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Abstract. Eye tracking is considered one of the most salient methods
to study the cognitive demands of humans in human computer interac-
tive systems, due to the unobtrusiveness, flexibility and the development
of inexpensive eye trackers. In this work, we evaluate the applicability of
these low cost eyetrackers to study pupillary response to varying mem-
ory loads and luminance conditions. Specifically, we examine a low-cost
eye tracker, the Gazepoint GP3, and objectively evaluate its ability to
differentiate pupil dilation metrics under different cognitive loads and
luminance conditions. The classification performance is computed in the
form of a receiver operating characteristic (ROC) curve and the results
indicate that Gazepoint provides a reliable eye tracker to human com-
puter interaction applications requiring pupil dilation studies.

Keywords: Low-cost eye trackers · Eye tracker performance · Gaze-
point · Pupil dilation · Memory load · TEPR · Power spectral density

1 Introduction

Eye tracking metrics are found to be useful indicators of visual attention and cog-
nitive workload in numerous application areas, including reading and language
comprehension [1], driving [2], individual differences [3], gaming devices [4], and
medical applications [5]. Eye tracking devices (eye trackers) are used to collect
measurements, such as pupil dilation, gaze locations and eye-closing patterns.
Recent technical advances in video sensors and miniaturized computing power
have resulted in cost-effective mass produced eye tracking devices; thus, several
low-cost eye tracking devices have become available for researchers. However,
the effectiveness of these low-cost devices to study human behavior remains an
ongoing investigation [6–13] and is the objective of this paper. Specifically, we
examine a low-cost eye tracker, the Gazepoint GP3 (cost ≈ $500), and objec-
tively evaluate its ability to differentiate pupil dilation metrics under different
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cognitive loads and luminance conditions. To our knowledge, this is one of the
first studies reporting the effectiveness of Gazepoint GP3 in capturing pupillary
data.

Several pupillary metrics have been proposed in the past as useful indices
of cognitive context [14–16]. Out of those, we employ two widely accepted met-
rics in this paper: one computed in the time domain and the other in the fre-
quency domain. Using data collected by the Gazepoint GP3 eye tracking device,
a time domain measure, task evoked pupillary response (TEPR) [17], as well as a
recently published frequency domain measure, pupillary power spectral density
(PSD) [18], are computed and evaluated as indicators of mental workload under
different luminance conditions. It has been well established that pupil diameter
is impacted by both mental workload and luminance conditions [19–24]. There-
fore, the objective of our experiment is to verify the potential use of Gazepoint
system to study the impact of these two factors on pupil diameter in studies
involving cognitive context analysis.

Towards this end, we employed the digit span task [19] experiment under
different luminance conditions, which is explained in Sect. 2. The rest of the
paper is organized as follows: data collection and analysis methods are described
in Sects. 2 and 3, respectively, the results of classification analysis are presented
and discussed in Sect. 4, and the paper is concluded in Sect. 5.

2 Experiment

2.1 Subjects

Twenty participants ranging in age from 22 to 29 years (M = 23.9, SD = 2.41)
voluntarily participated in the experiment conducted by researchers from the
Naval Research laboratory (NRL) at the Naval Aerospace Medical Institute
(NAMI).

2.2 Apparatus

All the eye tracking data were collected using the Gazepoint GP3 system. The
system was calibrated for each user according to the Gazepoint Application Pro-
gram Interface (API) manual [25]. GP3 collects the pupillary data, specifically,
pupil size in pixels for each eye and their corresponding binary quality factor
(valid/invalid) at 60 samples/s.

2.3 Task

A visual digit span task (also known as memory span task), which is a common
technique used for assessing working memory capacity, was employed to assess
the pupillary response of the participants to mental workload. In this task, par-
ticipants are presented with a series of numbers and are then asked to recall the
digits in the order they saw them. Longer series of numbers present more of a
challenge for working memory, while shorter series are expected to be easier.
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A luminance change task was employed to assess the pupillary response of the
participants to the screen luminance. While completing the digit span task, par-
ticipants were fixating on a monitor which varied in the background luminance
(black, gray, and white).

2.4 Procedure

As mentioned in the previous section, participants engaged in a digit span task.
Each participant was given four sets of digits of sizes 3, 5, 7 and 9 under three
different screen luminance conditions (black, gray and white). The experiment
utilized a within subject design (i.e., repeated measures) in which each par-
ticipant completed all digit span set sizes (3, 5, 7 and 9, randomly ordered and
exhaustive) three times for each of the 3 different background colors (white, gray,
and black). Thus, a total of 36(= 4 set sizes× 3 colors × 3 times) trials were con-
ducted. Participants were told to focus on a central fixation cross (a “+” sign
∼50 pixels tall and wide) that was offset from the background color (80 brighter
for the black and gray backgrounds, and 80 darker for the white background).
The string of numbers was then sequentially presented ∼1 s per number. Follow-
ing each number set (e.g., “2, 6, 1, 8, 4”), a numeric keypad appeared on the
screen and participants used the mouse to input the string of numbers (“2, 6, 1,
8, 4”) by clicking on the corresponding numbers in order. The keypad was used
to ensure that participants continued to fixate on the screen, while they were
making a response. When satisfied, the participants clicked the submit button.
Participants were not given performance feedback on their response accuracy.
Following each set of digits, there was a pause of ≈3 s before presenting the par-
ticipant with a numeric keypad on the monitor to enter his/her response. The
pupillary measures from this time segment, known as the encoding phase of the
memory, are analyzed here. The total time to complete the digit span task varied
from 10–15 min, depending on the participant’s response times.

3 Data Analysis

The Gazepoint GP3 collects the following pupillary data: pupil size in pixels
for each eye and their corresponding binary quality factors (valid/invalid) at
60 samples/s, the scale factor of each eye pupil (unitless), whose value equals 1
at calibration depth, is less than 1 when the user is closer to the eye tracker
and greater than 1 when the user is further away. Only data from the encoding
time segment are analyzed in this work, as it has been established by the human
factors researchers that the maximum pupil dilation occurs during the encoding
of the stimulus materials for short term memory recall tasks [26,27].

3.1 Data Preprocessing

For time-domain analysis (TEPR), the poor quality samples (quality fac-
tor = 0) of the pupil size signals were marked as missing values (or NaN in
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MATLAB R© [28]). Pupil size data of the eye with fewer missing observations [29]
were utilized for analysis. A “clean-up” function was employed to remove all
the data below 4th percentile and above 98th percentile, in order to remove any
sudden dips/peaks in the pupil size signal. Then, a hampel filter (of order 6)
[30] was applied to remove outliers and a linear interpolator was used to recover
missing values. Figure 1a shows an example of raw data and filtered data signals.

For frequency-domain analysis (PSD), the linear trend in the above pre-
processed signals was removed using the detrend function in MATLAB R© and
the resulting signals were passed through a zero-phase lowpass butterworth fil-
ter with a cutoff frequency fc = 4 Hz using the filtfilt function, since most of the
pupillary activity falls in the frequency range of 0–4 Hz [31]. Figure 1b shows an
example of detrended data and filtered data signals.
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Fig. 1. Pupil size signal preprocessing

3.2 Data Analysis

Task Evoked Pupillary Response (TEPR): To evaluate the ability of the
eye tracker in capturing the changes in pupil diameter caused by mental work-
load changes, we analyzed the data of set sizes 3 (labeled as EASY), 5 (labeled
as MEDIUM) and 7 (labeled as HARD) only. The set size 9 was excluded from
the analysis since recall performance dropped to 65% (i.e., only remembering
65% of the 9 numbers) and there was increased variability between participants,
suggesting it was either too difficult for some participants or that some partic-
ipants gave up. For classification purposes, the median values of the pupil size
in the encoding phase (TEPR), for each person, for each set size, each back-
ground color, and for each trial, (e.g., pupil size of person 13, set size 3 in a
black background for the first trial) were computed over a sliding window of size
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30 samples with an overlap of 25 samples (≈80% overlap). A simple cut-point
grouping into binary classes was implemented for pairs of set sizes 3 (EASY) vs.
7 (HARD), 3 (EASY) vs 5 (MEDIUM) and 5 (MEDIUM) vs. 7 (HARD) for the
corresponding pairs of the moving-median filtered signals. The Receiver Operat-
ing Characteristic (ROC) curves [32] were drawn by varying the cut-points from
the minimum of the two signals, in steps of 0.01 pixels, to the maximum value
of the two signals.

Power Spectral Density (PSD): PSD of the pupil diameter signals was com-
puted for each person using the Welch’s method with segments of 50 samples with
50% overlap [18]. Each segment was windowed with a Hamming window. Only
the ‘encoding’ phase was considered when computing PSD under the memory
tasks of set size 3 (EASY) vs set size 5 (MEDIUM) vs. set size 7 (HARD). PSD
presented here is the average PSD over 20 participants * 3 trials; thus averaged
over a total of 60 trials for each background luminance color.

4 Results and Discussion

At the preprocessing stage, an average of 37% data was missing due to poor
quality recordings. Figure 2 shows the boxplots for average pupil diameters across
different background luminance conditions and workload conditions. It is evident
that the average pupil diameter in a black background is higher than that of the
grey background which, in turn, is greater than that of the white background;
this pattern agrees with earlier pupillary light reflex studies, thereby assuring the
GP3’s capability to capture light-sensitive pupillary readings. Figure 2 also shows
the differences in average pupil diameter for different workload tasks within the
same background conditions and it can be seen that the average pupil diameter
for set size 3 is lower than that of set size 7 under all 3 luminance conditions.
However, the pupil diameters of set size 5 is not clearly greater than (or lesser
than) for set size 3 (or for set size 7) under black and grey background luminance
conditions.

To further analyze the differences in TEPRs corresponding to the different
set sizes, we plotted the ROC curves from classification as described in Sect. 3.
An example set of ROC curves for one person are shown in Figs. 3, 4 and 5. For
this particular example, Fig. 3 shows a 100% accuracy in classifying pupil size
signals of set size 3 vs. 7 for all three background conditions, whereas a 68%
accuracy in classifying pupil size signals of set size 3 vs. 5 in grey background
conditions and a 78% accuracy in classifying pupil size signals of set size 5 vs. 7
in white background conditions. Table 1 gives the average classification accuracy
values over all participants and over all 3 repeated trials. Therefore, the mini-
mum average classification accuracy is approximately 80%, which is considered
a significant value by psychologists in detecting human cognitive context.

Figure 6 shows the results of PSD analysis, where Figs. 6(a–c) correspond
to black, grey and white background conditions, respectively. The results agree
with earlier studies only in the average power spectral densities of set size 3 vs.
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Fig. 2. Boxplot of average pupil diameters under different backgrounds and mental
workloads
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Fig. 3. ROC curves from classification of TEPRs between set size 3 and 7

set size 5 or 7. However, the results we obtained do not conform to the finding
that average PSD increases in the frequency range of 0.1–0.5 Hz and 1.6–3.5 Hz
with increase in cognitive workload as the average PSD in set size 5 is seen to
be greater than that of set size 7. This could be due to the recovery of lost data
points by using a linear interpolator or due to similar spectral behavior of pupils
during set sizes 5 and 7. Also, to our knowledge, there is no detailed mechanism
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Fig. 4. ROC curves from classification of TEPRs between set size 3 and 5
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Fig. 5. ROC curves from classification of TEPRs between set size 5 and 7

for this phenomena of pupil control and PSD, yet. Future research will integrate
the PSD metrics in classification studies to attempt to validate the findings of
Peysakhovich et al. [18] and Nakayama and Shimizu [31].
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Table 1. Average accuracies in TEPR classification

Average accuracies in %

Background luminance
conditions

Set size 3 vs. 7 Set size 3 vs. 5 Set size 5 vs. 7

Black 90.73 79.83 83.28

Grey 87.53 80.92 81.77

White 86.89 81.45 79.68

Hz

-40

-30

-20

-10

0

10

20

30

d
B

Effect of workload on PSD(Black bg, Average PSD)

easy
medium
hard

(a) PSD in black luminance
conditions

Hz

-40

-30

-20

-10

0

10

20

30
d
B

Effect of workload on PSD(Grey bg, Average PSD)

easy
medium
hard

(b) PSD in grey luminance
conditions

0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
Hz

-50

-40

-30

-20

-10

0

10

20

30

d
B

Effect of workload on PSD(White bg, Average PSD)

easy
medium
hard

(c) PSD in white luminance
conditions

Fig. 6. Power spectral density under different workload conditions

5 Summary and Conclusion

In this paper, we evaluated the performance of Gazepoint GP3, a low-cost eye
tracker, by using pupillary metrics that are already tested and used by human
factors researchers: TEPRs and PSD. We collected pupil size data from 20 vol-
unteers engaged in a visual digit span task. First, a preprocessing routine was
employed to filter out outliers from the data for time domain analysis, and low
pass filtering was performed prior to frequency domain analysis. Then, TEPRs
and PSDs were computed and studied for different digit set sizes. The classifica-
tion performance is computed in the form of a receiver operating characteristic
(ROC) curve and the results show the applicability and limitations of low-cost
eye tracking devices by cognitive workload researchers.

The results indicate that the Gazepoint GP3 is an easy and inexpensive tool
that can be utilized in psychological studies involving pupil diameter data. The
classification results indicate that the eye tracker does a good job in classifying
mental workloads under different background luminance conditions; however,
it is not a robust tool for frequency domain analysis which could be attribut-
able to linear interpolation of poor quality readings. Researchers, with budget
constraints, who are interested in incorporating pupillary measures of cognitive
workload now have access to a reliable inexpensive eye tracker. However, they
should keep in mind the GP3 is limited to collecting pupil diameter data for tasks
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which use a single screen and is vulnerable to loss of chunks of data. Finally, we
believe that the low cost eyetrackers are of great value to researchers from all
disciplines trying to incorporate human factors aspects in their systems.
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