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Abstract. Given the problems of gradual oil depletion and global warming,
energy consumption has become a critical factor for energy-intensive sectors,
especially the semiconductor, manufacturing, iron and steel, and aluminum
industries. In turn, reducing energy consumption for sustainability and both
tracking and managing energy efficiently have become critical challenges. In
response, we analyzed electricity consumption from the perspective of load
profiling, which charts variation in electrical load during a specified period in
order to track energy consumption. As a result, we proposed a time series data
mining and analytic framework for electricity consumption analysis and pattern
extraction by streaming data mining and machine learning techniques. We iden‐
tified key factors to predict the state of the annealing furnace and detect abnormal
patterns of the load profile of their electricity consumption. Our experimental
results show that the dimension reduction method known as piecewise aggregate
approximation can help to detect the state of the annealing furnace.

Keywords: Energy consumption analysis · Load profiling · Piecewise aggregate
approximation · Time-series data mining

1 Introduction

As a cornerstone of modern civilization and economic growth, electricity is critical for
industrial and economic advancement, as well as a driving force for sustainable devel‐
opment. Indeed, social development correlates positively with power consumption,
which in Taiwan, especially the consumption of electricity, has risen rapidly due to
economic, industrial, and commercial growth.

In relation to total exports, Taiwan’s manufacturing-oriented economy exports a
considerable share of manufactured goods. Currently, most industries in Taiwan have
replaced manual operation with machine operation during fabrication, which requires a
sufficient but not excessive supply of stable electricity. In fact, too much or too little
electricity can cause mechanical malfunctions and thereby reduce the efficiency of both
production and electricity. As Table 1 shows, Taiwan Power Company’s statistics from
2015 reveal that the industrial sector consumes an exceptionally large proportion of
electricity—even up to more than 50% of the total consumed in Taiwan.
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Table 1. Electricity sales in Taiwan, 2015

Industry sector GWh (%)
Industrial 114,241.9 55.3
Residential 42,196.6 20.4
Commercial 32,511.0 15.7
Other 17,541.8 8.5
Total 206,491.3 100.0

Source: Taiwan Power Company (http://
www.taipower.com.tw/)

In response, manufacturers in Taiwan, is keen to identify the most cost-effective
methods and techniques to increase electricity efficiency in their factories. In industries,
many machines are highly energy intensive, and with machine data, we can analyze their
tendencies regarding power and temperature, among other measures. We can also use
anomaly detection to identify indicators of machine malfunction, which can then
contribute to determining rules in order to explain the malfunctions. With such tech‐
nologies, we can promptly correct abnormalities and thereby reduce the unnecessary
waste of resources and improve the efficiency of electric consumption.

Without a doubt, energy is a vital resource for modern society, especially for long-
term competitive sustainability. To reduce unnecessary energy consumption and
improve energy efficiency, it is therefore critical to make informed decisions in real time.
To that end, we collected data regarding energy consumption and information from the
corresponding production and manufacturing domains from the plans of co-operating
iron and steel manufacturers. Based on load profiles determined from data stream mining
and machine learning techniques, we constructed an electric energy monitor and analysis
framework, the kernel of which are a prediction model for identifying typical load
profiles of each machine and a time series data-mining engine for analyzing and
extracting typical patterns based on the load profiles. The objectives of our research were
threefold:

1. To observe and analyze relationships among various attributes (e.g., electric power,
temperature, and product weight) in a data warehouse framework to allow
researchers to select and confirm key attributes based on the results of analysis and
consult with domain experts.

2. To identify three states of the annealing process—heating-up, temperature retention,
and cooling down—based on the temperature information of the operating machine
and, following Keogh et al. [1], use piecewise aggregate approximation (PAA) to
perform dimension reduction for data representation and, detect machine operational
states according to energy load profiles that can inform real-time energy-optimiza‐
tion decisions; and

3. To propose and construct an electric energy monitor and analysis framework based
on load profiles by data stream mining and machine learning techniques as a means
to implement the proposed time series data-mining approach in co-operating iron
and steel manufacture.
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The overarching goal of the three objectives is to deploy a visualized decision-
making support system and propose actionable energy-saving strategies for co-operating
plants to solve real-world problems.

2 Time Series Data Mining

Time series data are easily obtainable from scientific, financial, and industrial applica‐
tions, and given the deployment of numerous sensors and smart devices, the amount of
accumulated time series data continues to expand rapidly. By extension, the increased
generation and use of time series data have resulted in a great deal of research and
developments in big data mining. Each time series database consists of sequences of
values or events obtained over repeated measurements of time [2]. Time series data are
large, as well as numerical and continuous in nature, which require continuous updating.
Mörchen [3] has identified two chief research-related goals of time series analysis—to
identify patterns represented by the sequence of observations and to forecast future
values of time series data—both of which require the identification of patterns of time
series data to enable the interpretation and integration of patterns with other data.

Kitagawa (2010) [4] classified time series analysis into four categories: description,
modeling, prediction, and signal extraction. Sakurai et al. [5] have provided a compre‐
hensive overview of key topics of time series analysis: similarity search and pattern
discovery, linear modeling and summary, nonlinear modeling and forecasting, and the
extension of time series mining and tensor analysis. In our study, we focused on the
first. Popeangă [6] has proposed that energy production and consumption data recorded
over a period at fixed intervals is a classic time (i.e., chronological) series data-mining
problem. The entire process involves five steps: collecting data from various sources
(e.g., the Internet, text, databases, data warehouses, sensors, and smart devices);
conducting data filtering by eliminating errors or deploying a data warehouse to create
an extraction, transformation, and loading (ETL) process in advance; selecting key
attributes to be used in data mining for further analysis; detecting and analyzing new
knowledge; and visualizing, validating, and evaluating results. The challenge of elec‐
tricity consumption analysis is analyzing countless time series to find similar or regular
patterns and trends with a fast or even real-time response. Accordingly, time series data
mining techniques such as whole series clustering and classification, subsequent clus‐
tering and classification, time point clustering, anomaly detection, and motif discovery
can be adopted for electricity consumption analysis and energy management.

Since time series are high-dimensional data, they are time consuming for computing
and storage space cost. However, several techniques have been proposed that denote
time series data with reduced dimensionality. Well-known dimensionality reduction
techniques include discrete Fourier transformation [7], single value decomposition [8],
discrete wavelet transformation [9], PAA [1], SAX [10], and indexable piecewise linear
approximation [11]. We will adopt the intuitive method of PAA and discretized the PAA
representation of a time series into a symbolic representation method SAX algorithm.
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3 Time-Series Electricity Consumption Data Mining Framework

We collected energy consumption data and the corresponding product information of
two annealing furnaces in 2014. Figure 1 shows the proposed time series data mining
framework for electricity consumption analysis. The primary research questions were:

• What is a good attribute to identify the operational state of the machine?
• What is the best model to predict the operational states of machines (i.e., warm-up,

heat retention, and cooling)?

Databases

Manufacturing 
process related 

attributes

Streaming data 
from kilowatt-
hour meter, and 

annealing 
process

Extract-Transform-Load (ETL) Phase

Deploy the data 
warehouse

Energy consumption mining and analysis

Attributes (Features) selection 
from load profiles

Build prediction models

Visualization results for 
decision support 

Detect abnormal energy 
patterns and machine 

operational states by clusting

Revised the Model

 Dimension reduction and 
Index of time series data

Fig. 1. Time-series data mining framework for electricity consumption analysis in industry
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All tasks of analysis involved using the load profiles of the electricity consumption
of the targeted machine. For the proposed framework, we preliminarily deploy the data
warehousing framework to observe and analyze the load profiles of electricity consump‐
tion and the relationships among various attributes (e.g., electric power, temperature,
and product weight). Next, we select and confirm key attributes to identify the state of
the annealing furnace based on the results of analysis and consulted with domain experts.
We confirm that either the electric power or temperature information of the operating
machine can help to identify the entire machine operational process, which is 1,440 min
on average. We use the temperature information of the operating machine to identify
three states: warm-up, heat retention, and cooling.

We apply the PAA method to discretize streaming data into n segments with time‐
stamps in order to build the prediction model. We will refine the SAX algorithm, which
is a symbolic representation of time series for dimensionality reduction and indexing
with a lower-bounding distance measure to further extract subsequent patterns. It can
help the system to detect abnormal energy patterns and machine operational states by
symbolizing energy load profiles to make further energy-optimization decisions in real
time. We will apply an agglomerative hierarchical clustering approach to discriminate
normal and abnormal electric patterns—that is, to group the electric patterns for further
analytical and prediction tasks. We plan to next conduct a series of experiments to
construct a prediction model in order to identify their operational states (i.e., warm-up,
heat retention, and cooling), the target annealing furnace, and abnormal energy patterns.
We also included associated experiments of parameter selection of the PAA method in
our experiments.

Ultimately, the goal of our series of studies is to deploy a visualized decision support
system and propose actionable energy-saving strategies for co-operating iron and steel
plants to solve real-world problems. We present the entire framework for electricity
consumption analysis and detail some of the modules in the following sections.

4 Data Preprocessing and Data Warehousing Deployment

4.1 Data Preprocessing

Table 3 presents all of the attributes of the annealing furnaces related to electricity
consumption analysis in our research. We adopted a data mart to visualize and observe
the initial load profiles of electricity consumption. In general, data warehousing is
fundamental to business intelligence, and data collection, data management, and data
analysis techniques (e.g., data mart design with extraction, transformation, and loading
tools) can help business analytics use data intelligently. Accordingly, we deployed the
data warehousing framework to observe the load profiles of electricity consumption
(Fig. 2) and analyzed the relationships among various attributes (e.g., electric power,
temperature, and product weight. Figure 3 presents the fact table of our research. The
data warehousing platform had two chief goals: to analyze the load profiles of each
annealing process and to define annealing states based on the selected attributes of load
profiles.
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Fig. 2. Star schema of the data mart for EC Analysis
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Fig. 3. Load profiles of active power and temperature

Data warehousing helped us to confirm the load profiles of each annealing
process in order to preliminarily identify the normal or abnormal state of the
machines. We confirmed that either the electric active power or temperature infor‐
mation of the operating machine can help to identify the entire machine operational
process, which is 1,440 min on average. We used the data of annealing process from
April 1, 2014, to December 31, 2014 to train and construct the prediction model to
detect each machine’s state and condition.

After selecting the attributes that were useful for periodical data analysis, we
adopted the star schema to build the data mart (Fig. 2). The three dimension tables
are the machine information table, the product information table with time informa‐
tion with different granularity table, and a fact table that shows the load profiles of
current and temperature, among other things. Based on the analytical results of load
profile, we used the temperature information of the operating machine to identify
three states: warm-up, heat retention, and cooling. By extension, we could further
identify the normal or abnormal states of each annealing process. We show one load
profile of active power and temperature of one annealing furnace in Fig. 3 (Table 2).
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Table 2. Electricity consumption analysis related attributes

Attributes Data type
Logtime Date

yyyy/mm/dd hh:mm:ss
Current (I_avg) Numeric
Voltage (V_avg) Numeric
Active power (kW_tot), total active power (kWh_tot) Numeric
Reactive power (kvar_tot), total reactive power
(kvarh_tot)

Numeric

Apparent power (kVA_tot), total apparent power
(kVAh_tot)

Numeric

Power factor (PF_tot) Numeric
Temperature Numeric
Product weight Numeric

4.2 Time Series Representation for Constructing the Prediction Model

Time series representation. To represent time series data concisely and increase the
index and processing times, we mainly adopted PAA in order to extract the primary
features of time series data [1, 12].

We treated each annealing process as having streaming time series data that are divis‐
ible based on the differing granularity of time units, each of which is a feature point of the
data stream. Accordingly, an annealing process entails several feature points with time‐
stamps. Herein, we introduce two methods to extract feature points: a fixed interval method
as a baseline method and the PAA of a time series. For the fixed interval method, if the
length of the string was 1,000 and we aimed to extract 5 points, then we extracted the first,
250th, 500th, 750th, and 1000th points, in a method we dub the fixed feature point (FFP)
method. Figure 4 shows an example of the FFP representation curve. For PAA, we aver‐
aged the values of points in a fixed interval to represent a feature point (Fig. 5). PAA is a
non-data-adaptive representation model that transforms the time series into a different space
and has the same transformation parameters regardless of features of the data at hand [13].
Put differently, the transformation parameters are preset without consideration of the

Fig. 4. FFP method for feature point extraction (temperature)
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underlying data. We further adopted SAX after PAA to represent each feature point of the
load profile symbolically. Due to the constraints of space, we report the results of the FFP
method versus PAA for identifying states of the annealing process.

Fig. 5. PAA method for feature point extraction (temperature)

Feature frames of each annealing process. Based on the methods, we defined time
series data and related notations (Table 3). We denoted time series data of an attribute
i as S = (s1, s2,….sn), with the length of a time series in n and w as the dimensionality
of the space to index the time series data. Put differently, a time series of length n can
be represented in w dimensional space and each feature point by a feature frame of fix
length (i.e., n/w). For PAA, the result is S = (s1, s2,… , sw) – that is, w-dimensional space
by vector S. The ith feature point of S can be derived from Eq. (1).

si =
w

n

w

n
∗i

∑

j=
w

n
∗(i−1)+1

sj (1)

Table 3. Summary of notation used in PAA and SAX

Notations Definitions
Si A time series of length n, Si = (s1, s2,….sn)

w The dimensionality of the space, 1 ≤ w ≤ n
That is, the FFP or PAA segments representing a time series S

FF (feature frame) A feature frame composed by set of attributes
S A piecewise aggregate approximation of a time series
FP_A (feature point of
active power)

A time series of the active power of length w after dimension reduction,
FP_A = (fpa1, fpa2, …fpaw)

FP_T (feature point of
temperature)

A time series of temperature of length w after dimension reduction,
FP_T = (fpt1, fpt2, …fptw)

The attributes selected in a feature frame comprised all extracted points of active
power (FP_A) and the minimum, maximum, and average values of active power; all
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extracted points of temperature (FP_T) and the minimum, maximum, and average values
of temperature; and (3) the weight of raw material information. The feature frame in
Fig. 6 was the input of the training model. The specific notation, with a description of
each attribute set of the feature frame, appears in Table 4. Attributes derive from the
fact table shown in Fig. 2.

Fig. 6. An example of a feature frame as an input string for the prediction model

Table 4. Summary of the notation of the feature frame

Notations Definitions
PMin Minimum value of the active power of a state
PMax Maximum value of the active power of a state
PAvg Average value of the active power of a state
P_N Number of extracted dimensions in a state of the active power
TMin Minimum value of temperature of a state
TMax Maximum value of temperature of a state
TAvg Average value of temperature of a state
T_N Number of extracted dimensions in a state of temperature
PWeight Weight of materials for each operational process
PTime Duration of each state of the entire operational process

5 Experimental Design and Results

5.1 Experimental Setup

We next conducted a series of experiments to construct a prediction model in order to
identify operational states for the target annealing furnace. Notably, we discretized the
streaming data into n segments with timestamps to construct the model. Based on our
preliminary analytical results, we confirmed that either the electric power or temperature
information of the operating machine can help to identify a machine’s entire operational
process, which is 1,440 min on average. We then used the temperature information of
the operating machine to identify three states: warm-up, heat retention, and cooling. We
collected energy consumption data and corresponding product information of two
annealing furnaces from April 1, 2014, to December 31, 2014. Herein, we present the
experimental results for one furnace. We explain the results of the two primary sets of
experiments with the FFP method and PAA as feature extraction methods in what
follows.
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• Experiment 1 (FFP): The set of experiments included original stream data, data with
the normalization process, data with the extreme value removal process, data with
normalization, and the extreme value removal process—respectively, baseline_FFP,
standardization _FFP, extreme_FFP, and hybrid_FFP.

• Experimental 2 (PAA): The set of experiments included original stream data, data
with the normalization process, data with the extreme value removal process, data
with normalization, and the extreme value removal process—respectively, base‐
line_PAA, standardization _PAA, extreme_PAA, and hybrid_PAA.

The purpose of data standardization with z-score standardization is to remove outlier
data points and elucidate the relationship between a data point and the average value of all
data points. The z-score converts all indicators to a common scale with an average of 0 and
standard deviation of 1. The equation of the z-score method used appears in Eq. (2):

Normalized
(
e

i

)
=

e
i
− E

std(E)
(2)

in which ei represents the data points of the load profile, std(E) is the standard deviation of

the data points of the load profile, and E is the mean value of the data points.
The purpose of removing outlier values is to avoid excessive noise in the time series

data. We removed feature points outside twice the standard deviation of the average
value, E, of the target load profile. Ultimately, the hybrid method involved removing
outlier data points and adopting the z-score.

We adopted sequential minimal optimization, in which a multilayer perceptron
(MLP) is a feedforward artificial neural network model, and a radial basis function
(RBF). We tuned different learning rates to train the best MLP model and adopted five-
fold cross-validation to evaluate the root mean squared error (RMSE) of the prediction
results. The RMSE is the mean of the square of all errors, which is used to measure the
differences between values.

5.2 Experimental Results for Identifying Operational States

Tables 5 and 6 show the average results of the three data mining approaches (i.e., MLP,
radial basis function, and sequential minimal optimization) for the FFP method and PPA.
We discretized the time series data into w points and listed the results of each variation
method based on the FFP and PAA approaches. Note that when we set w to 50, for
example, we extracted 50 feature points to represent the entire load profile of the active
power.

Observation 1 (FFP). For the FFP approach, the worst method on average is stand‐
ardization_FPP. However, the hybrid_FFP can achieve the minimum RMSE in
comparison to the other three methods under various w value settings. By contrast,
hybrid_FFP and extreme_FPP have similar results under various w values, which indi‐
cates that we can help to remove the extreme value and then perform standardization.
Overall, the best results on average occurred when w was 100. It seems that a larger w
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value (i.e., more feature points) with the FPP method does not generate better results in
predicting states of machines.

Observation 2 (PAA). Like the FFP approach, the worst method for PAA is stand‐
ardization _PAA. extreme_PAA and hybrid_PAA can achieve the minimum RMSE in
comparison to the other two methods under various w values. Overall, the best results
on average were with w at 150. The FFP method seems insensitive to p-values; however,
more or fewer feature points does not yield better results in predicting states of machines.

Observation 3 (Comparison). Both dimension reduction approaches generated
similar results between the methods. For example, after conducting data standardization
without removing extreme values generated the worst results. When we compared the
method between the approaches, we observed that the FFP method is worse than PAA,
because the former is more sensitive to extract points in representing subsequent parts
of the data stream. As such, we adopted PAA to further symbolize processing by the
SAX algorithm and set w to 150 (i.e., 150 feature points to represent the entire data
stream).

Table 5. Prediction the operational state by FFP method in terms of RMSE

Method/w 50 100 150 200 250 300 350 Average
baseline_FFP 0.070 0.086 0.108 0.085 0.086 0.083 0.100 0.088
standardization _FFP 0.340 0.314 0.497 0.337 0.344 0.365 0.422 0.374
extreme_FFP 0.082 0.081 0.072 0.069 0.0703 0.078 0.072 0.075
hybrid_FFP 0.065 0.058 0.062 0.059 0.065 0.060 0.064 0.062
Average 0.139 0.135 0.185 0.137 0.142 0.146 0.165 0.150

Table 6. Prediction the operational state by PAA method in terms of RMSE

Method/w 50 100 150 200 250 300 350 Average
baseline_PAA 0.121 0.136 0.126 0.150 0.211 0.115 0.129 0.141
standardization _PAA 0.397 0.218 0.090 0.109 0.164 0.104 0.126 0.173
extreme_PAA 0.115 0.097 0.091 0.099 0.091 0.125 0.100 0.103
hybrid_PAA 0.083 0.123 0.127 0.119 0.117 0.107 0.172 0.121
Average 0.179 0.143 0.109 0.119 0.146 0.113 0.132 0.134

6 Conclusions and Future Works

We proposed a time series data mining and analytic framework for electricity consump‐
tion analysis in energy-intensive industries. We deployed a data warehouse frame‐
work to analyze the load profiles of each attribute in order to select key attributes for
further data mining tasks. We then compared the results of two dimension reduction
approaches with various data preprocessing methods to predict the state of the
annealing process of target furnaces. We preliminarily confirmed that PAA with data
outlier removal and data standardization processing can achieve slightly better results
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than the FFP approach. In the future, we will finalize all modules mentioned in the
framework and conduct a series of experiments to confirm the effectiveness of the
proposed framework and approaches to identify electricity patterns and machine
operational states in real time.
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