate
synthetic traces with custom specifically developed solutions. This has several
drawbacks: (i) it is hard to compare different systems on the same scenario,
as exact details on how the traces are generated are usually not released; (ii)
researchers spend time to code and test traces and trace generators; (iii) there
are no clear reference mobility models that are targeted by the DVE commu-
nity; (iv) it is difficult to reuse traces because usually they are encoded using
specific formats. In order to overcome these drawbacks, we developed trace, a
software library that generate avatar positions according to mobility models. Ini-
tially, we have used trace for internal research (such as in [4,5]) but eventually
we have made it available for the whole DVE community. trace: (i) provides
means to generate traces for a wide variety of DVE-based mobility models; (ii)
allows to export and reload traces for later uses and comparisons; (iii) works in
memory (Java) and with a separate visual tool; (iv) is fully configurable, both
on mobility models and the map; (v) is designed for an easy integration of new
and personalized mobility models; (vi) uses a unified format in all the mobility
models used.

In this paper we present the main features and characteristics of the tool,
unravelling important under-the-hood decisions that makes it easy and practi-
cal to use. We provide an overview of the tool’s API. We show an example of
integration of trace in an existing DVE support, showing how different traces
can be used to test and validate the support.



274 E. Carlini et al.

2 Related Works

Although mobility models have been extensively used, in the last years, in several
applicative domains, and in particular for dve, no tool able to generate multiple
models on demand currently exists. A mobility model is usually implemented and
used in isolation. For instance, mobility models are one of the most important
factors to validate gaming overlays. VON [9], Mopar [18], pSense [16] and Gross
et al. [6] is only a brief list of the most popular P2P game overlays that use just
random based walker models or random walk between hotspots. Those models
are popular thanks to their simplicity: a random walk model only requires a few
lines of code and the community generally accepts it as a model able to describe
several gaming scenarios. However, different and more complex models exist, that
are able describe specific scenarios more precisely. BlueBanana [12] is inspired
by the virtual world defined by Second Life. In this world, players gather around
a set of hotspots, which usually correspond to towns, or, in general, to points of
interest of the virtual world. Using the Least Action Planning trip (lapt) [11]
the avatars select hotspots in close proximity with higher probability. When
an avatar visits an hotspot, it stays there for a time drawn from a truncated-
Pareto distribution and then moves to another hotspot. In rpgm [8], each player
belongs to a group and it moves by following the movement of its group, in order
to model the players habit to gather in teams. Similar to the previous, a subset of
the authors of this work defined a mobility model called wow [3]. wow considers
also hotspots where players are placed at the start of the game and spawn after
death. This model takes into account the team-oriented nature of the scenario,
where moving in group is encouraged by the game semantics. However, an avatar
may decide to move alone by itself, for instance to take the enemy by surprise.
All the above models have been defined and used on specific scenarios. However
we think it is important to unify how the models are generated and how they
are used.

An interesting approach is that of the game trace archive [7], which collects
different real traces with the main aim of defining a common format to collect
and record game traces so that these can be easily used. In April 2016 the archive
includes 12 traces. Even if this environment presents some similarity with our
work, it does not include a mobility model generator.

Triebel et al. [17] study both the mobility of avatars and their interactions.
They compare the movement of avatars guided by mobility models versus move-
ments generated by artificial intelligence techniques. Although the latter provides
better results, using simple mobility model such as random way point and a ran-
dom model based on hot spots, give close results, in particular the one based on
hot spots. Artificial intelligence movements take into account also the context of
the game, must be built specifically for each game and they base their movement
on the mobility models. For all these reasons, although specific solutions may
get marginal improvements on the validation, we think that the generality of the
mobility models is an important way to validate games.



TRACE: Generating Traces from Mobility Models for DVEs 275

3 The Tool

trace is a open-source Java library1 specifically designed for the experimen-
tation of DVEs that generate traces from mobility models, unifies the output
of the models and provides an API to enrich trace with additional mobility
model implementations. In the following of this section we describe the main
characteristics of trace, its architecture and the functionalities provided.

trace has been primarily designed with the idea of focusing on experimen-
tation and evaluation of distributed virtual environments, therefore most of the
terminology used in this section refers to such field. However, we believe that
trace is flexible enough to be used in other contexts in which a number of enti-
ties move across a (virtual) area. In DVEs, avatars are the digital agents of the
users in the virtual environment and are associated with a position in the vir-
tual world. They are the moving unit considered in trace. Other than avatars,
trace gives the possibility to specify static entities, namely passive objects and
hotspots. Passive objects are entities that have a state and can be interacted
by avatars (e.g. doors), but unlike avatars are not controlled by an human user.
The hotspots are those areas of the virtual environment corresponding to places
of interest and where usually is present an higher density of passive and active
entities.

In a nutshell, trace (Fig. 1 provides an high-level overview of trace and
Table 1 provides a list of the most important classes of trace) takes in input
the definition of the virtual environment and the mobility model and outputs

Fig. 1. trace overview: inputs and outputs

1 Publicly available at: https://github.com/hpclab/trace.

https://github.com/hpclab/trace


276 E. Carlini et al.

Table 1. Notable interfaces and classes of trace

AMobilityModel Abstract class to define mobility models. The core method
is move in which the movement of the generic avatar is
defined according to the iteration

AStaticPlacement Abstract class to define placement function for static
entities, such hotspots and passive objects. This class is
called once during the initialization of the virtual
environment

IAvatarNumberFunction Interface to define the amount of avatars at any iteration.
It is called by the engine before the computation of each
iteration to adjust the avatar population

the resulting traces. All the inputs are defined in a configuration file composed
by a list of key-value tuples that contains all the necessary information for the
generation of the traces. Map description defines the rectangular area of the
virtual environment, including its size, hotspots and how to assign the position
of the passive objects. Note, both hotspots and passive objects can influence
the movements of the avatars, but they are not essential for the generation
of the traces. Nevertheless, the placements of hotspots and passive objects is
totally configurable via the class AStaticPlacement, which can be extended to
place static entities according to a user-defined function (e.g. randomly across
the area of the environment or with high probability placement in hotspots) or
by providing a list of points if there is the need to simulate a specific virtual
environment. Avatar number represents the amount of avatars in the virtual
environment. Frequently, DVE frameworks exploits peer-to-peer protocols to
assure scalability and cost effectiveness. In order to validate a framework is
therefore necessary to see how it behaves in scaling up and down, according to the
typical churn that characterizes DVE workloads. trace gives the opportunity
to model the churn with the interface IAvatarNumberFunction, which allows to
define the number of avatars at any iteration. Note that trace also allows for
a fine grained control of the churn, as it is possible to understand which avatars
left (or entered) because trace keeps avatar id consistent across iterations.

The definition of a mobility model is one of the core parts of trace, and can
be done by extending the AMobilityModel interface. A mobility model defines
how a generic avatar shall move within the boundaries of the virtual environment,
and this behaviour is then replicated for all avatars in the DVE. trace consid-
ers discrete time iterations, and at each iteration avatars move according to the
mobility model specified. In particular, during iteration t avatars move indepen-
dently without the knowledge of each other position at iteration t; however they
can have a read-only access to positions of avatars at iteration t− 1. A common
issue when generalizing the generation of traces is that any mobility model can
have its own configuration with specific parameter. trace resolves this issue by
allowing a free definition of the parameters inside the configuration file, leaving
to the developer the responsibility of matching the correct parameter within the



TRACE: Generating Traces from Mobility Models for DVEs 277

implementation of the mobility model. For example, the Blue Banana mobility
model (whose implementation is described in detail in Sect. 4) is heavily focused
on hotspots and therefore define specific properties such as the probability for
an avatar of being inside the area of an hotspot.

According to the configuration file, trace creates the mobility traces, iter-
ation by iteration, completing each avatar movements before dealing with the
next iteration. The MapVirtualEnvironment object stores all the information
about movements of the avatar, hotspots and passive objects. This class can be
accessed in a read-only fashion to be used right away when the generation of the
traces is done contextually to the experimentation. Apart from such in-memory
data structure, trace provides two additional and optional output features,
namely logfile archive and visualizer. These two features can be active at the
same time.

With logfile activated, a dump of VEMap is saved on disk in a format that
represents the movement of all the entities in the virtual environment. Regardless
of the model used, trace builds a compressed archive consisting of the following
files: (i) configuration, which contains all the variables to replicate the scenario;
(ii) avatars, which stores the movement of the avatars; (iii) hotspots, which
stores the position of the hotspots; (iv) objects, which stores the position of the
passive objects in the game; (v) bandwith, which provides statistics regarding
the number of objects in the AoI of each avatar; (vi) aoiStat, which provides
statistics regarding the number of avatars in the AoI of each avatar. The avatars
file contains a snapshot of the position of all the avatars in each time step in a
CSV format containing the following values: time step, unique avatar identifier,
position of the avatar in the map as a couple (x, y). The resulting file can be
loaded at a later time to be used in different experimental evaluation. With the
visualizer activated, trace provides a graphical representation of the avatars
moving across the map. Although this option may slow down the generation of
the traces, it results very useful to tune the parameters of a mobility model in
order to obtain specific behaviour from avatars.

trace comes bundled with the following mobility models already imple-
mented and ready to be used2: (i) Random Way Point [1], (ii) RandomWalk,
(iii) Lapt [11], and (iv) Blue Banana [12]. In order to provide an hand-on overview
on the utilization of trace, the next section describes in details BlueBanana
and how it has been implemented within trace.

4 Case Study: Blue Banana

Avatars move on the map according to realistic mobility traces that have been
computed according to the mobility model presented by Legtchenko et al. [12],
which simulates avatars movement in a commercial MMOG, Second Life3. We
provided a preliminary implementation of this mobility model, as well as a com-
parison with other mobility models in [3], In the model, avatars gather around
2 More mobility models are under development and will be added in the future.
3 http://secondlife.com/.

http://secondlife.com/


278 E. Carlini et al.

Algorithm 1. AMobilityModel.move() implementation: BlueBanana
Input : map: a Map representing the virtual world

t: the current time
avatarList : the avatars position at time t − 1

Output: the position of the avatars at time t
1 List next = avatarList
2 forall Avatar a∈avatarList do
3 State nextState = markovChain.getNextState(a, markovChain.getState(a))
4 if nextState = E then
5 Point current = a.getPosition()
6 next(a) = current.explore()

7 else if nextState = T then
8 Point t = map.getRandomPoint()
9 Point current = a.getPosition()

10 next(a) = current.moveToward(t)

11 else
12 do nothing

13 end

14 end
15 return next

a set of hotspots, which usually correspond to towns, or in general to points of
interest in the virtual world. Each hotspot has a circular area characterized by a
center and by a radius. Traces generation goes through two phases: initialization
and running.

In the initialization phase, the area of the virtual environment is divided in
hotspot area and outland area. The percentage of the hotspot area is defined by
phot and, consequently 1 − phot represents the outland area. The hotspots are
placed randomly in the virtual environment. The number of hotspot is defined
by the parameter Hnum. Their radius is computed such that the total area
covered by the hotspots is in accordance to phot. The parameter pden defines
the probability that an avatar would be initially placed in an hotspot, whereas
1− pden defines the probability for an avatar to be initially placed in outland. If
the avatar is placed in the outland, its position is chosen uniformly at random
on the whole map. Otherwise, an hotspot for the avatar is randomly selected
and the avatar is positioned inside the hotspot. The position inside the hotspot
is chosen by considering a Zipfian distribution, so to ensure an higher density of
players near the center of the hotspot.

The running phase moves the avatars across the virtual environment. The
movements are driven by a Markov chain, whose transition probabilities are
taken from the original paper [12]. The possible states for an avatar is the fol-
lowing:



TRACE: Generating Traces from Mobility Models for DVEs 279

– Halt(H): the avatar remains in place;
– Exploration(E): the avatar explores a specific area. If the avatar is moving

inside an hotspot, the new position is chosen according to a power law dis-
tribution. Otherwise, the new position is chosen at random;

– Travelling(T): the avatar moves straight toward another point in the virtual
environment. The new point is chosen in accordance with pden.

Initially every avatar is in state H. At each step t, the model decides the
new state according to the probability of moving between states defined in the
Markov chain. This mobility model exposes a fair balance between the time spent
by avatars in hotspots and outland.

To integrate such model in trace the following steps are required:

– configuration: it is required to load all the model specific configuration vari-
ables such as phot, Hnum and pden;

– additional functionalities: since this model requires a Markov Chain to move
the avatars between different states, i.e. (H, E, T), we implemented an utility
class to easily know, given a state, which is the next state of the avatar;

– AMobilityModel : the core of the model is the implementation of the AMobil-
ityModel interface. Specifically, it is required to implement the move method
where trace provides the position of the avatars at time t− 1 as well as an
object describing the virtual environment where is possible to find the posi-
tion and size of the hotspots and objects. The model must return the position
of the avatars at time t. Refer to Algorithm 1 to an example of the method’s
definition and implementation.

For what concerns the initialization phase, our implementation at time 0
follows the specification of the initialization phase provided in the original paper.
During the running phase, we generate a new position for each avatar (Line 2)
and the new state of the avatar according to its previous state (Line 3). Based on
the next state, we follow the specification of the model for the Travelling state
(Line 7), Exploration state (Line 4) and Halt state (Line 11). We collect all the
new positions in a list and we return all the new positions (Line 15).

Finally, to use the new implemented model, it is required to modify the config-
uration of trace, giving a name to the new model, for instance “BlueBanana”,
and providing the package and class name where it is implemented. Next, it is
necessary to set, in the configuration, the property “model BlueBanana”, as well
as all the configuration parameters required by the model. The execution will
use the selected model and generate the traces accordingly.

5 Experimental Results

We implemented trace in Java and we make the code publicly available4. For all
the experiments, we considered a virtual environment composed by a squared
region with side having 1500 points. Each avatar has a circular AoI, whose
4 https://github.com/hpclab/trace.

https://github.com/hpclab/trace


280 E. Carlini et al.

radius is 15 points. Each hotspot has a circular shape, whose radius is 100
points. The simulations ran on a machine equipped with Java 7, 128 Gb of
RAM, an AMD Opteron(TM) Processor 6276 with 32 cores @1.4 Ghz. In the
following, we present results showing some properties of the models implemented
in trace. In particular, the avatars’ crowding in the virtual world (Sect. 5.1) and
the estimated bandwidth consumption to transmit objects of the virtual world
(Sect. 5.2). We conclude our experiments with an evaluation of the computational
time to generate a mobility model and the scalability of trace (Sect. 5.3).

5.1 Evaluating the Crowding Generated

With the terms crowding we refer to the evaluation of the number of avatars
present in each avatar’s AoI. This metric assesses how much communication is
required to keep updated the vision of the avatars with respect to the other
players in the game.

Figure 2a shows the average number of avatars in the AoI of each avatar for
all the models produced by trace. On the X axis is represented the number of
avatars present in the virtual world, on the Y axis the average number of avatars
in a AOI. We generate for each model a trace having a number of avatars in the
range [100, 1600]. It is interesting to note that with rpgm we obtain similar
results in all the configurations. This result is expected because we configure
rpgm in order to keep the number of groups equals to 1/20 of the number of
avatars. The two models based on random movements are the ones having the
less number of avatars in the AoI. Instead, lapt is the model having the larger
increase of crowding as the number of avatars grows, because all the avatars
move only between hotspots. With bluebanana this effect is mitigated because
a percentage of the avatars is free to move outside the hotspots.

For what concerns lapt and bluebanana, the models that take in consid-
eration the hotspots, Fig. 2b shows the impact of the number of hotspots using

Fig. 2. Evaluation of Optimizations



TRACE: Generating Traces from Mobility Models for DVEs 281

the same metric of the previous figure. Note the log scale on the Y axis. When
the number of hotspots is kept low, lapt is, in both the configurations, the
model having a larger crowding factor. However, when the number of hotspots
increases, the two models behave similarly.

5.2 Evaluating the Bandwidth to Transmit Objects

In this set of experiments, we evaluate the ability of trace to model the avatars
and objects placement. In particular, when an object enters the AoI of an avatar,
a transmission of the object to the avatar is required, resulting in a bandwidth
consumption. We measure the total number of objects transmitted when increas-
ing the total number of objects in the virtual world. We test the two methodolo-
gies to distribute the objects, respectively the uniformly at random in Fig. 3a,
and higher probability in the hotspots in Fig. 3b. For the uniformly at random
placement, all the models behave similarly and have a linear increase of the
bandwidth with respect to the number of objects. Only lapt have a little more
bandwidth requirement but in the same order of magnitude. Instead, when the
objects are more present in the hotspots area, Fig. 3b, the two models, lapt
and bluebanana, as expected, require more bandwidth, because the avatars
are more present in the hotspots area.

Fig. 3. Evaluation of Bandwidth consumption

5.3 Evaluating the Computational Time and Scalability

Finally, we test the computational time required by trace to generate the traces.
Figure 4a depicts the computational time when requesting a different number
of avatars moving in the virtual world. As expected, the time increases when
increasing the number of avatars but it is acceptable also with a large num-
ber of avatars, as well as 51 200 avatars. All the mobility models behaves simi-
larly. Due to this, we perform the scalability of trace only with the rw model



282 E. Carlini et al.

Fig. 4. Evaluation of computational time

(we confirm that with other models the shape of the curve is identical). We are
able to test our tool with a scenario having a number of cores in the range [1, 32].
We obtain a good scalability of trace. For instance, with 8 cores we obtain a
speed-up of 6.67 to a maximum of 8 and with 12 cores a speed-up of 12.21 to a
maximum of 16.

6 Conclusions

This paper described the design and the main features of trace, a software
toolkit for the generation of mobility traces targeting DVEs. We showed that is
possible to implement a mobility model and create personalized mobility traces
with few lines of code, by extending the described programming interface. trace
is able to manage thousands of avatars concurrently, and its experimental evalua-
tion showed its good scalability when multiple cores are used for the generation of
traces. In conclusion, we believe that trace can be an effective tool to facilitate
the evaluation of DVEs frameworks and to implement effective mobility models.
In the future, we plan to extend the tool by providing even more options for
the generation of traces, as for example an command-line interface to generate
traces in a programmatic way.

References

1. Bai, F., Helmy, A.: A Survey of Mobility Models. Wireless Adhoc Networks, vol.
206. University of Southern California, USA (2004)

2. Bharambe, A., Douceur, J.R., Lorch, J.R., Moscibroda, T., Pang, J., Seshan, S.,
Zhuang, X.: Donnybrook: enabling large-scale, high-speed, peer-to-peer games.
ACM SIGCOMM Comput. Commun. Rev. 38(4), 389–400 (2008)

3. Carlini, E., Coppola, M., Ricci, L.: Evaluating compass routing based aoi-cast by
mogs mobility models. In: Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques, pp. 328–335. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering) (2011)



TRACE: Generating Traces from Mobility Models for DVEs 283

4. Carlini, E., Dazzi, P., Mordacchini, M., Lulli, A., Ricci, L.: Community discov-
ery for interest management in DVEs: a case study. In: Hunold, S., Costan,
A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V., Var-
banescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander, M. (eds.)
Euro-Par 2015. LNCS, vol. 9523, pp. 273–285. Springer, Cham (2015). doi:10.
1007/978-3-319-27308-2 23

5. Carlini, E., Ricci, L., Coppola, M.: Flexible load distribution for hybrid distributed
virtual environments. Futur. Gener. Comput. Syst. 29(6), 1561–1572 (2013)

6. Gross, C., Lehn, M., Münker, C., Buchmann, A., Steinmetz, R.: Towards a com-
parative performance evaluation of overlays for networked virtual environments.
In: 2011 IEEE International Conference on Peer-to-Peer Computing (P2P), pp.
34–43. IEEE (2011)

7. Guo, Y., Iosup, A.: The game trace archive. In: Proceedings of the 11th Annual
Workshop on Network and Systems Support for Games, p. 4. IEEE Press (2012)

8. Hong, X., Gerla, M., Pei, G., Chiang, C.C.: A group mobility model for ad hoc
wireless networks. In: Proceedings of the 2nd ACM International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 53–60.
ACM (1999)

9. Hu, S.Y., Chen, H.F., Chen, T.H.: VON: a scalable peer-to-peer network for virtual
environments. IEEE Netw. 20(4), 22–31 (2006)

10. Kavalionak, H., Carlini, E., Ricci, L., Montresor, A., Coppola, M.: Integrating peer-
to-peer and cloud computing for massively multiuser online games. Peer-to-Peer
Netw. Appl. 8(2), 301–319 (2015)

11. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: a new mobility model for
human walks. In: INFOCOM 2009, pp. 855–863. IEEE (2009)

12. Legtchenko, S., Monnet, S., Thomas, G.: Blue banana: resilience to avatar mobility
in distributed MMOGs. In: 2010 IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp. 171–180. IEEE (2010)

13. Nae, V., Prodan, R., Fahringer, T.: Cost-efficient hosting and load balancing of
massively multiplayer online games. In: 2010 11th IEEE/ACM International Con-
ference on Grid Computing (GRID), pp. 9–16. IEEE (2010)

14. Ricci, L., Carlini, E.: Distributed virtual environments: from client server to cloud
and P2P architectures. In: 2012 International Conference on High Performance
Computing and Simulation (HPCS), pp. 8–17. IEEE (2012)

15. Ricci, L., Carlini, E., Genovali, L., Coppola, M.: AOI-cast by compass routing in
delaunay based DVE overlays. In: 2011 International Conference on High Perfor-
mance Computing and Simulation (HPCS), pp. 135–142. IEEE (2011)

16. Schmieg, A., Stieler, M., Jeckel, S., Kabus, P., Kemme, B., Buchmann, A.: pSense-
maintaining a dynamic localized peer-to-peer structure for position based multicast
in games. In: Eighth International Conference on Peer-to-Peer Computing P2P
2008, pp. 247–256. IEEE (2008)

17. Triebel, T., Lehn, M., Rehner, R., Guthier, B., Kopf, S., Effelsberg, W.: Generation
of synthetic workloads for multiplayer online gaming benchmarks. In: Proceedings
of the 11th Annual Workshop on Network and Systems Support for Games, p. 5.
IEEE Press (2012)

18. Yu, A.P., Vuong, S.T.: MOPAR: a mobile peer-to-peer overlay architecture for
interest management of massively multiplayer online games. In: Proceedings of the
International Workshop on Network and Operating Systems Support for Digital
Audio and Video, pp. 99–104. ACM (2005)

http://dx.doi.org/10.1007/978-3-319-27308-2_23
http://dx.doi.org/10.1007/978-3-319-27308-2_23

	TRACE: Generating Traces from Mobility Models for Distributed Virtual Environments
	1 Introduction
	2 Related Works
	3 The Tool
	4 Case Study: Blue Banana
	5 Experimental Results
	5.1 Evaluating the Crowding Generated
	5.2 Evaluating the Bandwidth to Transmit Objects
	5.3 Evaluating the Computational Time and Scalability

	6 Conclusions
	References


