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Abstract. The purpose of this study is to identify strengths and weaknesses of
an eye-gaze input system. The pointing performance of an eye-gaze input, such
as reaction time and accuracy, were compared to the performance of a mouse
input. Operator’s sensitivity (d’), bias () and NASA-TLX were used as metrics
for performance assessment during a gauge monitoring task. The results indi-
cated that there was a significant difference in reaction time between a mouse
input and eye-gaze input system. The participants who used a mouse as their
input device showed more miss responses. However, the eye-gaze device users
had more false-alarm responses. For workload, there was no significant differ-
ence between the eye-gaze input system and the mouse input system. The
findings from this study showed that an eye-gaze system is favorable to the
operations requiring fast human reactions and less sensitivity on false. The study
provided deeper insight into user behavior regarding an eye-gaze input system.

Keywords: Eye-gaze input system + Visual search task - Human-in-the-loop
simulation - Human performance - And workload

1 Introduction

There are numerous input systems, such as a mouse, multi-touch, and voice, in
human-computer interaction (Bai et al. 2014). Among them, an eye-gaze system is one
of the advanced systems (Chandra et al. 2015) and become more natural and
non-intrusive recently (Chen and Ji 2015). One of the benefits of using an eye-gaze
input system is that the system can quickly reflect human cognitive processes. For that
reason, many researchers have studied an eye-gaze input system and found the impacts
on pointing performance using eye-gaze input system (Jacob and Karn 2003; Murata
et al. 2014; Murata et al. 2012; Sibert et al. 2001). However, they have not considered
the practical usability of the eye-gaze input system. For example, reaction time,
accuracy and mental workload in a dynamic control environment have not yet been
examined until now.

In this study, the pointing performance of an eye-gaze input system was compared
to a mouse input system. The time window-based human-in-the-loop (TWHITL)
simulation (Kim et al. 2014) was used as a tool to collect accurate participant responses
corresponding to the simulation events. Operator bias  and sensitivity d’ (Lynn and
Barrett 2014; Maniscalco and Lau 2012) were calculated by using the participant’s
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outcomes to compare accuracy between an eye-gaze input and mouse input system.
During the experiment, the participants’ mental workload was also measured by
NASA-TLX. It is one of the well-known metrics for the mental workload in a dynamic
task environment (Bodala et al. 2014; De la Torre et al. 2014).

The key research question for this study was: “how do the participants perform the
TWHITL simulation differently when they use an eye-gaze input system compared to a
mouse input system?”

We hypothesized that there was no difference in reaction time between a mouse
input and an eye-gaze input. The response times from both input systems were
expected to be similar when the participants experienced same stimuli during the task.
Second, there was no significant difference in accuracy between a mouse input and an
eye-gaze input. Finally, there was a significant difference in mental workload between a
mouse input and eye-gaze input system. The mental workload of using an eye-gaze
input system is expected to be higher than the workload of using a mouse input system.

2 Method

2.1 Apparatus

For the experiment, we selected a desk-mounted eye tracker Tobii EyeX Dev Kit (see
Fig. 1). There were three synced infrared sensors in the Tobii EyeX sensor. Based on
the angle and glint of the operator’s eye, Tobii Eye X device calculated where he or she
is looking at during the experiment.

Fig. 1. Tobii EyeX Dev Kit

During the experiment, the visual image of flow, level, pressure, and temperature
gauge shapes from the Visual Thesaurus as the underlying design of the gauge (Noah
et al. 2014; Tharanathan et al. 2010). The participants were asked to acknowledge
changes in the current state of all gauges by clicking the button corresponding to the
gauge. Table 1 shows the more details of flow, level, pressure, and temperature gauge
shape.
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Table 1. Gauge shape and region

Event Flow Level Pressure  Temperature

NORMAL , U

2.2 Participants

A total of twenty-four participants were recruited from the University of Missouri.
Participants’ age ranged from 18 to 28 (Mean = 21.4, SD = 1.92). First of all, par-
ticipants were required to fill out a consent form and a demographic questionnaire. 90%
of participants were right-handed, which mean that the majority of the participants used
their right hand to use a mouse or keyboard. The participants were asked to use their
input device to point and click alternately between the two presented target gauges as
rapidly and accurately as they could.

2.3 Experimental Setup

There were two groups in this experiment (Group A: mouse input system and Group B:
eye-gaze input system). For both groups, the subjects were seated roughly 60 cm in
front of a 21.5” LCD monitor screen with a resolution of 1024 x 768. The experi-
mental setup is illustrated in Fig. 2.

The participants took a pre-test before the experiment to determine their computer
experience level and verify their eyesight. After that, a nine-points calibration was
performed for the participants who assigned in the Group B. So that, they could control
the eye-gaze input system sit without discomfort. During the calibration, they should
not move their head. After the calibration, they can move their heads gently. This
process is good for the accuracy of the gaze and fixation.
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Fig. 2. Experimental setup

2.4 Study Design

The TWHITL gauge monitoring simulation is an interactive, real-time system (Kim
et al. 2014). During the test, if a gauge value went beyond the normal range, the user
needed to respond the change by clicking the button corresponding to the gauge. For
the Group A, they could click the button as same as when they used a normal mouse
device. For the Group B, however, the participants must look at the gauge first and
click “Alt” button on the keyboard. The green box (see Fig. 3) represented the current
location of the eye-gaze cursor. The simulation began with a normal condition for all
44 gauges, which include 11 flow gauges, 11 level gauges, 11 temperature gauges and
11 pressure gauges. The width of each gauge was 200 pixels, and the amplitude
between abnormal gauges was different based on the given scenario conditions.
Multiple events were scheduled in each scenario. Each event was designed based on the
index of difficulty (ID) ranges from 1.0 to 4.0. By using the simulation, we collected
the reaction time, task performance and cognitive workload of both groups. The data
was used to evaluate the participants’ ability to detect abnormal events in a continuous
monitoring task.

As seen in Fig. 4, if a participant detected the abnormal condition gauge within the
event duration time, the participant action would change the status of the gauge from an
abnormal condition to a normal condition. This action was recorded as “Hit.” If a
participant failed to detect the abnormal status of this gauge, it would move to the alarm
condition. If the participant also failed to detect the alarm condition within the full
event duration time, then this one would be recorded as “Miss.”
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Fig. 4. Participant response

3 Procedure

The experiment began with a briefing on the TWHITL simulation. The purpose of this
presentation was to explain the primary interface to the participants. During the pre-
sentation, which lasted approximately 10 min, they were allowed to ask any questions.
Then, the participants performed a practice session. The training course was designed
to teach participants how to respond to abnormal or alarm events. For the Group B, the
participants needed to be trained how to control the eye-gaze input system.

The primary goal of this task was to compare the ability to detect abnormal situation
between a mouse and eye-gaze input system and understand how participants used the
two systems differently. The participants were free to ask questions throughout the
practice tests. This training session lasted five minutes. The final step of the experiment
was data collection. Each participant engaged in six scenarios. All participants were
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randomly assigned to six different scenario orders. Each test scenario lasted approxi-
mately eight minutes. After they had finished one scenario, the participants were asked
to answer a NASA-TLX questionnaire which consisted of six questions concerning the
more important contributor to the workload for this task. The participants were not
allowed to ask any questions during the data collection. The total experiment time was
approximately 60 min.

4 Data Analysis

4.1 Fitts’ Law and Reaction Time

Fitts’ law (1954) has been used widely to understand human responses related to
different input systems (Burstyn et al. 2016; Forlines et al. 2007). It is primarily used in
human—computer interaction and human factors as a descriptive model of human
movement. This scientific law predicts that the time required to move the object to a
target area is a function of the relation between the distance from the start to the target
and the width of the target. The Eq. 1 shows how to calculate a difficulty level of a
given task, called index of difficulty (ID). A is the distance or amplitude between the
targets, and W is the width of the target. The bigger ID value represents the more
difficult task to perform. Also, we analyzed the relation between the reaction time and
ID by using the Eq. 2, where a and b are empirically derived constants.

ID = log,(2A/W) (1)

T(milliseconds) = a+blog,(2A /W) (2)

4.2 Sensitivity (D’) and Operator Bias ()

Accuracy was measured by operator’s sensitivity (d’) and bias (B). Estimates of the
operator’s sensitivity and bias were collected for the participant performance during the
TWHITL simulation (Kim et al. 2015). The sensitivity refers to how well the operator
discriminates the signal from the noise (Lerman et al. 2010). Thus, d’ was calculated by
subtracting the z-score that corresponds to the false alarm rate from the z-score that
corresponds to the hit rate (Macmillan 1993).

Sensitivity(d') = |Z(Hit)—Z(False Alarm)] (3)

The operator’s bias is the likelihood ratio of human response related to the presence
of a signal. Z (Hit) is the z-score which corresponds to a hit rate, whereas Z (False
Alarm) is the score which corresponds to a false alarm rate (Stanislaw and Todorov
1999).

Bias(B) = P(ordinate of Hit) /P(ordinate of false alarms) 4)
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4.3 Mental Workload

NASA-TLX is a six-dimensional scale designed to obtain mental workload during a
task or immediately afterward (Hart 2006). It has been applied within numerous
domains, including civil and military aviation, driving, nuclear, power plant control
room operation and air traffic control (Caldwell 2005; Erzberger 2005; Hwang et al.
2008; Kim et al. 2016; Lauer et al. 2007; Palinko et al. 2010; Wiegmann and Shappell
2001). Over the past 30 years, the research has revealed the NASA-TLX approach to be
a tool which is easy to use and reliable for experimental manipulations.

5 Results

Figure 5 showed the reaction time comparisons between a mouse input and an
eye-gaze input system. The horizontal axis displays two input systems and each index
of difficulty (ID). Seven levels of ID were tested during the experiment (ID = {1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0}). The vertical axis presents the reaction time. Reaction time was
charted as a function of different input systems and index of difficulty based on Fitts’
law model.

Interval Plot of Reaction Time vs ID (Mouse vs Eye)
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Fig. 5. Interval plot of reaction time vs ID (Mouse vs Eye)

Mouse input system:

RT = 327.4+130.11D (R* = 40.2% P <0.001) (5)
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Eye-gaze input system:
RT = 325.2+55.86ID(R2 =9.4%P<0.001) (6)

A two-way ANOVA general linear model was used (factor A: input systems, factor
B: index of difficulty), which revealed that there were significant differences for
reaction times between the input systems (F(1,11) = 10.11, p = 0.002), and index of
difficulty (F(6,66) = 5.89, p < 0.001).

In Table 2, the mean reaction time is illustrated as a function of different IDs for the
mouse and eye-gaze input systems, respectively. The smallest reaction times (ID 1.0)
were 284 ms (milliseconds) and 152 ms for the mouse and eye-gaze input system,
respectively. Additionally, the smallest reaction times (ID 4.0) were 579 ms and
267 ms for the mouse and eye-gaze input system, respectively. The average reaction
time difference between the mouse and eye-gaze input systems is 193.76 ms.

Table 2. Reaction time (milliseconds) vs index of difficulty (Mouse vs Eye-gaze)

ID | Mouse Eye-gaze

Mean |STD |MIN |Mean |STD |MIN
1.0438.88 | 108.14 | 284 |376.92|176.29 | 152
1.5]501.32 | 132.73 | 317 |395.22|159.22| 175
2.0(584.36 | 137.31 | 341 |441.41|140.35|187
2.5]683.93 | 136.20 | 452 | 462.55|145.00 | 170
3.0(723.14 | 138.57 | 478 |520.44|149.95| 171
3.5[769.05|121.24 | 510 |506.98 | 128.71 | 188
4.0 881.53|168.21 | 579 |522.35|102.88 | 267

In Table 3, a one-way (input system) ANOVA was conducted on the reaction time
and revealed no significant accuracy (p = 0.992, F(1, 23) = 0) between the different
input systems. However, the result revealed significant differences in operator bias
(p < 0.001, F(1, 23) = 40.69) between the mouse and eye-gaze input systems.

Table 3. Sensitivity (d’) and bias () detection (Mouse vs Eye-gaze)

Mouse Eye-gaze

Mean |STD Mean |STD

d’| 3.3922| 0.6366| 3.3943| 0.7009
B169.67 2938 [21.13 2294

In Table 4, a one-way (input system) ANOVA was conducted on the different input
systems’ mental workload and no significant differences (F(1, 23) = 0.30, p = 0.587) in
the mental workload index between mouse and eye-gaze input systems were detected.
The mean of the mental workload indices are 38.64 and 35.43 for mouse and eye-gaze
input systems, respectively.
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Table 4. Mental workload rating (Mouse vs Eye-gaze)

Group Index | STD |F Value P Value
Mouse | 38.64 | 20.85 | F(1, 23) = 0.30 | 0.587
Eye-gaze | 35.43 | 19.82

6 Discussion

The objective of this study was to compare the pointing performance between a mouse
input and an eye-gaze input. By using reaction time (millisecond), sensitivity (d’),
operator’s bias (B), and NASA-TLX, we were able to analyze participants’ ability to
detect abnormal events during the experiment.

6.1 Reaction Time

The results (see Fig. 5) showed that the index of difficulty (ID) influenced the reaction
time of both input systems. However, according to the regression analysis, the model
from the eye-gaze system was significantly different than the model from the mouse
input. The Fitts’ law could explain the regression model of the mouse input. The
reaction time increased proportionally as ID increased. However, the model from the
eye-gaze system was not. The influence caused by ID was compared to the mouse
input. We also compared the reaction time difference between the mouse and eye-gaze
system times for each ID level in Table 2. The results showed that the reaction time of
the eye-gaze system was always faster than the mouse input system. The average
reaction time difference from the easiest event (ID = 1.0) to the hardest event (ID =4.0)
was only 146 ms for the eye-gaze system. All results pointed out that there was a
significant difference between the eye-gaze input and traditional mouse input system in
reaction time. Thus, one of our hypotheses: there is no significant difference in reaction
time between mouse and eye-gaze systems should be rejected.

6.2 Accuracy

The results (see Table 3) showed that there was no significant difference in sensitivity
between the mouse and eye-gaze system. Thus, the another hypothesis: there is no
difference in accuracy between the mouse and eye-gaze system is proven. However, the
results also revealed different operator biases between the mouse and eye-gaze system.
The high B average represents that participants allowed more misses to avoid false
alarms. This means that the mouse input system has more miss responses in com-
parison to the eye-gaze system, and the participants were more conservative when they
experienced abnormal events. However, the users of the eye-gaze system made false
alarm responses more often compared to the mouse input system, which means that the
participants were more liberal when they made decisions about the abnormal events.

As illustrated in Fig. 6, the process concerning a stimulus response was faster, and
the user response path was relatively short for the eye-gaze input system compared to
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Fig. 6. Different responses procedure (Mouse vs Eye-gaze)

the mouse input system. The findings indicated that participants in the Group B did not
need to navigate the input device to perform the given task. They only needed to pay
attention to the abnormal gauges to reach out the targets and click them. However, the
participants in the Group A needed to find the current position of the mouse after they
discovered the abnormal gauges on the screen, and moved to the target location.
Therefore, the probability of judging the stimulus as a signal was high when the
participants used the eye-gaze input system.

6.3 Mental Workload

Although we hypothesized that the eye-gaze system would increase the user’s mental
workload compared to the mouse input system, it turned out that there was no workload
significance between the mouse and eye-gaze system (see Table 4). Hence, our
hypothesis regarding the workload should be rejected.

7 Conclusion and Future Work

7.1 Conclusion

In this research, we verified and confirmed the following three hypotheses. Firstly,
there was a significant difference in reaction time between mouse and eye-gaze input
system. The reaction time of the eye-gaze input system was faster than that of the
mouse input, and was less influenced by the ID. According to the regression model, the
mouse input system was more predictable as a linear pattern, but the eye-gaze input
system was not. Secondly, there was no difference in accuracy between the mouse
system and the eye-gaze system. The participants in both groups had a similar ability to
detect the abnormal events during the experiment. It means that the eye-gaze input
system could perform faster at the same accuracy level. Moreover, the probability of
judging the stimulus as a signal was high for the eye-gaze input system, and its operator
bias B values were lower than the mouse input system. This means that the eye tracking
system users might be more liberal to make their decision compared to the mouse
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system users. However, the eye-gaze input system was easier to make false alarm
responses. Thus, the findings recommend us to use either input system based on the
cost of human errors: miss and false alarm. Finally, there was no significant difference
in mental workload between the mouse and eye-gaze input system based on
NASA-TLX results. The workload caused by using the eye-gaze system was not
different than the mouse input system.

In conclusion, the eye-gaze input system can be regarded as a better input method
for human computer interactions. It is confirmed that the eye-gaze system users’ per-
formance accuracy and mental workload were similar to the traditional mouse input
system. However, the eye-gaze input system was better than the mouse input system
with regard to the reaction time. Therefore, the eye-gaze system is favorable to the
tasks, which require fast human responses and charge lower false alarm cost compared
to the cost of miss.

7.2 Future Work

For future research, it is beneficial to explore how exactly the index of difficulty
(ID) influences the response of the eye-gaze input system. Developing a generalized
and extended model which can describe the relationship between reaction time and the
ID for the eye-gaze system. Furthermore, it is necessary to study how to reduce the
false alarm rate when the users use the eye-gaze system. Finally, for mental workload,
different methods, such as pupil dilation, electroencephalogram, and functional mag-
netic resonance imaging, could be used as tools to measure the workload caused by
various input systems.
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