
Development Environment of Embeddable
Information-Visualization Methods

Takao Ito1(B) and Kazuo Misue2

1 Department of Computer Science, University of Tsukuba,
Tennodai, Tsukuba, Ibaraki 305-8573, Japan

ito@vislab.cs.tsukuba.ac.jp
2 Faculty of Engineering, Information and Systems,

University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
misue@cs.tsukuba.ac.jp

Abstract. The development of information-visualization systems
requires the design of visualization methods based on data and pur-
poses. Visual tools are desirable solutions supporting the development of
visualization programs. However, the applicability of the tools is limited.
Therefore, we allowed the developers to embed visualization methods
into visualization programs easily to increase the application field. We
designed a visualization execution environment that includes the fol-
lowing features: (1) Independence of data formats and Graphics APIs
used in target programs, (2) Embeddability of visualization methods
into visualization programs, and (3) Low-cost implementation of inter-
face functions. We showed that our execution environment had prac-
tical performance through two experiments. Then, using use cases, we
showed that our environment could be used in the low-cost development
of visualization systems. The design of our execution environment rein-
forced the practicability of visual tools that support the development of
visualization programs.

Keywords: Visualization · Implementation

1 Introduction

Information visualization is used in various applications, such as searching,
monitoring, and analyzing data. The demand to use information visualization
increases according to the increase in data size. To utilize information visualiza-
tion effectively, developers have to design appropriate visualization methods for
target systems.

The number of appropriate visualization methods for a certain purpose or
data is limited. Then, the effectiveness of a visualization method is difficult to
determine before visualization results are observed, which requires implementa-
tion of visualization methods. Therefore, developers are required to have many
trial-and-error attempts involving repeated implementation of these methods.
As a countermeasure, visualization systems are often developed according to
c© Springer International Publishing AG 2017
S. Yamamoto (Ed.): HIMI 2017, Part I, LNCS 10273, pp. 88–102, 2017.
DOI: 10.1007/978-3-319-58521-5 6



Development Environment of Embeddable Information-Visualization 89

the following processes: developers implement many visualization methods on a
prototype environment, and appropriate methods are implemented into a target
program. However, we believe that the implementation costs would prevent the
utilization of visualization.

This study aims to reduce the implementation costs of visualization methods
to promote their utilization. We developed a visual tool to support implementa-
tion of visualization methods, because use of visual tools is one of good solutions
to reduce the implementation costs [1,2]. We supported prototyping by build-
ing a development environment called Iv Studio (Fig. 1) with a data flow visual
language (DVL) for information visualization [3]. However, we need to enhance
the following for improving the practical applicability of Iv Studio.

(i) Embeddability of visualization methods into programs that require visual-
ization features.

(ii) Extensibility of the DVL parts.

We assumed that visualization features are added to existing programs. To
enable the addition of visualization features to existing programs, (i) is impor-
tant. Then, various visualization methods are required in practical use, which
makes (ii) also important. Our objective is to enable developers to embed easily
the developed methods by Iv Studio into their programs even if parts of the DVL
are extended.

We consider various data formats, description languages, and Graphics APIs
because developers are assumed to add visualization features to existing pro-
grams. Developing runtime libraries that support all environments is ideal, but
it is not realistic. Thus, we designed an embeddable visualization execution envi-
ronment that includes the following features:

1. Independence of data formats and Graphics APIs used in target programs.
2. Executing visualization methods on the embeddable virtual machine of the

script language.
3. Exporting developed visualization methods as source codes.
4. Low-cost implementation of interface functions.

This study provides an implementation guide for development environments
of visualization methods not only for Iv Studio but also for other environments.

2 Target Environments

Visualization programs require features that include loading data and showing
images. Additionally, receiving inputs from viewers is necessary to support inter-
active visualization. We aim to execute visualization methods developed by Iv
Studio in the following environments:

– Programming language
• C, Java, JavaScript, C#



90 T. Ito and K. Misue

Fig. 1. Screen shot of Iv Studio.

– Data format
• CSV, Spreadsheet, SQL, Original formats, on memory, etc.

– Graphics API
• GDI, Processing, Java2D, Canvas, OpenGL, DirectX, etc.

– GUI system (GUI toolkit)
• WIN32 API, Cocoa, X, Swing, Qt, etc.

3 Design of the Execution Environment

We want to support various environments considering Graphics APIs and GUI
Systems. Developing runtime libraries that support all environments is ideal, but
it is not realistic. Therefore, we designed an execution environment according to
the following procedure:

1. Separating dependent parts from independent parts.
2. Choosing an execution environment of independent parts and adding an

export feature to Iv Studio.
3. Designing interface functions between dependent and independent parts such

that the implementation costs are reduced.

3.1 Separating Dependent Parts from Independent Parts

We investigated the support range of execution environments by considering the
dependent/independent parts of visualization execution systems. Data formats,
Graphics APIs, and GUI systems were considered. Visualization systems are
formed similar to the information visualization reference model [4]. Therefore,
based on the model, we considered parts that depend on Data formats, Graphics
APIs, and GUI systems (Fig. 2).

Raw Data are just Data format; therefore, Data Transformations depend on
Data formats. Rendering is the process of showing Views on displays, which is
dependent on Graphics APIs. Considering interactive visualization, the process
of receiving inputs from viewers depends on the GUI systems. Conversely, Visual



Development Environment of Embeddable Information-Visualization 91

Fig. 2. Separation of dependent parts from independent parts.

Mappings and View Transformations are independent from the target programs
because they are pure logical operations.

Based on the above consideration, we decided that Data Transformations,
Rendering, and the process of receiving inputs from viewers are executed by the
target programs. Then, Visual Mappings and View Transformations are executed
by our designed execution environments. Figure 3 illustrates the execution image,
which is realized as follows.

Transform to Data Tables

Visual Mappings

Fig. 3. Execution image of visualization.

– Choosing an execution environment.
– Developing a feature to export visualization methods to the execution

environment.
– Designing interface functions that receive Data Tables and inputs from view-

ers and send graphics parameters to Rendering.



92 T. Ito and K. Misue

3.2 Choice of Execution Environment

The requirements of execution environments of Visual Mappings and View
Transformations are as follows:

R1. Target programs can call the processes easily.
R2. Functions implemented in the target programs can be registered into exe-

cution environments easily.
R3. Execution environments are capable of general-purpose computing.

R1 and R2 are requirements for easy embedding of execution environments
into target programs. R3 is a requirement for extensibility of the parts of the
DVL. In this study, we aimed to extend the parts of the DVL by general-purpose
programming languages, which would require general-purpose computing.

We considered three strategies to satisfy these requirements as follows.

[Use of virtual machines]

In this strategy, a runtime executed on JavaVM or .NET Frameworks is pro-
vided, and data and graphics parameters are communicated to target programs
by sockets or interprocess communication. By exporting visualization methods
from Iv Studio as a dynamic link library that can be linked to the runtime,
the visualization methods can be executed, as if the visualization methods were
embedded into target programs. However, this strategy is not enough to R1
and R2 because developers have to implement booting the runtime process and
communicating to the runtime. Additionally, communication to web pages (the
program in JavaScript) is difficult to implement.

[Exporting source codes in C]

In this strategy, source codes in C are exported from Iv Studio. This strategy
reduces implementation costs of booting and communicating. Programs written
in C can use the source codes directly. Programs written in Java or C# can use
the source codes with native interfaces, such as Java Native Interface. Programs
written in JavaScript can use the source codes with Emscripten1. However, this
strategy also remains difficult for R1 and R2.

[Use of embeddable script languages]

In this strategy, embeddable script languages of which execution environ-
ments are provided as software libraries are used. Visualization methods can be
used from various programs by exporting source codes in a script language from
Iv Studio and executing the source codes. Embeddable script languages are well
designed to communicate to target programs; therefore, calling and registering
functions are easier than the strategy of exporting source codes in C.

1 http://emscripten.org.

http://emscripten.org


Development Environment of Embeddable Information-Visualization 93

Based on the above consideration, we adopted the use of embeddable
script languages. There are some embeddable script languages, such as Lua2,
Squirrel3, AngelScript4, and Xtal5. We adopted Lua because of its implementa-
tions in C, Java, .NET, and JavaScript. Accordingly, Lua was also adopted to
the description language of the parts of the DVL.

3.3 Exporting Feature from Iv Studio

We developed a feature that exports source codes in Lua from Iv Studio to
execute visualization methods on LuaVM, which is the execution environment
of Lua. The processes of the parts of the DVL were described in Lua, and we
enabled Iv Studio to generate source codes to call the processes according to a
dataflow diagram. Then, we enabled Iv Studio to export a visualization method
as a single Lua script file by integrating generated codes and codes of the parts
of the DVL. Figure 4 illustrates the procedure of exporting source codes.

axis.lua (the source code of an axis)

circle.lua (the source code of circles)

plot.lua (an exported source code)
Iv Studio generate

Copy

Data Table

The result of visualization

The data flow diagram

Fig. 4. Procedure in exporting source codes.

Iv Studio exports only source codes for Visual Mappings. For other processes,
such as View Transformations and receiving inputs from viewers, a support
library in Lua was provided.

Developers can execute visualization methods developed by Iv Studio on tar-
get programs by linking Lua libraries to the programs and executing exported
script files and the support library. Additionally, in our environment, even if
target programs are running, developers can update the visualization meth-
ods, which is highly advantageous in the development of visualization programs
because it is assumed that fixing visualization methods is a repetitive process.

3.4 Design of Interface Functions

For easy embedding, the implementation costs of interface functions between
target programs and LuaVM must be reduced. Therefore, we reduced the number
2 https://www.lua.org/.
3 http://squirrel-lang.org/.
4 http://www.angelcode.com/angelscript/.
5 https://code.google.com/archive/p/xtal-language/.

https://www.lua.org/
http://squirrel-lang.org/
http://www.angelcode.com/angelscript/
https://code.google.com/archive/p/xtal-language/


94 T. Ito and K. Misue

of essential functions requiring implementation. Additionally, we have shortened
the implementation of the functions.

The functions were designed as low-level commands to reduce the number of
functions. The implementation costs of each function were also reduced because
we designed the functions such that they could be implemented using only the
commands of most programming languages and Graphics APIs. Additionally,
the use of arrays for arguments and return values was avoided because sending
or receiving arrays required complex descriptions.

Table 1 shows the specifications of the functions to send Data Tables to
LuaVM. The functions are called from LuaVM. Practically, the functions
for reading files or HTTP connections are provided, such as ivs OpenFile,
ivs ReadLine, and ivs Close. In Table 1, names that express their operations are
shown for explanation. Sending Data Tables to LuaVM is executed by imple-
menting the functions in programming languages used in target programs and
registering them to LuaVM. The implementation of the functions is simple. For
example, in C, developers can implement reading CSV or TSV files by calling
fopen, fread, and fclose in ivs OpenFile, ivs ReadLine, and ivs Close. Developers
can implement not only reading files but also connections to SQL databases, by
executing SQL queries in ivs OpenFile and returning one record in ivs ReadLine.

Table 1. Functions for sending Data Tables.

Functions Specification

obj OpenTable(filename, format) A file name and a format (CSV or TSV) are
received, and a reference object is returned

string ReadRecord(obj) A string that expresses one record in the format
of CSV or TSV is returned

void CloseTable(obj) A table expressed by an argument is closed

Table 2 shows the specifications of the essential draw functions that develop-
ers must implement and register. The upper four functions are for setting colors
or font sizes. The lower five functions are for drawing or painting figures. There
is a design choice where the upper four functions are integrated into the lower
five functions. A function to draw lines is DrawPath only. Therefore, if Draw-
Path receives the thickness and the color of lines, SetPenColor and SetPenWidth
are not necessary. However, to reduce the implementation costs of the optional
draw functions, which are described below, we chose a design where functions
for setting parameters are separated from the functions for drawing.

We provided the optional draw functions that developers do not always need
to implement and register. Table 3 shows the specifications of these functions.
The optional draw functions are higher-level functions than the functions in
Table 2, but they can be also implemented by using only the commands of most



Development Environment of Embeddable Information-Visualization 95

Table 2. Essential draw functions.

Functions Specification

void SetPenColor(r, g, b, a) The color of lines is set

void SetPenWidth(w) The thickness of lines is set

void SetBrushColor(r, g, b, a) The color of filling is set

void SetFont(size) The font size is set

void BeginPath(x, y) A path is began

void MoveTo(x, y) A point is added to a path

void DrawPath(isClose) A polygon or lines are drawn with a path

void FillPath() A polygon is filled with a path

void DrawText(x, y, text,
angle, rx, ry)

A string is drawn on a specified position

Graphics APIs. If the optional draw functions are not registered, the support
library executes them by breaking their operations down to the essential draw
functions. However, this execution will cause deterioration in execution perfor-
mance. Therefore, we provided choices that allow developers to select priority
either implementation costs or execution performance.

Table 3. Optional draw functions.

Functions Specification

void DrawLine(x1, y1, x2, y2) A straight line is drawn

void DrawRect(x, y, w, h) A rectangle is drawn

void FillRect(x, y, w, h) A rectangle is filled

void DrawEllipse(x, y, w, h) A ellipse is drawn

void FillEllipse(x, y, w, h) A ellipse is filled

void DrawWedge(x, y, iRad, oRad,
startAngle, sweepAngle)

A wedge is drawn

void FillWedge(x, y, iRad, oRad,
startAngle, sweepAngle)

A wedge is filled

Table 4 shows the functions for interactive visualization. Developers call the
functions from target programs. All functions receive the position of a pointer,
the operation amount of the mouse wheel, and the information of down buttons.
Then, they return True if some operations are done in the functions. Developers
can execute interactive visualization in a target program by calling it when input
events occur. This design of the functions can be used in touch panel systems.



96 T. Ito and K. Misue

Table 4. Functions of receiving inputs from viewers.

Function Timing of calling

boolean OnMouseDown(x, y,
wheel, button)

When a mouse down event occurs

boolean OnMouseMove(x, y,
wheel, button)

When a pointer moved event occurs

boolean OnMouseUp(x, y,
wheel, button)

When a mouse up event occurs

boolean OnMouseWheel(x, y,
wheel, button)

When a mouse wheel control event occur

4 Performance Evaluation

Visualization is executed on LuaVM in our environment. Although Lua has
relatively higher performance among script languages, the performance is lower
than native codes. To confirm whether our environment has enough performance
to treat visualization, we conducted evaluations of the execution performance.

First, we evaluated the performance of about four visualizations shown in
Fig. 5. Figure 5(a) is a bar chart, Fig. 5(b) is a bar chart of sorted data, Fig. 5(c)
is a scatter plot, and Fig. 5(d) is a node-link diagram using a force-directed
algorithm [5]. The size of data is shown in Table 5. We evaluated the performance
on C(C++) and JavaScript. On C(C++), LuaJIT6 was used. LuaJIT is a library
that has Just-In-Time Compiler for Lua. On JavaScript, lua.vm.js7, a library
that is made by compiling an original Lua library with Emscripten, was used.
JavaScript was run on Electron 1.4.18. A PC with Windows 10 and Intel Core i7-
6700K was used. We measured the execution time of Visual Mappings exported
from Iv Studio.

Table 5 shows the results of the first evaluation. The time unit used is
millisecond, and each result is an average of 100 executions. Note that (d) shows
the time of executing a single iteration in the layout algorithm.

If visualization is executed in more than 30 fps (frames per second), we can
conclude that the environment has enough performance for interactive visual-
ization. However, this evaluation does not include the time for rendering. The
execution of Rendering often takes longer time than Visual Mappings empiri-
cally. Considering this finding, we concluded that our environment had enough
performance when the measured time is less than 10 ms.

As a result, on C(C++), all visualizations were executed in less than 3 ms.
Our environment fast treated (d), which visualized large data. We believe that
this is the effect of the optimization of JIT compiler in LuaJIT. On JavaScript,
(a), (b), and (c) were executed with enough performance, while (d) took a long
time. We need to optimize the exported source codes from Iv Studio.

6 http://luajit.org/.
7 https://daurnimator.github.io/lua.vm.js/lua.vm.js.html.
8 http://electron.atom.io/.

http://luajit.org/
https://daurnimator.github.io/lua.vm.js/lua.vm.js.html
http://electron.atom.io/


Development Environment of Embeddable Information-Visualization 97

(a) Bar chart (b) Bar chart with sorting data

(c)Scatter plot
(d) Node-link diagram

force-directed algorithm

Fig. 5. Visualization used in the first evaluation.

Table 5. Performance evaluation (time unit: millisecond).

Visualization Size of data C(LuaJIT) JavaScript(lua.vm.js)

Fig. 5(a) 123 records 0.87 5.19

Fig. 5(b) 123 records 0.83 5.52

Fig. 5(c) 406 records 1.43 8.53

Fig. 5(d) 123 nodes 4094 edges 2.96 70.13

Second, we conducted an evaluation on the number of records that could be
treated by our environment. We measured the execution time of the visualization
of two-dimensional data with scatter plots. LuaJIT and lua.vm.js were also used.
The size of data records increased by 500 from 500 to 50000, and we measured
an average time of 100 executions in each the number of records.

Figure 6 illustrates the results of the second evaluation. In this figure, the
X-axis illustrates the number of records, and Y-axis illustrates the average time
of 100 executions. Figure 6(a) and (b) shows the same data, but their scales
are different for explanation. On lua.vm.js, our environment crashed because of
lack of memory, and we could not measure the performance. Therefore, only the
results until 22500 records are shown.

For the result of LuaJIT, suppose that in interactive visualization, we focus
on the number of records that visualized about 10 ms. The time taken to visualize
9000 records was 10.11 ms. Suppose that in static visualization, our environment
can be used for visualizing large data because 50000 records were visualized with
53.50 ms. Recent information visualization treats more than a million records
and several tens of dimensions of Raw Data. This visualization often reduces
the data size by using filtering, dimension reduction, or clustering. However, the



98 T. Ito and K. Misue

Records

Time (msec)

5000 10000 15000 20000 25000

50.0

100.0

150.0

200.0

250.0

300.0

Records

Time (msec)

10000 20000 30000 40000 50000

10.0

20.0

30.0

40.0

50.0

60.0

LuaJIT

lua.vm.js

(a) (b)

Fig. 6. Relationship between performance and data size.

reduction is performed before Visual Mappings, then our environment receives
the result of the reduction. Therefore, we conclude that our environment has
practical and enough performance.

For the result of lua.vm.js, suppose that in interactive visualization, the visu-
alization of 1000 records took 12.99 ms. If interactive visualization is used on web
pages, it is difficult to visualize more than 1000 records. However, the commonly
used scenes of visualization on web pages are presentations. In this visualiza-
tion, small size data, for example, several tens of records are often visualized.
We conclude that our environment has enough performance for commonly used
scenes on web pages. Suppose other implementations exist in static visualization.
For example, to avoid JavaScript on clients, an SVG of a visualization result is
generated on a server. Our environment has high flexibility for implementations;
therefore, we conclude that executing large data in JavaScript is not needed
always.

5 Use Cases

In this section, two systems are shown using Iv Studio and our environment.
Although each system was developed by the first author, it had been developed
before the addition of visualization features. Therefore, the use cases shown
in this section are examples that have visualization features added to existing
systems.

5.1 The Web Site

The first use case is a management web page of digital contents managed by
the first author. The first author was motivated to add a feature to observe the
overview of the downloads and time trends. Then, using Iv Studio, a feature
visualizing the overview of trends was added (Fig. 7).

First, a feature that exported lists of downloads and contents as CSV from
SQL database was added into a program on the server side. Next, a visualization
of the CSV was developed by Iv Studio. In the visualization, a ChronoView [6]



Development Environment of Embeddable Information-Visualization 99

Fig. 7. A web page added a visualization feature. (Color figure online)

was shown in the left side to show the overview of the download time, and a
matrix to show contents’ names and bars representing the number of downloads
was shown on the right side. Then, when marks were selected by viewers, the
ChronoView and the matrix were connected by blue lines, and blue circles on
the circumference of the ChronoView and marks of the ChronoView were also
connected by gray lines. After the development of the visualization, source codes
in Lua were exported. Finally, the codes were executed on the web page.

The first author had knowledge on JavaScript and Canvas, but no devel-
opment experience with them. Therefore, we conclude that implementing this
visualization on web pages using only JavaScript took more time than using Iv
Studio.

5.2 Test Program of the Developing Device

The second use case is a test program for a pose capture device developed by the
first author. The device is a doll equipped with multiple 3D accelerometers and
3D magnetic sensors. The program reads acceleration and magnetism data from
the device, computes poses, and renders a posed 3D character model. While in
development, errors of computing poses from magnetism were found. To analyze
the errors, a visualization feature was added (Fig. 8).

This program was written in C++, and it was built on the original GUI
toolkit with the original Graphics APIs. By implementing the draw functions
with the GUI toolkit, the visualization feature was added in about 30 min.



100 T. Ito and K. Misue

Device Test program

Fig. 8. Device and the test program.

In the visualization, three scatter plots show the values of magnetism on the
X-Y, Y-Z, and X-Z planes, and a chart at the bottom right shows values of
magnetism seen from the vertical direction. In these scatter plots, the vertical
directions obtained from 3D accelerometers are also shown by orange lines. After
the design of the visualization, the source codes in Lua were exported. Then, the
codes were executed in the test program. To compare a result of the visualization
with a pose, the visualization was semi-transparently shown overlapping the 3D
character model. The semi-transparent display was realized by drawing the result
of the visualization with the same Graphics APIs as the target program.

While developing the visualization, the transparency and color of the charts
were tuned frequently as the results of the visualization were confirmed on the
test program. Our environment allows the developer to tune the parameters
while executing the program, resulting in efficient tuning of the parameters.

6 Related Work

Textual programing languages are widely used to develop programs not only for
visualization. There are some toolkits to support the development of visualiza-
tion programs with textual programing languages, such as Prefuse [7], Protovis
[8], and D3 [9]. Alternatively, some researchers provided design patterns [10,11]
to support building visualization programs. The methodology to build visualiza-
tion system and data structure for visualization was proposed.

There are other information-visualization development tools, e.g. Flina [12],
Snap-Together Visualization [13], Lyra [1], iVis Designer [2], and GeoVISTA
Studio [14]. Visualization methods developed with some of these tools can be
used from external programs. For example, visualization methods developed with
Lyra or iVis Designer can be used on web pages. GeoVISTA Studio can export
Java components.



Development Environment of Embeddable Information-Visualization 101

The major difference from the above research is that we focus on execu-
tion environments for embedding visualization methods into existing programs.
Toolkits can be used only if they support the environments of the target pro-
grams. In other words, the use scene of toolkits is limited. The design patterns
show us important guides. However, there is a difference that we focused on more
practical problem, for example, the choice of execution environments considering
programing languages and Graphics APIs. Although some existing visual tools
provide execution environments for external programs, they have not achieved
the level defined in Sect. 2, such as independence from Graphics APIs and GUI
systems.

7 Conclusion

In this study, we designed an execution environment that could be embedded
into various program environments easily. Then, the use scenes of visual tools
were expanded. We separated the independent parts from visualization systems,
adopted the embeddable script language to execution environments of indepen-
dent parts, and designed interface functions such that implementation costs of
embedding were reduced. Then, an exporting feature of source codes in the
embeddable script language was added to Iv Studio, which is a visual tool for
information visualization. We showed that our environment had enough perfor-
mance for practical use. Additionally, using use cases, our environment could be
used in the development of visualization systems with low costs.

The design of the execution environment is an implementation guide for
visual tools for visualization development. Visual tools are one of good solutions
to support the development of visualization systems. We conclude that the design
reinforces the practicability of the visual tools for development of visualization.

References

1. Satyanarayan, A., Heer, J.: Lyra: an interactive visualization design environment.
Comput. Graph. Forum (Proc. EuroVis) 33(3), 351–360 (2014)

2. Ren, D., Hollerer, T., Yuan, X.: iVisDesigner: expressive interactive design of infor-
mation visualizations. IEEE Trans. Visual Comput. Graphics 20(12), 2092–2101
(2014)

3. Ito, T., Misue, K.: A development environment using a visual dataow language for
multidimensional data visualization methods. IPSJ J. 57(7), 1638–1651 (2016).
(in Japanese)

4. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visu-
alization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

5. Eades, P.: A heuristic for graph drawing. In: Congressus Numerantium, vol. 42,
pp. 149–160 (1984)

6. Shiroi, S., Misue, K., Tanaka, J.: ChronoView: visualization technique for many
temporal data. In: Proceedings of the 2012 16th International Conference on Infor-
mation Visualisation, IV 2012, pp. 112–117 (2012)



102 T. Ito and K. Misue

7. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2005, pp. 421–430 (2005)

8. Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans.
Visual Comput. Graphics 15(6), 1121–1128 (2009)

9. Bostock, M., Ogievetsky, V., Heer, J.: D3 Data-driven documents. IEEE Trans.
Visual Comput. Graphics 17(12), 2301–2309 (2011)

10. Heer, J., Agrawala, M.: Software design patterns for information visualization.
IEEE Trans. Visual Comput. Graphics 12(5), 853–860 (2006)

11. Giereth, M., Ertl, T.: Design patterns for rapid visualization prototyping. In: Pro-
ceedings of the 2008 12th International Conference Information Visualisation, IV
2008, pp. 569–574 (2008)

12. Claessen, J.H.T., van Wijk, J.J.: Flexible linked axes for multivariate data visual-
ization. IEEE Trans. Visual Comput. Graphics 17(12), 2310–2316 (2011)

13. North, C., Shneiderman, B.: Snap-together visualization: a user interface for coor-
dinating visualizations via relational schemata. In: Proceedings of the Working
Conference on Advanced Visual Interfaces, AVI 2000, pp. 128–135 (2000)

14. Takatsuka, M., Gahegan, M.: GeoVISTA studio: a codeless visual programming
environment for geoscientific data analysis and visualization. Comput. Geosci. 28,
1131–1144 (2002)


	Development Environment of Embeddable Information-Visualization Methods
	1 Introduction
	2 Target Environments
	3 Design of the Execution Environment
	3.1 Separating Dependent Parts from Independent Parts
	3.2 Choice of Execution Environment
	3.3 Exporting Feature from Iv Studio
	3.4 Design of Interface Functions

	4 Performance Evaluation
	5 Use Cases
	5.1 The Web Site
	5.2 Test Program of the Developing Device

	6 Related Work
	7 Conclusion
	References


