
Real-Time Visualization of the Degree of Indoor
Congestion with Smartphone-Based

Participatory Sensing

Tomoya Kitazato(B), Kyoichi Ito, Keisuke Umezawa, Masaki Ito,
and Kaoru Sezaki

Institute of Industrial Science, The University of Tokyo,
Komaba 4-6-1, Meguro, Tokyo, Japan

{t-kitazato,k-ito,k-umezawa}@mcl.iis.u-tokyo.ac.jp,
{mito,sezaki}@iis.u-tokyo.ac.jp

Abstract. Real-time visualization of the degree of indoor congestion
is very useful to improve users’ experience in public spaces such as an
event space or a shopping mall by helping users to identify crowded
places to avoid congestion. However, it is difficult to develop a low-cost
congestion visualization system. We designed a low-cost system for real-
time visualization of indoor congestion degree with smartphone-based
participatory sensing. The system is cost-effective, using Wi-Fi access
point fingerprint-based indoor localization and Bluetooth-based conges-
tion sensing with smartphone-based participatory sensing. In this paper,
we develop a prototype of the proposed system. Moreover, we evaluate
the prototype system from two aspects: first, how low is the cost of the
system for sensing; second, how close is the relationship between conges-
tion and the number of Bluetooth devices. We experimented in two places
and found that the proposed system is cost-effective and the number of
Bluetooth devices does have a relationship with the degree of congestion.

Keywords: Mobile computing · Participatory sensing · Bluetooth ·
Indoor localization

1 Introduction

Real-time visualization of the degree of indoor congestion is very helpful to
improve users’ experience in public spaces such as an event space, and it is also
helpful for managers trying to equalize the density of people. In a public space,
people gather in some popular shops or exhibition booths and shape the crowd
around them. This crowd can often be the cause of trouble. For example, because
of the narrow space available for walking, pedestrians are prone to falling over,
and there is a high possibility that others will be tripped. If the degree of indoor
congestion is visualized, users can identify crowded places to avoid congestion,
and they can also reduce their waiting times. Moreover, managers of public
facilities can equalize the density of the people to prevent problems caused by
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crowding. Therefore, visualization of the degree of indoor congestion helps in
keeping public spaces safe and in improving users’ experience and management
of facilities.

However, visualization of indoor congestion is difficult because it costs too
much. If we install fixed sensors in all areas of a public space, the costs would be
too high. For example, when the event space covers an area of 20,000m2, if the
manager wants to sense congestion in each 400m2, 50 sensors would be needed.
It is also a difficult task to install sensors in all areas. Sensors would need to
be placed in each individual part and there would also be the need to calibrate
sensors in some cases. This process would cost much time and human resources.
Moreover, the layout of an event space changes frequently because of the changes
of the contents. Sensors would need to be reinstalled to manage these frequent
changes.

As mentioned above, visualization of the degree of congestion is helpful, but
it is difficult because of the large costs involved. Hence, we propose a low-cost
method for the visualization of the degree of indoor congestion with smartphone-
based participatory sensing in this paper. In our proposal, we use the smart-
phones of the visitors in an event space as sensors and scan Bluetooth devices
and Wi-Fi access points around them. Then, the degree of congestion of each
area can be visualized from the scanned data.

The contributions of this work are:

– the proposal of a low-cost system for the visualization of the degree of indoor
congestion;

– the development of a prototype system; and
– the experimental evaluation of the proposed system.

The rest of the paper is organized as follows. Section 2 highlights the related
work and Sect. 3 presents the requirements of the low-cost visualization system.
Section 4 shows how we designed the system. Section 5 demonstrates the imple-
mentation of the prototype system and an evaluation is given in Sect. 6. Finally,
Sect. 7 concludes our paper.

2 Related Works

Sensing pedestrian flow and pedestrian density has attracted a lot of attention,
and it is an active area of study and development. Previous research has devel-
oped methods of sensing pedestrian flow and pedestrian density, but suitable
methods for short-term low-cost sensing are limited.

The service-based visualization of the degree of congestion has already been
published by some enterprises, because of the spread of smartphones [1,2]. Users’
smartphones upload their positions obtained from a global positioning system
(GPS) sensor when users use the map services, then the server of the enterprise
processes the data and visualizes congestion. However, we cannot use GPS in an
indoor environment because GPS signals are weakened by interference from the
roofs or walls of buildings.
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Light detection and ranging (LiDAR)-based pedestrian-flow sensing is an
example method of pedestrian-flow sensing [3,12]. In [3], the degree of congestion
of the entire event space is clearly visualized. However, LiDAR is too expensive
that to cover the whole space. Moreover, LiDAR is not good at responding to
changes of the layout in spaces, because LiDAR detects pedestrians by detecting
the difference between the obtained image and the background image of the
space. Therefore, we need to prepare a background image when we change the
layout of the space.

Audio-based and acceleration-based congestion classification is useful for esti-
mating the smoothness of pedestrian flows [6]. They proposed a method to
measure congestion by collecting sound and the acceleration of surroundings
from smartphones. In their research, they analyzed the relationship between
step intervals and congestion and the relationship between surrounding sounds
and congestion by fast Fourier transformation (FFT). However, it is difficult to
use this method in our case, because we need to measure the congestion in a
public space such as an event space. Here, the sounds and the exhibition style
are different in each case, for example, it is very loud in a music concert, but it
is very quiet in a museum.

Bluetooth-scan-based sensing is the method we have chosen. In recent years,
many Bluetooth devices have entered daily life such as smartphones, portable
headsets, and wearable bands. A previous experiment in scanning Bluetooth
devices in a museum has succeeded in analyzing the flow of visitors [11]. The
authors installed fixed sensors at seven significant places in the museum and
collected the MAC address emitted by Bluetooth devices. They reported that
about 8.2% of visitors activated Bluetooth on their mobile device while in the
museum. Moreover, previous research used the number of devices, the mean
signal strength, and the variance of the signal strength of scanned Bluetooth
devices for categorizing the degree of congestion [10]. They also classified the
degree of congestion using a classifier tree with six features of the scanned Blue-
tooth devices [9]. This research succeeded in classifying crowd density with over
75% recognition accuracy on seven discrete classes.

As we have shown above, there are various methods for congestion sensing.
Many of these methods achieved congestion sensing, but only the Bluetooth-
based sensing is useful for our goal of a low-cost system of real-time visualization
of indoor congestion. A detailed discussion of the method of selection for sensing
is described in Sect. 4.3.

3 Requirements

The method for congestion sensing in public space needs to be low cost. In
public spaces, we need frequent preparation for sensing because the layout of
the public space can often change. For example, in a museum, the contents of a
special exhibition change about every 3 months. In an exhibition hall, the layout
changes more frequently. In extreme cases, changes can occur every day. Thus,
we consider a method to reduce the costs of sensing.
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We focused on three aspects of costs for sensing: time, money, and labor.
Time means the time required for preparation and sensing. Installing sensors in
all areas of the event space would require a large amount of time. Some types of
sensors also need calibration for sensing. Money means the costs of purchasing
and installing sensors. For example, LiDAR is a very elaborate sensor, but it
often costs over US$5000. In addition, if we need to install many sensors in the
space, these costs are multiplied. We also want to reduce the labor required for
preparation and sensing. Installing sensors in a large space can require a lot of
labor, and installing sensors in areas such as the ceiling can be a difficult task.

4 System Design

4.1 System Overview

In this section, we design the real-time visualization system of the degree of
indoor congestion. In our system, there are three components: preparation for
indoor localization, data collection, and visualization, as shown in Fig. 1. To
localize sensing points, we need to prepare for indoor localization with methods
such as an installation of sensors and calibration of sensors. After that, partic-
ipants collect data to visualize congestion. Then, the system rotates the cycle
of collection and visualization. We describe the design of each of these three
components.

Fig. 1. Process of visualization

4.2 Preparation for Indoor Localization

We decided to adopt a Wi-Fi fingerprinting-based indoor localization method
for the system because of its low-cost installation. In a fingerprint-based app-
roach, we make a fingerprint by recording the received signal strength indicators
(RSSIs) of Wi-Fi access points at each area in advance. We can localize the object
by comparing the RSSIs of Wi-Fi access points with the fingerprint. Hence, we
only need to scan Wi-Fi access points in each area in this method when we
prepare for indoor localization.

There are two reasons why we selected the Wi-Fi access points fingerprint-
based approach for localization. First, some methods need some installation for
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indoor localization, but in the Wi-Fi access points fingerprint-based approach,
Wi-Fi access points are often already installed in public spaces. Second, in this
method, we do not need to know the positions of Wi-Fi access points, unlike in
other Wi-Fi-based methods.

Indoor localization is an area of active research. However, some methods need
to install expensive sensors and some methods need to calibrate or replace sensors
frequently. There are four approaches to Wi-Fi-based indoor localization: trian-
gulation by the signal strength of multiple access points, fingerprinting of the
signal strength of access points, triangulation by the angle of arrival of signals,
and triangulation by the time of flight of signals. Recent research has realized
decimeter-level indoor localization [5,7]. As mentioned previously, unlike in other
Wi-Fi-based approaches, in a fingerprint-based approach we do not need to know
the positions of Wi-Fi access points. Radiofrequency identifiers (RFIDs) are also
used for indoor localization. In the RFID-based method, reference RFID tags
are deployed, and a reader can measure the signal strength from RFID tags.
Then we can locate the position of the target RFID tag by comparing the signal
strength of the target RFID tag with those of reference RFIDs. RFID-based
localization has also realized decimeter-level localization [8]. A RFID tags are
cheap sensors, but we would need to fix many reference RFID tags before local-
ization. LiDAR and cameras can also be used for localization. They can localize
pedestrians without pedestrians holding any devices, but they need calibration
for installation and they are expensive.

4.3 Data Collection

In the data-collection phase, we need to collect congestion data and location
data to visualize the degree of indoor congestion. We can collect location data
by just scanning Wi-Fi access points. Hence, we need to consider a method to
obtain congestion data.

We adopted a Bluetooth-based method for congestion sensing because of its
low cost and precision. Bluetooth is a wireless communication technology at
2.4 GHz and is implemented on many devices such as smartphones, portable
audio players, and smart watches. A Bluetooth device can scan other devices on
its protocol and we now introduce the scanning process. The core architecture of
Bluetooth is composed of three elements: controller stack, host stack, and host–
controller interface (HCI). The controller stack defines the lower-level layers as
a physical protocol including the physical layer and radio transceiver, and the
host stack defines the higher level layers as logical protocols including application
programming interfaces (APIs) and profiles. HCI delivers data between the host
stack and controller stack. Bluetooth Low Energy (LE) is the controller stack
that is available from Bluetooth version 4, and this protocol has no compatibil-
ity with legacy Bluetooth (the Basic Rate/Enhanced Data Rate (BR/EDR)). In
Bluetooth BR/EDR, to discover other devices, a Bluetooth device can broadcast
inquiry messages, and a device that can be discovered responds to inquiry mes-
sages with its ID. In this way, a Bluetooth device can discover nearby devices in
BR/EDR. In Bluetooth LE, a Bluetooth device can enter the advertising mode
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to show its existence, and other devices can scan the advertising device by enter-
ing the scanning mode. Then, Bluetooth devices can also discover nearby devices
in LE [4]. Bluetooth devices are categorized into three classes by their power:
devices that can communicate within 1 m are categorized as class 3, within 10 m
as class 2, and within 100 m as class 1. Almost all smartphones and headsets are
class 2, so they can communicate within 10 m.

Now, we compare methods for congestion sensing from the five points of view
of time cost, money cost, labor cost, indoor support, and precision of sensing
congestion in public spaces. We compare service-based (with GPS), LiDAR-
based, audio- and acceleration-based, and Bluetooth-based. GPS is a low-cost
sensor in participatory sensing because we do not need to install sensors or pur-
chase any equipment owing to pedestrians’ smartphones already including GPS
modules. However, we cannot use GPS indoors, so the service-based method is
difficult to adapt. The LiDAR-based method is not low cost because the sen-
sors need to be installed and calibrated. Moreover, LiDAR sensors are far too
expensive. The audio- and acceleration-based method is low cost and supports
indoor sensing. However, as we mentioned in Sect. 2, this method is specialized
to detecting the smoothness of pedestrian flow, so it is not suitable for our pur-
pose. The Bluetooth-based method is good for low-cost sensing in participatory
sensing because pedestrians’ smartphones already have Bluetooth modules, so
we do not need to prepare additional equipment. Moreover, the Bluetooth-based
method is available indoors and the precision of congestion estimation is good.
Thus, we consider that the Bluetooth-based method with participatory sensing
is the best method of congestion sensing. In Table 1 we present a comparison of
the sensing methods.

Table 1. Comparison of methods for our use

Method Time cost Money cost Labor cost Indoor support Precision

Service (with GPS) ✓ ✓ ✓ ✗ ✗

LiDAR ✗ ✗ ✗ ✓ ✓

Audio & Acceleration ✓ ✓ ✓ ✓ ✗

Bluetooth ✓ ✓ ✓ ✓ ✓

4.4 Visualization

In the visualization phase, we considered two elements. First, we visualize the
congestion map on the participants’ smartphones. Second, the server interpolates
the congestion data if there is no data from some areas. In participatory sensing,
it is difficult to rally participants without rewards. So we decided to visualize the
congestion map on participants smartphones. Participants can receive beneficial
information as the reward for participation. It is possible that there is no con-
gestion data from some areas, so we decided to interpolate missing data using
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a spatiotemporal data interpolation method. There are labor costs involved if
someone needs to collect data in each period. Congestion data are spatiotemporal
data, so we consider that we can interpolate data with some methods.

5 Implementation

5.1 Overview of Our Prototype System

In this section, we describe the details of our implementation. The system is
composed of two elements: a smartphone application and a server application.
The smartphone application is implemented as an Android application. This
application manages the scanning of Wi-Fi access points and Bluetooth devices,
and visualization of the congestion map. The main functions of the server appli-
cation are the localization of smartphones, congestion estimation, data storage,
and data interpolation. An overview of the prototype system is shown in Fig. 2.

In preparation for the indoor localization phase, managers send information
about the positions and Wi-Fi access points data using the smartphone applica-
tion. Then, the server application stores the data of Wi-Fi access points in the
database of Wi-Fi access points. In the data-collection phase, the smartphone
application automatically scans Wi-Fi access points and Bluetooth devices and
sends data to the server. The server application stores the data in the congestion
database. In the visualization phase, the server application interpolates the miss-
ing data by kriging. When the smartphone application requests the congestion
data, the server application returns the interpolated data and the smartphone
application visualizes the data on the map. We now demonstrate the details of
each phase.

Fig. 2. System overview
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5.2 Preparation for Indoor Localization

The manager of a public space can easily make a Wi-Fi fingerprint using the
Wi-Fi scan mode of the smartphone application. In the Wi-Fi scan mode, the
smartphone application sends the position and data of Wi-Fi access points to
the server. Then the server application stores received data in the database. We
can make a Wi-Fi access point fingerprint by simply doing this in each area.

The detailed usage of the Wi-Fi scan mode is described in the following. First,
the manager fills in forms about the position (building name, level, room number
(specification of the place), latitude, and longitude). Second, the manager pushes
the send button, the smartphone application then scans the Wi-Fi access points
and sends the information about the scanned access points and the input position
to the server. A sample image of the Wi-Fi scan mode is given in Fig. 3a.

The Wi-Fi scan mode has a data delete function. If the manager sends data
with delete checked, corresponding data will be deleted from the database on
the server. Moreover, the smartphone application stores the history of sent data,
so the manager can fill in the forms from history.

5.3 Data Collection

A participant can collect location data and congestion data by just holding their
smartphone with the smartphone application installed. The smartphone applica-
tion automatically scans Bluetooth devices and Wi-Fi access points every 30 s.
After scanning, the application sends the data to the server as a JavaScript
Object Notation (JSON) object over Hypertext Transfer Protocol (HTTP). The
server receives the data from smartphone applications, then the server localizes
the positions of the participant from scanned Wi-Fi access points data by com-
paring Wi-Fi fingerprints. After localization, the Bluetooth data are stored in
the database with the localized position. When the server estimates the conges-
tion, the server looks up the Bluetooth data and counts the number of Bluetooth
devices. Hence, participants can achieve data collection for visualizing congestion
by just walking around with the smartphone application.

5.4 Visualization

When a participant wants to see the real-time congestion map, they can load
the congestion map by pushing the request button. When the request button is
pushed, the smartphone application requests congestion data from the server.
Then the server returns congestion data as a JSON object over HTTP. The
smartphone application visualizes the degree of congestion by painting colors on
the map. At present, we have decided to paint the high-density areas red and
the low-density areas blue.

If the server does not have Bluetooth data from some areas, the server inter-
polates the congestion with kriging. In the prototype implementation, the inter-
polation program always runs in the background. The program interpolates the
data and stores the interpolated congestion in the database.
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(a) Wi-Fi Scan View (b) Congestion View

Fig. 3. Screenshot of the smartphone application

6 Evaluation

We set up two experiments for evaluating our system. First, we evaluated the cost
to prepare for indoor localization. We take the cost of setting up the system into
account and then we need to evaluate this. Second, we evaluated the relationship
between congestion and the number of Bluetooth devices. Previous research has
already evaluated Bluetooth-based congestion sensing, but these approaches did
not consider how wide an area is covered by the scanning Bluetooth devices.
Thus, we need to evaluate the Bluetooth-based congestion-sensing method.

We performed our experiments at Makuhari Messe International Exhibition
Hall 9–11 and at the Yaesu Shopping Mall. Makuhari Messe is the one of the
largest exhibition halls in Japan. Tokyo Auto Salon 2017 was being held at the
Makuhari Messe Hall during our experiment. Tokyo Auto Salon 2017 is an auto-
motive industry showcase and demonstrate the latest technologies of automobile
companies. The Yaesu Shopping Mall is the one of the largest shopping malls
in Japan. The experimental environments are shown in Table 2. We partitioned
the two venues into grid cells (20m × 20m) as shown in Fig. 8. Red stars denote
sensing points, red lines denote main thoroughfares, and yellow rectangles denote
booths or shops.

6.1 Cost to Prepare for Indoor Localization

We made Wi-Fi access points fingerprints by scanning Wi-Fi access points at
each grid cell at Makuhari Messe International Exhibition Hall 9–11. Only three
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Table 2. Information about the experimental space

Place Area Grid cells Participants Bluetooth scans Map

Makuhari 18,000 m2 40 3 56 Fig. 8a

Yaesu 15,000 m2 37 3 37 Fig. 8b

people were involved. The instruction of usage of the application took 10 min.
After that, we scanned Wi-Fi access points at 40 grid cells. It took 30 min to
scan all the grid cells. Thus, it took only 40 min to prepare for indoor congestion
visualization in the main hall.

6.2 Relationship Between Congestion and Number of Bluetooth
Devices

To evaluate the relationship between congestion and the number of Bluetooth
devices, we scanned the Bluetooth devices and counted the number of people in
Makuhari Messe and the Yaesu Shopping Mall. We first describe how we collected
the Bluetooth data and the pedestrian data. For scanning Bluetooth devices, we
developed an Android application. By using this application, an Android smart-
phone scans Bluetooth BR/EDR devices for about 12 s and scans Bluetooth LE
devices for 5 s. We scanned Bluetooth devices from three smartphones simultane-
ously, then we pick up all device data (Address, RSSI) scanned by three smart-
phones and if scanned devices are duplicated, selected the device whose RSSI
is maximum. We counted the number of pedestrians in different ways between
Makuhari Messe and the Yaesu Shopping Mall. In Makuhari Messe, we took pho-
tographs using a Ricoh Theta S and counted the number of people from the pho-
tographs. We counted the number of people within a distance of 10m. In some
photographs, we also counted the number of people within a distance of 15m. In
the Yaesu Shopping Mall, we counted the number of surrounding people within a
distance of 15m. The scenes of our measurements are shown in Fig. 4d.

The results of the experiments are shown in Fig. 5. For the sake of simplicity,
we assigned IDs to the obtained pedestrian data as shown in Table 3. The lines
on the graphs are regression lines. We consider the y = ax model about the
relationship between the number of pedestrians and the number of Bluetooth
devices. In Fig. 5b, we can see a relationship between the number of Bluetooth
devices and the number of pedestrians, but this is not visible in Fig. 5a.

Table 3. Assigned IDs to data

ID Place Pedestrian count range

A Makuhari Messe 10m

B Makuhari Messe 15m

C The Yaesu Shopping Mall 15m
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(a) Environment of Makuhari Messe (b) Environment of the Yaesu Shopping
Mall

(c) Photograph of Makuhari
Messe by a Ricoh Theta S

(d) Measurement in Makuhari Messe

Fig. 4. Experiment

We calculated Pearson correlation coefficients between the number of pedes-
trians and the number of Bluetooth devices to examine the relationship between
them. Before calculating the Pearson correlation coefficients, we applied the
Shapiro–Wilk test to both the Bluetooth data and the pedestrian data for an α
level of 0.05. The p-values of the tests are shown in Table 4. We cannot reject
the null hypothesis that the data are from a normally distributed population
except for Bluetooth LE data of C. Hence, we calculated the Pearson correlation
coefficients, and the results are shown in Table 5. As shown in Table 5, the num-
ber of pedestrians and the number of Bluetooth devices has some correlation
in data B and C, but it has hardly any correlation in data A. We considered
that the reason why we could not find a correlation in data A was the short
radius of counting pedestrians. In light of these results, our application detected
Bluetooth devices out of range of 10m.

We also calculated the Pearson correlation coefficients with various thresh-
olds of RSSI of Bluetooth devices because we considered that the RSSI thresh-
olds exclude some influence of distant devices. The results are shown in Fig. 6.
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(a) Pedestrian data A and Bluetooth data (b) Pedestrian data B and Bluetooth data

(c) Pedestrian data C and Bluetooth data

Fig. 5. Relationship between the number of pedestrians and the number of bluetooth
devices

Table 4. The p-values of the Shapiro–Wilk test

A B C

Pedestrian 0.147 0.284 0.867

Bluetooth BD/EDR 0.353 0.203 0.163

Bluetooth LE 0.184 0.493 0.005

Bluetooth BD/EDR + EL 0.601 0.391 0.196

Table 5. Pearson correlation coefficient between the number of pedestrians and the
number of bluetooth devices

A B C

Bluetooth BD/EDR −0.211 0.310 0.521

Bluetooth LE −0.007 0.188 0.248

Bluetooth BD/EDR + EL −1.115 0.303 0.401
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(a) Pedestrian data A and Bluetooth data (b) Pedestrian data B and Bluetooth data

(c) Pedestrian data C and Bluetooth data

Fig. 6. Pearson correlation coefficient between the number of pedestrians and the num-
ber of bluetooth devices with various RSSI thresholds

(a) Pedestrian Data (b) Bluetooth Data

Fig. 7. Visualization of pedestrian data B and corresponding bluetooth data (Color
figure online)
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Fig. 8. Layouts of the experimental space (Color figure online)



300 T. Kitazato et al.

In Fig. 6a, the Pearson correlation coefficient is constantly low. It is possible
that we cannot exclude the influence of distant devices. In Fig. 6c the shape
of the graph is particularly different from others. We consider that the envi-
ronment of the Yaesu Shopping Mall affected the results. The Yaesu Shopping
Mall has many walls unlike Makuhari Messe, and walls can interfere with the
Bluetooth signal. However, in Fig. 6b, the Pearson correlation coefficients have
a peak around −83 dB. This result shows the achievement of removing the noise
of distant devices.

Finally, we visualized the pedestrian data B and the corresponding Bluetooth
data as shown in Fig. 7. We categorized congestion degrees into four classes as
shown in Table 6 and red color means high density and blue color means low
density. The threshold of Bluetooth RSSI is set as −83 and the Bluetooth devices
include both Bluetooth BR/EDR and Bluetooth LE. In this setting, the Pearson
correlation coefficient is 0.482.

Table 6. Congestion degree categories

Category 1 2 3 4

Density (people/m2) –0.1 0.1–0.2 0.2–0.3 0.3–

7 Conclusion

In this paper, we proposed a system of real-time visualization of the degree
of indoor congestion with smartphone-based participatory sensing. Then, we
demonstrated the design and implementation of the prototype system. We also
set up two experiments, and the results of the experiments show the ease of
preparing and installing the proposed system, and also show the relationship
between the number of pedestrians and the number of Bluetooth devices. These
results support the applicability of our proposed system.

As future work, we have two tasks. First, we need to investigate the validity
period of scanned data. In participatory sensing, we cannot control the sensing
interval in one area, so it sometimes happens that we cannot obtain data for some
period. Thus, we need to decide the validity period of scanned data. Second,
we consider developing a function for predicting congestion. Congestion data is
spatiotemporal data, so we consider that it can be predicted from historical data
and data from the surrounding areas.
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