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Abstract. One of the research fields at the Institute of Flight Systems (IFS) of
the University of the Armed Forces (UniBwM) concerns the integration of
reconnaissance sensor operator support in manned-unmanned teaming (MUM–

T) transport helicopter (HC) missions. The purposive deployment of mission
sensors carried by several unmanned aerial vehicles (multi–UAV) in such
missions brings in new and impactful aspects, specifically in workload-intensive
situations. An associate system offering variable automation levels supports the
HC’s crew by deploying machine-executable functionalities and high-level
capabilities. The crews’ work-processes to handle the reconnaissance payload as
well as to derive and include relevant information in the mission progress are
expected to induce additional mental workload (MWL) during operation. First,
this paper gives an overview of the assistance concept for sensor operation to
minimize the crews’ MWL. Furthermore, an instance of a combined task- and
resource model that describes MWL for several levels of automation in sensor
guidance and payload sensor data evaluation is presented. Model parameters of
human interaction for a holistic task- and activity set will be described. Finally, a
method for demand parameter value determination from a dataset gained by an
experimental campaign and results are presented.

Keywords: Human factors � Mental workload � Workload modelling �
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1 Introduction

In this MUM-T approach, the UAVs shall enable the crew to directly reconnoiter the
intended routes of flight, to survey certain areas such as operation sectors or potential
landings zones and provide information on other mission-specific conditions. However,
since there is no dedicated sensor operator as compared to legacy UAV systems, the
HC’ commander has to handle all related tasks including UAV guidance, mission
sensor deployment and data assessment. Figure 1 shows the schematic team configu-
ration which is focus of interest in this evaluation study.
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To address potential workload increase resulting from the broader task spectrum
and higher overall mission complexity, the crew shall be supported by an adaptive,
cognitive associate system [1–3]. It will provide situation-adapted support by contin-
uous crew supervision and aims to balance the crews’ workload. In [4], three basic
requirements for associate system behavior were proposed, to be applied by associate
systems for crew support. To reduce the overtaxing MWL, the associate system can
involve suitable automation systems that provide context-depended, variable designed
support.

Applying these design requirements to a sensor assistant system fosters the idea of
situation-dependent crew support by executing automated machine-processes.

The goal is to achieve a solution that enables the crew to guide the UAVs directly
from the helicopters cockpit during flight, in which the UAVs automatically supply
mission-relevant reconnaissance results from sensor-perceived and pre-evaluated data.

2 Sensor Operation Assistance Concept

2.1 Motivation

When sensor payload operation now is to be automated in the cockpit, two main factors
regarding human operators need to be considered:

• the effects on the crews’ MWL situation [3] during system operation
• the operators’ “Trust in Automation” [5]

Fig. 1. MUM-T approach illustrated in helicopter mission flight simulator
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These factors are essential in human machine cooperation investigated in this
MUM–T configuration.

The crew commanders’ working situation is mainly affected by the induction of
MWL, caused by additional tasks in the field of reconnaissance sensor operation.

Especially perceiving and interpreting reconnaissance data causes additional MWL,
depending on data bandwidth and degree of data abstraction. Therefore data bandwidth
and data abstraction are the addressed independent parameters to influence the
induction of MWL.

Regarding an operators’ “Trust in Automation”, the automation of airborne
reconnaissance brings in domain specific conditions. Automated sensor evaluation
systems often do not perform in a highly deterministic way, e.g. because of imper-
fection in sensor data evaluation [6] or varying operation environments. Out of a
technical perspective, this circumstance can be addressed by the measure of “trust-
worthiness” of automated reconnaissance systems. In [7], a performance prediction
method for image assessment algorithms is proposed. In this MUM–T application field,
the trustworthiness of automated image assessment by algorithms directly affects
reconnaissance performance. Figure 2 shows the effect “Trust in Automation” in the
reconnaissance systems, besides existing effects that are well known in highly auto-
mated and complex cockpit environments (“Out-of-the-loop” [8], “Opacity-effect” [9,
10], “Over-Reliance” [11], “Brittleness” [9]).

As a result, decreasing automated reconnaissance performance or low trust in
automation could lead to deeper operator involvement and more preference for exe-
cuting a task manually, which both induces workload and contrasts the aim to reduce
workload. In the event of decreasing automated reconnaissance performance, human
MWL is required. Concluding, automated reconnaissance performance and MWL are
contrary.

Fig. 2. Causal relationship of “Trust in Automation” and inconsistent automation character
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2.2 Solution Approach

The two dimensions, automated system performance (represented by trustworthiness)
and human mental workload are triggers and dependencies for a variable interaction
concept. So, the proposed general approach is to maximize the necessary reconnais-
sance performance by decomposing and balancing the antagonism of a tolerable
workload and automated reconnaissance performance.

The proposed operation mode of assistance aims to purposefully modify the
cooperative relationship between the human operator and machine processes. By
adapting the reconnaissance system’s automation level, changes in the crews’
MWL-state are expected. According to [4], task transformation to an easier level is one
major bullet in crew support, so changing to a higher automation degree is assumed to
reduce workload and transform the non-manageable task demand situation to a man-
ageable one. In contrast a forecasted decrease in machine reconnaissance performance
would reduce the automation degree to preserve recon performance by involving more
crew resources.

2.3 Realization

As described in [6], three major functional subsystems to implement such an assistance
concept were introduced, realized by software implementations. They comprise

• functionalities for data presentation and assessment on different levels of
automation,

• crew observation for workload based trigger generation as well as
• decision making for automation level selection.

With respect to the first, variable support means by application of the “levels of
automation” (LOA) paradigm [12, 13] in the domain of sensor deployment was pre-
sented in previous work [6]. Here a repository of tools for reconnaissance sensor
operation was realized on several levels of automation. This toolset includes func-
tionalities for automated data preprocessing and evaluation as well the automated
control of the payload gimbal.

With respect to the last bullet point, a management component was implemented to
select a suitable level of automation. The tradeoff between the crews MWL and a
maximized automated reconnaissance performance is solved by a machine decision
process [6], which is able to automatically adapt the degree of automation.

As a prerequisite for decision making, knowledge about the crew’s activity is
needed. For this a task-model, containing knowledge of the crew’ task load and
associated MWL when performing tasks with different automated support, is utilized.
This model is embedded in software and linked to an online crew activity determi-
nation. For crew activity determination, an external crew supervision system is used to
generate the workload measure of the human crew [14] by referring model knowledge
of all crew activities. Such activity determination enables an associate system to trigger
automation level changes detecting anomaly in task and workload appearance.

This paper focuses on establishing such a task-model.
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3 Modelling of Task-Related MWL

3.1 Modelling Principle

In [3], a unified theory for a task representation and context-rich representation of
MWL was presented. This concept is applied to a holistic human-machine system. The
term task is used to denote a means of communication between a human operator and
an associate system as well as an interface between components of the associate system
themselves. The task construct was also used as expression to describe mental work-
load. Also, the operationalization of crew tasks by a task model was presented. As well,
the derivation of associated MWL from such a task model was demonstrated and a
model instance covering the execution of a MUM-T- transport helicopter cargo mission
was presented [3].

According to the method introduced in [3], the structure consists of elements
representing mission tasks, tasks, complex tasks, actions, properties and relations (such
as alternative, inheritance) between them and evidences for occurrence (Fig. 3). With
these elements, structures can be built up, representing human activity and demand
resource allocation.

3.2 Domain-Applied Model Generation

Focus of this work is now to create a task model instance representing aspects of sensor
guidance from the transport helicopter’s cockpit. By applying the modelling principle,
a depiction of different crew demands for collaboration with the automation system is
aspired. For each necessary crew task performed on several automation levels, a cor-
responding demand representation was added to the task model. Beginning from the
lowest elementary task type which is the first type to combine actions, a task structure
was built up. For each elementary task, corresponding demands are assigned, repre-
sented by eight dimensions according to Wickens’ multiple resource theory [15]
(Fig. 4). The representation covers demand components of information perception
(visual spatial, visual verbal, auditory spatial, auditory verbal), information processing
(cognitive spatial, cognitive verbal) and response (manual spatial, vocal verbal).

Fig. 3. Legend of model properties used for complex task representation
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A tree representation follows which re-uses subtasks and gives a model instance for
crew interaction with the automated sensor system (Fig. 5).

The model instance explicitly describes all crew activities, system interactions and
demands for different automation levels. As can be seen in the model snapshot in, the
detailed view for one complex mission task, in this example the reconnaissance of a
helicopter flight route, shows that this task can be performed by support of three
automation levels or performed manually (Fig. 5). For activity determination,
observables are used. As described in [3], so called “evidences” (observable facts) are
assigned in the model representation. Different observation channels with sensors like
buttons, touch-sensitive displays and eye gaze tracking are used in this application and
associated with modelled “Action” elements. By applying online activity determina-
tion, crew activity can be distinguished for different automation levels, and an alter-
native, advantageous automation level can be proposed by the associate system’s
workload projection if workload issues seem to occur.

Fig. 4. Multiple resource model and demand vector according to [15]

Fig. 5. Snapshot of task model describing crew interaction for several levels of automation
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4 Experimental Evaluation of Mental Workload

To investigate crew behavior in MUM-T missions, a dual-seat generic helicopter
(HC) flight simulator, equipped with multi-touch displays and free configurable
multi-function displays (MFD), was set up (Fig. 1). Graphical user interfaces for crew
interaction with the automated reconnaissance system and visual reconnaissance data
representation during flight missions were embedded in the helicopters MFDs (visible
in Fig. 6).

For crew observation, non-invasive, contact-less eye gaze measurement was applied.
The used eye tracking system smarteye pro consists of four cameras per seat and pro-
vides functionality to capture, monitor and analyze the human operator’s eye gaze
movement. Measured values were current gaze positions on displays. Using a geometric
model of the current MFD configuration, semantic references to graphical content
currently shown on the surface is created. Furthermore, gaze tracking is complemented
by synchronously capturing haptic interaction data to get more explicit evidences.

The goal is to determine human demand parameters [15] to be deposited in the task
model described above. Therefore, a raw interaction dataset of visual and haptic inter-
action was gathered in human-in-the-loop experiments by crew observation sensors.

Fig. 6. User interface with annotations concerning different types of data representation and
human interaction (Color figure online)

Model-Driven Payload Sensor Operation Assistance 57



4.1 Interaction Dataset Recording

We defined and prepared separate use-cases of typical task constellations with several
UAVs to be evaluated in the MUM–T mockup mission-simulator. For each use-case
representing the task execution on several automation levels, we isolated phases con-
taining the performance of reconnaissance task from the cockpit. Within the experi-
ment, the reconnaissance automation levels were applied within a task-based-guidance
concept [16]. A data recorder collected all user interactions with the running
automation systems and reconnaissance result representation on the MFDs surfaces.

Figure 6 shows the user interface with observed and recorded interaction values
and types, consisting of visual and haptic user interaction. Red borders in Fig. 6 show
the interaction fields and data types of different visual data representation on different
automation levels. Data representation comprises three different types of data; a live
video feed, rectified and georeferenced ground images (image mosaicing) as well as
tactical symbols.

Observable visual evidences are the operators gaze position on the live video feed,
on the rectified ground images and on tactical map elements. Haptic evidences are user
inputs by button presses and gestures on the map. These evidences are directly mapped
to actions. For each automation level, different user demands exist. For specifying these
demands from the raw data record, the data was analyzed and evaluated by an algo-
rithm based method.

4.2 Derivation of MWL

To derive demand parameters of the raw data set, the two indicators time and inter-
action event amount were chosen. The factor of event quantity per observation time is
the bandwidth of evidence observations. The derived demand values are normalized on
the maximal human demand (perception visual spatial and response manual) during
manual performance. For making different source data bandwidths comparable, the
same amount of reconnaissance result to be presented was configured.

The following section illustrates the automated processing cycle for parameter
extraction by pseudocode:
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4.3 Results

By evaluating the recorded dataset, demand components of information processing and
response of the multiple resource model [15] were extracted successfully. For each
automation level, the two most important components VS (visual spatial) and RM
(response manual) could be determined.

Figures 7, 8, 9, 10 and 11 show the isolated interaction datasets of “complex” task
[3] execution for all automation levels and one exemplary given single task of the task
model instance. The corresponding demand parameters were reconstructed from the
interaction dataset.

The observation interval in Fig. 7 shows the interactions of “unassisted” manual
reconnaissance. From this observation interval, the reference value RM for normal-
ization was reconstructed. The operator’s haptic interaction activity is the highest

Fig. 7. Interaction dataset and observation interval for “unassisted” mode

Fig. 8. Interaction dataset and observation interval for “Video Assisted” mode
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possible, the sensor was guided fully manual and sensor data had to be evaluated
visually.

Figure 8 shows the interactions of the “Video Assisted” automation level. From
this observation interval, the reference value VS for normalization was reconstructed.
The operator’s visual interaction activity is the highest possible, monitoring moving
image is assumed as the most demanding visual activity. Sensor guidance was executed
by automation which means that no manual interaction was required.

Fig. 9. Interaction dataset and observation interval for “Map Assisted” mode

Fig. 10. Interaction dataset and observation interval for “Tactical Assisted” mode

60 C. Ruf and P. Stütz



In the “Map Assisted” mode, the ground images had to be analyzed. The same
amount of reconnaissance data could be evaluated in a shorter normative interaction
time interval. Manual interaction occurred when shifting and zooming the ground
image map. The extracted values were scaled to the VS and RM maximal values.

The interactions in the “Tactical Assisted” mode (Fig. 10) occurred when the
highest automation degree produced tactical elements on the map.

Finally, the single task “Identify targets” was performed (Fig. 11). Three simulated
objects had to be analyzed and identified in the live video feed.

Fig. 11. Interaction dataset and observation interval for task “Identify targets”
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4.4 Result Interpretation and Reflection

By critically examining the demand parameter extraction and source dataset the fact
became obvious, that there is no informational content about the demands of “infor-
mation processing” components according to [15] (especially cognitive spatial) con-
tained in the record. Another activity measurement type would be needed to retrieve
such information content. The CS demand had to be determined by specialist knowl-
edge applied in this domain. All the other information perception demand values did
not occur in this task set (VV, AS, AV) and were set to 0, as well as the other response
demand RV and the other processing demand CV.

In general, the applied method is able to fill the described parameters of larger
models.

Analyzing systematic error sources, the experiment covered only several use-cases,
not the complete task model parameter extraction. Therefore, small observation hori-
zons were used that inherit the risk for high variance and normalizations become more
prone to inaccuracy.

Operator observation processes, especially the gaze tracking method, is afflicted
with measurement noise that may yield to wrong semantic associations of surface
elements; such values were discarded in this experiment.

The goal of the campaign was to methodically determine specified model parts; the
campaign and method is not representative in general. The results however show that
the suggested automation levels reflect different user demands and the assistance
approach is applicable for reduction of MWL.

5 Future Work

By connecting and linking the introduced subsystems, a software based chain to
evaluate the sensor assistance concept was implemented in our MUM-T helicopter
mission simulator. Future work comprises the application of all software modules in a
full-mission scenario. A closed-loop-operation for functional demonstration of the
holistic HC- associate system applying sensor automation with usage of the proposed
sensor assistant system will be realized in the near future.

Experimental evaluation of the proposed concept as well as the effects on crew and
mission performance by human-in-the-loop experiments with military transport heli-
copter crews is aspired.
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