
Evaluating the Privacy Implications
of Frequent Itemset Disclosure

Edoardo Serra1, Jaideep Vaidya2(B), Haritha Akella1, and Ashish Sharma1

1 CS Department, Boise State University, Boise, USA
2 MSIS Department, Rutgers University, New Brunswick, USA

jsvaidya@rutgers.edu

Abstract. Frequent itemset mining is a fundamental data analytics
task. In many cases, due to privacy concerns, only the frequent itemsets
are released instead of the underlying data. However, it is not clear how
to evaluate the privacy implications of the disclosure of the frequent item-
sets. Towards this, in this paper, we define the k-distant-IFM-solutions
problem, which aims to find k transaction datasets whose pair distance is
maximized. The degree of difference between the reconstructed datasets
provides a way to evaluate the privacy risk. Since the problem is NP-
hard, we propose a 2-approximate solution as well as faster heuristics,
and evaluate them on real data.

Keywords: Inverse Frequent itemset Mining · Column generation

1 Introduction and Related Work

Frequent itemsetmining [1] is a crucial datamining taskwhich has numerous appli-
cations in knowledge discovery such as recommendation, classification, etc. Many
efficient implementations exist, [5], all of which assume that the underlying data-
base is accessible to the data miner. However, often privacy concerns prohibit the
direct release of data. Since frequent itemsets can serve as a good proxy for the
underlying data and still enable different kinds of analysis, often they are released
instead. Prior work has examined whether it is possible to find the original dataset
from the frequent itemsets, defined as the Inverse frequent set mining (IFM) prob-
lem and studied from several different perspectives [4,6,7,9]. IFM aims to find
a transaction dataset D that satisfies a given set of itemset support constraints
(i.e., the support or frequency of an itemset should be contained within the speci-
fied numeric interval). Wang and Wu [13] also introduced the ApproSUPP problem,
where they asked whether it is possible to satisfy the various support constraints

This work was supported by Idaho Global Entrepreneurial Mission (IGEM) pro-
gram Grant 131G106011 (Precision Ag - Increasing Crop), the National Science
Foundation Grant CNS-1422501 and the National Institutes of Health Award
R01GM118574. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the agencies funding the research.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 506–519, 2017.
DOI: 10.1007/978-3-319-58469-0 34

Privacy Implications of Frequent Itemset Disclosure 507

in an approximate fashion and presented an ILP formulation along with heuristic
strategies. Several alternative heuristics have also been proposed [10,14]. However,
while IFM provides a measure of the degree of difficulty in inverting a set of sup-
port constraints into a dataset producing these, there is no notion of how different
that dataset is from the original that needs to be protected.

In this paper, we precisely tackle this problem. We formulate a new prob-
lem called the k-distant-IFM-solutions which combines the IFM problem with
elements of K-anonymity [11] and L-diversity [8]. Specifically, the problem con-
sists in finding k IFM solutions (transaction datasets) whose pair distance is
maximized. This ensures that we have at least k different solutions to the IFM
problem that are all potentially quite different. Since any of these could be the
source, and are as different as possible from each other, this gives a minimum
bound on the degree of privacy afforded by the frequent itemsets. We show that
the problem is NP-hard, and give a 2-approximation based on the greedy strat-
egy. However, given the complexity of the underlying problem, we also develop a
heuristic based on an ILP formulation (see [12]) that is quite efficient. Thus, our
work is orthogonal to all of the prior work, since it considers the problem of find-
ing multiple datasets meeting the given set of support constraints, and provides
a better estimate of the risk of disclosure through the frequent itemsets.

2 Problem Statement

Let I be a set of items. An itemset I is a subset of I. A transaction Dataset
D is a pair (TD,#D), where TD is a set of transactions (i.e. itemsets) contained
in D and #D : 2I → N is a function assigning to each transaction a number of
duplicates such that if t ∈ TD then #D(t) > 0, otherwise #D(t) = 0.

Example 1. Let I = {a, b, c}. Following is an example of a transaction database
where #D(t) = 0 for each transaction t that is not present in TD and #D(t) > 0
for transactions that are present in TD.

D
{a,b}
{a}

{a,b}
{a,b}

{a,b,c}
{a,b,c}

⇒
TD #D
{a} 1

{a,b} 3
{a,b,c} 2

Given an itemset I, the support of I w.r.t. D is
support(I,D) =

∑
t∈TD,I⊆t #D(t) and its frequency

is frequency(I,D) = support(I,D)
|D| . Given a dataset

D, the frequent itemset mining problem aims to find
all of the itemsets whose frequency is greater than
a given threshold.

In our paper, we assume that instead of releasing
the actual dataset, only a set of itemsets is released
along with their frequencies due to privacy concerns. However, in this case, the
problem that we study is the extent to which it is possible to retrieve the orig-
inal dataset D. This is related to the Inverse Frequent itemset Mining (IFM)
problem, which aims to find a dataset such that the frequencies of a set of given
itemsets for that dataset are in a specific range interval. IFM is formally defined
as follows:

508 E. Serra et al.

The IFM problem. Given a set of items I, two integer numbers sl, su, a set of
support constraints S of the form (I, l, u) where I is an itemset on I and l, u ∈ N
with l ≤ u. The IFM problem, denoted as IFM(I, sl, su, S), consists in finding
a dataset D such that sl ≤ |D| ≤ su and ∀(I, l, u) ∈ S : l ≤ support(l,D) ≤ u.

Given a set of support constraints S, IFM provides information about degree
of difficulty of generating a dataset that produces those frequent itemsets. How-
ever, note that while the solution to IFM enables malicious users to find a dataset
that also meets the same support constraints, it does not say anything about
whether this is the real dataset or how different it is from the real dataset.
Indeed, given a set of support constraints S, more than one dataset solution
can exist for the IFM problem. While this increases uncertainty in terms of the
actual dataset, it may not significantly increase privacy since all of the datasets
might be quite similar, thus actually reducing privacy.

Thus, to enable evaluation of the privacy risk associated with frequent itemset
disclosure, we formalize a new problem called k-distant-IFM-solutions, i.e. find
k IFM solutions whose pair distance is maximized. If we can find a sufficient
number of solutions that are quite different from each other, then it significantly
increases the degree of uncertainty and thus privacy. We can also take into
consideration the problem of finding subset of support constraints or a perturbed
version that can maximize the pair distance among all of the k IFM solutions.

2.1 K-distant-IFM-solutions Problem

We first define the distance between two datasets, and then formalize the
actual problem. While Jaccard or Hamming distance is a good metric to mea-
sure the distance between two individual transactions, they cannot directly be
used to measure the difference among the collection of transactions. In our
problem, the number of duplicate transactions has a significant meaning and
therefore we chose to define our own metric that extends the Hamming dis-
tance for collection of transactions. Furthermore, we use the edit distance con-
straint to ensure that the different datasets obtained are sufficiently apart from
each other based on our distance metric. Consider a case where the dataset
D1 = {{a, b, c}, {a, b, c}, {a, b, f}} and D2 = {{a, b, c, h}, {a, b, c, h}, {a, b, f, h}}.
Since there are no transactions in common, (D1,D2) = 6 is the maximum dis-
tance that can be obtained. However, these datasets are exactly the same except
for the item h. The edit distance constraint addresses this issue.

Given two datasets D1 and D2 over I, we define the function dist(D1,D2)
between D1 and D2 as

dist(D1,D2) =
∑

t∈TD1∪TD2

|#D1(t) − #D2(t)|

This distance is a metric, but we omit the proof due to lack of space.

2.2 k-distant-IFM-solutions

Given a set of items I, a positive integer number k, two integer numbers sl, su,
a set of support constraints S of the following form (I, l, u) where I is an

Privacy Implications of Frequent Itemset Disclosure 509

Algorithm 1. Greedy Algorithm
1: procedure greedyAlgorithm(I, S)
2: SD = ∅;
3: Choose D∗ ∈ SOL(I, S)
4: while (|SD| ≤ k) do
5: SD = SD ∪ {D∗};
6: Choose D∗ ∈ arg maxD∈SOL(I,S)\SD pairDist(SD ∪ D);
7: end while
8: return SD;
9: end procedure

itemset on I and l, u ∈ R. The k-distant-IFM-solutions problem consists of
finding a set of k datasets SD = {D1, . . . ,Dk} such that for each D ∈ SD,
D is a solution of IFM(I, sl, su, S), and the pair distance pairDist(SD) =∑

Dj ,Di∈SD,i>j dist(Di,Dj) is maximized.

Theorem 1. The k-distant-IFM-solutions problem is NP-hard.

Since finding even one solution of IFM(I, sl, su, S) is NP-hard (as shown in [4]),
finding k solutions is also NP-hard.

3 Proposed Approach

We now discuss how this problem can be solved. Let us assume SOL(I, S) is
the set of all datasets that are the solution of IFM(I, S).

Thus, the k-distant-IFM-solutions can be formalized as

SD∗ ∈ arg max
SD⊆SOL(I,S),|SD|=k

pairDist(SD)

For this problem, Borodin et al. [3] show that if the function dist is a
metric, then the Greedy Algorithm (Algorithm 1) gives a 2-approximate solu-
tion. However, we still need to specify how steps 3 and 6 of Algorithm 1
will be executed, i.e. how to choose D∗ ∈ SOL(I, S) (for step 3) and D∗ ∈
arg maxD∈SOL(I,S)\SD pairDist(SD ∪ D) (for step 6). Step 3 simply requires
finding a solution for IFM, which is well understood. For the sake of simplicity
and efficiency, we simply choose the first feasible solution instead of choosing a
solution randomly. We denote the problem in Step 6 as the Maximum Distant
Dataset and now show how to solve it.

3.1 Maximum Distant Dataset

The goal of maximization is to maximize the difference between the created
dataset and existing datasets. Thus, we would like to find a dataset D that max-
imizes

∑
D′∈SD dist(D′,D), which is equivalent to maximizing pairDist(SD∪D).

In order to solve the Maximum Distant Dataset we provide an ILP formulation.
This formulation is based on three kinds of variables:

510 E. Serra et al.

– a real variable xt, for each possible transaction t ⊆ I, modeling the number of
duplicates #(t) for each transaction t in the dataset that we have to generate
(we relax the assumption that number of duplicates is an integer number);
Effectively, the variable xt gives the support count of the transaction t in the
newly created dataset.

– a real variable yD
t , for each D ∈ SD and t ∈ TD, modeling the values

|#D(t) − xt|; Note that for all transactions t present in the existing datasets,
|#D(t) − xt| gives the absolute difference in support for such transactions in
each dataset D. For the transactions t that are not present in the existing
datasets, xt directly gives the support of such transactions in the new dataset.

– a binary variable zD
t , for each D ∈ SD and t ∈ TD, that is used to emulate

the absolute value |#D(t) − xt|.
Now, the formulation is as follows:

maximize
∑

D∈SD

(∑

t∈TD

yD
t +

∑

t⊆I,t�∈TD

xt

)
(1)

∑

t⊆I,I⊆t

xt ≥ l (I, l,) ∈ S (2)

∑

t⊆I,I⊆t

xt ≤ u (I, , u) ∈ S (3)

∑

t⊆I
xt ≥ sl (4)

∑

t⊆I
xt ≤ su (5)

#D(t) − xt ≤ yD
t D ∈ SD, t ∈ TD (6)

−#D(t) + xt ≤ yD
t D ∈ SD, t ∈ TD (7)

#D(t) − xt + 2 ∗ kt ∗ (1 − zD
t) ≥ yD

t D ∈ SD, t ∈ TD (8)

−#D(t) + xt + 2 ∗ kt ∗ zD
t ≥ yD

t D ∈ SD, t ∈ TD (9)
xt ≥ 0 t ⊆ I (10)

yD
t ≥ 0 D ∈ SD, t ∈ TD (11)

zD
t ∈ {0, 1} D ∈ SD, t ∈ TD (12)

Where, kt = min(su,min(I, ,u)∈S,I⊆t u).

As can be seen, we have two groups of constraints. The first group of con-
straints from 2 to 5 defines the minimum support, the maximum support, the

Privacy Implications of Frequent Itemset Disclosure 511

minimum size and the maximum size, respectively. The second group constraints
from 6 to 9 contribute in modeling the absolute value |#D(t)−xt| is equal to yD

t .
More specifically, constraints 6 and 7 impose that |#D(t) − xt| ≤ yD

t ensuring
that the variable yD

t is an upper bound of the absolute difference between xt and
#D(t). Constraints 8 and 9 impose that only one condition between #D(t) − xt

and xt − #D(t) has to be greater than or equal to yD
t . Latter two constraints

ensure that yD
t is also the lower bound of the absolute difference between xt

and #D(t). The constraints from 6 to 9, together, ensure that yD
t = #D(t) − xt.

However, note that only one of the constraints between 8 and 9 can be met. zDt
is the decision variable activating one of these two constraings, while kD

t is the
smallest constant that is large enough to ensure that these constraints are met.
Finally, the maximization function (expression 1) maximizes the degree of differ-
ence in support for transactions present, which exactly models the maximization
of distance metric defined in Sect. 2.1.

Usually, adding more constraints to an integer linear program reduces
the search space by improving the bound obtained by the linear formulation
and consequently reduces the computation time. Therefore, we define addi-
tional constraints and variables imposing that the value yD

t = |#D(t) − xt|
is max(#D(t), xt) − min(#D(t), xt). The real variables yD

t,max and yD
t,min model

max(#D(t), xt) and min(#D(t), xt), respectively. The revised ILP is given below.
Note that in this case, the integer variables and the constraints are polynomial
in the description of SD and S, respectively. The main issue is represented by
the exponential number of real variables xt due to all the possible transactions
t ⊆ I. Thus, these linear programs cannot really be directly solved. However, we
can use an alternative technique called the branch and price algorithm (see [2]).

#D(t) ≥ yD
t,min D ∈ SD, t ∈ TD (13)

xt ≥ yD
t,min D ∈ SD, t ∈ TD (14)

#D(t) ≤ yD
t,max D ∈ SD, t ∈ TD (15)

xt ≤ yD
t,max D ∈ SD, t ∈ TD (16)

#D(t)(1 − zD
t) ≤ yD

t,min D ∈ SD, t ∈ TD (17)

xt − kt ∗ (1 − zD
t) ≤ yD

t,min D ∈ SD, t ∈ TD (18)

(#D(t) − kt) ∗ zD
t + kt ≥ yD

t,max D ∈ SD, t ∈ TD (19)

xt + kt ∗ zD
t ≥ yD

t,max D ∈ SD, t ∈ TD (20)

yD
t,max − yD

t,min = yD
t D ∈ SD, t ∈ TD (21)

yD
t,max + yD

t,min = #D(t) + xt D ∈ SD, t ∈ TD (22)

yD
t,min ≥ 0 D ∈ SD, t ∈ TD (23)

yD
t,max ≥ 0 D ∈ SD, t ∈ TD (24)

512 E. Serra et al.

Algorithm 2. HeuristicSolver
1: procedure HeuristicSolver((SD, S, sl, su))
2: Generate integer linear program P according SD, S, sl and su where the set of

variables with prefix x is only equal to {xt|D ∈ SD, t ∈ TD};
3: Relax in P the binary constraints the variables with prefix z;
4: Solve the program P ;
5: Find a new transaction t (if it exists) by solving the price problem;
6: while (t exists) do
7: Add the variable xt in P ;
8: Solve the program P ;
9: Find a new transaction t (if it exists) by solving the price problem;

10: end while
11: Add in P the binary constraints on the variables with prefix z;
12: Solve the program P ;
13: Obtain from the solution of P the dataset D;
14: return D;
15: end procedure

3.2 Heuristic Solver

The branch and price algorithm is a branch and bound algorithm that at each
branch solves the relaxed problem (i.e. the linear one) by using column genera-
tion techniques. Given that the number of variables is huge, column generation
techniques make the problem tractable. Instead of working on the entire set of
variables, the column generation technique starts with a prefixed number (in our
case the variables related to all the transactions in SD) and at each iteration it
generates a new variable or column (a new transaction) whose reduced cost is
negative [4,7]. In order to generate a new variable a new problem called price
problem has to be solved. The price problem consists of finding a new column
with negative reduce cost, which is strictly related to the simplex algorithm [12]
and how it works. Note that the specific price problem changes based on the
underlying LP or ILP formulation. In prior work [7] the problem in Definition 2
has already been formalized as a linear program whose constraints are the con-
straints from 2 to 5. [7] also solves it with a column generation techniques and its
price problem. In our problem we start by considering all the variables referring
to all the transactions in SD. Then the new variables or columns that we have
to generate are those not involved in the constraints from 6 to 22. The main idea
is to use the column generation techniques to solve the relaxation formulation
where all the binary variables are substituted with real variables restricted to
[0, 1]. Then, use all the columns generated in the column generation algorithm
to solve the ILP version. Algorithm 2 gives the details.

Price Problem. The pricing problem consists in finding a new transaction
different from all the previous transactions whose reduced cost is negative. It is
known that the reduced cost of a column can be expressed as a linear combination
of the dual variable associated to each constraint of the linear program (see [6]).

Privacy Implications of Frequent Itemset Disclosure 513

Let dsl, dsu, dlI and duI (where (I, ,) ∈ S) be the dual variables associated
to the constraints of the kinds 2, 3, 4 and 5. The reduced cost of a transaction
t is rc(t) = 1 + dsl + dsu +

∑
I⊆t,(I, ,)∈S(dlI + duI). Given the set of current

datasets generated SD, the set of all the different transactions present in SD
is defined as tr(SD) =

⋃
D∈SD TD. Now, we show an integer linear program

solving the price problem. A generic transaction is a set of items then we can
represent this transaction by using |I| binary variable {qi|i ∈ I} s.t. if the item
i is contained in t then qi = 1 or qi = 0 otherwise. In order to model the reduced
cost function, it is essential to know which of the itemset in S are contained in the
new transaction. Therefore, we define a set of binary variables {hI |(I, ,) ∈ S}
s.t. if the itemset I (with (I, ,) ∈ S) is contained in the new transaction then
hI = 1 or hI = 0 otherwise.

The objective function represents the reduced cost of the new transaction.
The first two constraints 26 and 27, impose that whether the transaction rep-
resented by the set of variables {qi|i ∈ I} contains an itemset I, the variable
hI is equal to 1 or 0 otherwise. The third constraint 28 imposes that the edit
distance between each transaction in tr(SD) and the new one has to be greater
than or equal to the constant minED. minED can be one if we only want that
the current transaction should be different by each other, but can be more than
one to enforce that all the transactions in all the K datasets generated are very
different. This parameter is very important in order to produce datasets differ-
ent not only in terms of number of duplicates, but also in terms of transaction
structure. The last constraint 29 imposes that the transaction is not an empty
set. Thus, the following integer linear program finds a new transaction s.t. its
reduced cost is minimized. Note that after solving this ILP program we have to
check if the reduced cost is negative, and only continue to iterate if so. Other-
wise, the heuristic solver stops because there does not exist any transaction with
negative reduced cost.

minimize 1 + dsl + dsu +
∑

(I, ,)∈S

hI · (dlI + duI) (25)

hI ≤ qi (I, ,) ∈ S, i ∈ I (26)
∑

i∈I

qi ≤ |I| − 1 + hI (I, ,) ∈ S (27)

∑

i∈t

(1 − qi) +
∑

i∈I\t
qi ≥ minED t ∈ tr(SD) (28)

∑

i∈I
qi ≥ 1 (29)

qi ∈ {0, 1} i ∈ I (30)
hI ∈ {0, 1} (I, ,) ∈ S (31)

514 E. Serra et al.

4 Experimental Evaluation

We now discuss the experimental evaluation. Three datasets – 2 real datasets
(BMS-Webview-1, BMS-Webview-2) and a synthetic one (T10I4D100K) – were
used to conduct experiments. The dataset parameters are given in Table 1. Each
instance of our problem is represented by several parameters: sizemax (su),
sizemin (sl), set of items (I), set of support constraints S (at different levels of
support), support values (ρ), k (number of different datasets to be generated),
edit distance (minED). Sizemax and Sizemin were obtained for each dataset by
adding and subtracting 10000 from the size of the original dataset, respectively

Table 1. Dataset description

Dataset name Real
dataset size

Distinct
items

Avg. trans.
Size

Max trans.
Size

sl su

BMS WebView1 59602 497 2.5 267 49602 69602

BMS WebView2 77512 3340 4.6 161 67512 87512

T10I4D100K 100000 870 10 300 90000 110000

(a) BMS Webview1: ρ = 0.9%, MinED = 1 (b) BMS Webview2: ρ = 0.9%, MinED = 1

(c) T10I4D100K: ρ = 0.9%, MinED = 1

Fig. 1. Varying k and interval threshold Δ

Privacy Implications of Frequent Itemset Disclosure 515

(a) BMS WebView1: Δ = 0.05, MinED = 1 (b) BMS WebView2: Δ = 0.15, MinED = 1

(c) T10I4D100K: Δ = 0.15, MinED = 20

Fig. 2. Varying support threshold

(as noted in Table 1). minED was set to 1, 10, 20, 30, and K was varied from 2
to 11 (inclusive).

In order to generate the support constraints, of the form (I, l, u), we compute
the set of the frequent itemsets from each datasets where the minimum support
value δ was varied in the range 0.2%, 0.3%, 0.4%..., 0.9%, 1%. The lower and the
upper bound threshold for each frequent itemset I were obtained by using the
following formulas l = support(I,D) ∗ (1 − Δ) and u = support(I,D) ∗ (1 + Δ)
where the interval threshold (Δ) was set to values 0.0, 0.05, 0.1, 0.15, 0.2. Thus,
when Δ = 0.0, we have that l = u = support(I,D).

All experiments were carried out on machines with CentOS7 (x86-64) Oper-
ating System, 2 Xeon Processors (E5-2620 v3 @ 2.40 GHz), and 256 GB RAM.
We report the execution time as well as the pairDist calculated for each dataset.

Varying Δ: We first observe the impact of varying itemset interval threshold
Δ on execution time. k (the number of datasets to create) has been varied from
2–11. It was observed that the execution time was almost constant with varying
interval threshold Δ values in the interval {0.0, 0.05, 0.1, 0.15, 0.2} for all the
three datasets except for Δ = 0.0 for which execution time increased. Figures 1a–
c represent the impact of k-anonymity values and interval threshold values on

516 E. Serra et al.

(a) BMS WebView1: Δ = 0.05, k=2 (b) BMS WebView2: Δ = 0.15, k=4

(c) T10I4D100K: Δ = 0.15, k=3

Fig. 3. Varying edit-distance for different Δ and k

execution time for the three datasets. The results show that as we increase the
value of delta, the flexibility allowed to the solver also increases and it quickly
finds a feasible solution.

Varying support threshold values: We next observe the impact of varying
k along with varying support threshold values on the execution time for solving
a k-distant-IFM-solution. Figures 2a–c show the impact of varying k on execu-
tion time. It can be noted that while the time required is different for the three
datasets for the different support threshold values, it does not change much
with respect to k. For BMS Webview-2 and T10I4D100K datasets with varying
ρ%, similar trend is observed. In [7] (which models IFM with linear programs),
increasing ρ% decreases the execution time. However, for integer linear formu-
lations with more constraints, search space is decreased and it is easier to find a
solution. Therefore, increase in ρ%, increases the execution time.

Due to the significant computational resources required and the large number
of experiments to be carried out, we were only able to carry out experiments for
a few values of support for BMS Webview2 dataset. But we did check to make
sure that the overall behavior is the same. For T10I4D100K dataset, lower values
of support lead to a huge number of frequent itemsets. Therefore, we limited the

Privacy Implications of Frequent Itemset Disclosure 517

(a) BMS WebView1: Δ = 0.15, MinED = 10 (b) BMS WebView2: Δ = 0.20, MinED = 30

(c) T10I4D100K: Δ = 0.15, MinED = 1 (d) BMS WebView1: ρ = 0.4%, MinED = 20

(e) BMS WebView2: ρ = 0.5%, MinED = 1 (f) T10I4D100K: ρ = 0.8%, MinED = 10

Fig. 4. Average Distance w.r.t varying ρ and Δ

experiments to higher values of support. Also, the behavior of execution time
with respect to k is clear even when k is limited to 11, which was sufficient reason
not to go beyond 11 for k as these operations are computationally expensive.

Varying edit-distance values: We next observe the impact of varying edit-
distance values in the range [1, 10, 20, 30]. Figures 3a–c show the impact on

518 E. Serra et al.

execution time for the three datasets. We can generally observe that time does
not significantly change by varying the edit distance.

Pairwise average distance varying k, ρ and Δ: Finally, we observe the effect
of varying k, ρ and Δ on the pairwise distance. Firstly, for varying support con-
straints ρ and k, Figs. 4a–c show the impact of k w.r.t. distance/((k ∗ (k−1))/2)
values for the three datasets. Here, no specific trend can be observed. However,
if we consider that our approach is based on 2-approximation algorithm, these
trends can be considered constant within an approximation range. Similarly, if
we consider the case where we vary ρ, it can be observed that as the support
increases, the average distance decreases and vice-versa (of course within the
approximation range). This shows that as the amount of information about the
distribution of the itemsets disclosed increases, the privacy risk increases (several
transaction databases nearby each other).

Secondly, for varying interval threshold Δ, Figs. 4d–f show the impact of k
values w.r.t. distance/((k ∗ (k − 1))/2) for the three datasets. We can observe
that as interval Δ decreases, the average distance also decreases. Essentially,
increasing the support interval size for each itemset increases the uncertainty of
the itemset distribution and thus decreases the privacy risk. Additionally, note
that in Fig. 4c and f, there is a peak in the plots between k = 2 and k = 3. This
is because Algorithm 1 in line 3 initialize the SD with an arbitrary transaction
database which is not chosen in a way that would maximize the distance of the
future transaction database candidates.

5 Conclusion

In this paper we define the K-distant-IFM-solutions problem, that enables eval-
uation of the frequent itemset disclosure risk and propose a solution for it. The
experimental evaluation shows that the proposed approach is effective. In our
future work, we plan to develop methodologies that are able to perturb the
support of the itemsets disclosed in order to minimize the disclosure risk. In
addition, we plan to extend these techniques to work with sequence mining as
well – where we consider sequences rather than itemsets.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)

2. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46, 316–329 (1996)

3. Borodin, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular
functions and dynamic updates. In: Proceedings of the 31st Symposium on Prin-
ciples of Database Systems, PODS 2012, pp. 155–166. ACM, New York (2012).
http://doi.acm.org/10.1145/2213556.2213580

http://doi.acm.org/10.1145/2213556.2213580

Privacy Implications of Frequent Itemset Disclosure 519

4. Calders, T.: Itemset frequency satisfiability: complexity and axiomatization. Theor.
Comput. Sci. 394(1–2), 84–111 (2008)

5. Goethals, B., Zaki, M.J.: Fimi03: workshop on frequent itemset mining implemen-
tations. In: Third IEEE International Conference on Data Mining Workshop on
Frequent Itemset Mining Implementations, pp. 1–13 (2003)

6. Guzzo, A., Moccia, L., Saccà, D., Serra, E.: Solving inverse frequent itemset min-
ing with infrequency constraints via large-scale linear programs. TKDD 7(4), 18
(2013). http://doi.acm.org/10.1145/2541268.2541271

7. Guzzo, A., Saccà, D., Serra, E.: An effective approach to inverse frequent set min-
ing. In: Ninth IEEE International Conference on Data Mining, ICDM 2009, pp.
806–811, December 2009

8. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3
(2007)

9. Mielikainen, T.: On inverse frequent set mining. In: Society, I.C. (ed.) Proceedings
of the 2nd Workshop on Privacy Preserving Data Mining (PPDM), pp. 18–23
(2003)

10. Ramesh, G., Maniatty, W., Zaki, M.: Feasible itemeset distributions in data mining:
theory and application. In: Proceedings of the 28th International Conference on
Very Large Data Bases, pp. 682–693 (2002)

11. Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

12. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons Inc.,
New York (1986)

13. Wang, Y., Wu, X.: Approximate inverse frequent itemset mining: Privacy, com-
plexity, and approximation. In: ICDM, pp. 482–489 (2005)

14. Wu, X., Wu, Y., Wang, Y., Li, Y.: Privacy-aware market basket data set generation:
an feasible approach for inverse frequent set mining. In: Proceedings of the 5th
SIAM International Conference on Data Mining (2005)

http://doi.acm.org/10.1145/2541268.2541271

	Evaluating the Privacy Implications of Frequent Itemset Disclosure
	1 Introduction and Related Work
	2 Problem Statement
	2.1 K-distant-IFM-solutions Problem
	2.2 k-distant-IFM-solutions

	3 Proposed Approach
	3.1 Maximum Distant Dataset
	3.2 Heuristic Solver

	4 Experimental Evaluation
	5 Conclusion
	References

