
Formal Modeling and Analysis with Humans
in Infrastructures for IoT Health Care Systems

Florian Kammüller(B)

Middlesex University, London, UK
f.kammueller@mdx.ac.uk

Abstract. In this paper, we integrate previously developed formal
methods to model infrastructure, actors, and policies of human cen-
tric infrastructures in order to analyze security and privacy properties.
A fruitful approach for discovering attacks on human centric infrastruc-
ture models is invalidation of global policies. Invalidating global poli-
cies by a complete exploration of the state space can be realized by
modelchecking. To counter the state explosion problem inherent in mod-
elchecking, Higher Order Logic (HOL) supported by the interactive the-
orem prover Isabelle can be used to emulate modelchecking. In addition,
the Isabelle Insider framework supports modeling and analysis of human
centric infrastructures including attack trees. In this paper, we inves-
tigate how Isabelle modelchecking might help to improve detection of
attack traces and refinement of attack tree analysis. To this end, we use
a case study from security and privacy of IoT devices in the health care
sector as proposed in the CHIST-ERA project SUCCESS.

1 Introduction

The expressive power of HOL allows modeling the process of social explana-
tion inspired by Max Weber into an Isabelle Insider Threat framework. We
applied this framework to case studies from airplane safety and security [8],
insider threats for the IoT [10], and for auction protocols [9]. The CHIST-ERA
project SUCCESS [2] will employ the framework in combination with attack trees
and the Behaviour Interaction Priority (BIP) component architecture model to
develop security and privacy enhanced IoT solutions. A pilot case study from
the health care sector, cost-effective IoT-based bio-marker monitoring for early
Alzheimer’s diagnosis, will enable us to investigate the feasibility of the approach.

The Isabelle Insider framework [14] is used as a basis for a formalisation of an
architecture-level description of the infrastructure including human actors, their
psychological disposition, and core privacy and security requirements integrated
as logical predicates of local security and privacy policies. The modelchecking
procedure advocated in the invalidation approach to Insider threat analysis [13]
has meanwhile been incorporated into the Isabelle tool [7]. Its applicability has
been demonstrated by means of an example on the analysis of an earlier IoT
case study [10]. However, in this earlier IoT case study, we originally extended
the Isabelle Insider framework by the concept of attack trees to refine known
c© Springer International Publishing AG 2017
T. Tryfonas (Ed.): HAS 2017, LNCS 10292, pp. 339–352, 2017.
DOI: 10.1007/978-3-319-58460-7 24

340 F. Kammüller

IoT Insider attack vectors. Attack trees allow refining known attack vectors into
sequences of state transitions explaining how the attack leads to a state in which
the security property is violated. Thus the refined attack corresponds to a path
in the state graph of the system model. Similarly, the process of modelchecking
produces automatically a sequence of state transition – if the checked property
does not hold in the model.

The question we investigate by means of an IoT health care case study is
whether the concepts of modelchecking and attack tree refinement correspond.
The extension by modelchecking [7] and the embedding of attack trees into the
Isabelle Insider framework allow us to examine this correspondence using the
mathematical rigour and automated proof support of Isabelle. The results provide
important insights on how the methods of modelchecking and attack tree analysis
can be fruitfully combined to enhance the verification of attacks on human centric
infrastructure models and possibly even the discovery of yet unknown ones.

This paper begins by briefly reviewing the Isabelle Insider framework with a
special emphasis on the extensions to modelchecking as well as attack trees. The
running example of a simple health care scenario and its privacy and security
risks is then introduced followed by the presentation of its formalisation in the
Isabelle Insider framework. We reconsider the definition of state transition in
modelchecking introducing an adaptation that explicitly shows the attack paths.
This allows the transformation of attack traces found by modelchecking into the
attack tree refinement process. We show how these processes relate. As illustrated
by the case study, we can use the combination of modelchecking and attack trees
to guide the attack tree refinement in finding and analysing the attacks in human
centric scenarios.

2 Isabelle Insiders, Modelchecking and Attack Trees

In formal analysis of technical scenarios, the motivation of actors and the result-
ing behaviour of humans is often not considered because the complexity is beyond
usual formalisms. The Isabelle Insider framework [14] provides expressiveness to
model infrastructures, policies, and humans while keeping up the level of proof
automation. In this section, we give a short introduction to this framework for
modeling and analysing Insider attacks. We describe its extensions by attack
trees and modelchecking. A detailed technical introduction to the framework is
given in [14], the extensions are introduced in [7,10] and the Isabelle sources are
available online [6].

2.1 Isabelle Insider Framework

The Isabelle Insider framework [14] is based on a logical process of sociological
explanation [3] inspired by Weber’s Grundmodell, to explain Insider threats by
moving between societal level (macro) and individual actor level (micro).

The interpretation into a logic of explanation is formalized in Isabelle’s
Higher Order Logic. This Isabelle formalisation constitutes a tool for proving
security properties using the assistance of the semi-automated theorem prover

Formal Modeling and Analysis with Humans in Infrastructures 341

[14]. Isabelle/HOL is an interactive proof assistant based on Higher Order Logic
(HOL). Applications can be specified as so-called object-logics in HOL providing
reasoning capabilities for examples but also for the analysis of the meta-theory.
Examples reach from pure mathematics [11] to software engineering [5]. An
object-logic contains new types, constants and definitions. These items reside
in a theory file, e.g., the file Insider.thy contains the object-logic for social
explanation of Insider threats (see [6,14]). This Isabelle Insider framework is
a conservative extension of HOL. This means that our object logic does not
introduce new axioms and hence guarantees consistency.

The micro-level and macro-level of the sociological explanation give rise to
a two-layered model in Isabelle, reflecting first the psychological disposition and
motivation of actors and second the graph of the infrastructure where nodes
are locations with actors associated to them. Security policies can be defined
over the agents, their properties, and the infrastructure graph; properties can be
proved mechanically with Isabelle.

In the Isabelle/HOL theory for Insiders, we express policies over actions get,
move, eval, and put We abstract here from concrete data – actions have no
parameters:

datatype action = get | move | eval | put

The human component is the Actor which is represented by an abstract type
and a function that creates elements of that type from identities:

typedecl actor

type_synonym identity = string

consts Actor :: string ⇒ actor

Policies describe prerequisites for actions to be granted to actors given by pairs
of predicates (conditions) and sets of (enabled) actions:

type_synonym policy = ((actor ⇒ bool) × action set)

We integrate policies with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’, and a predicate over locations
to encode attributes of infrastructure components:

datatype infrastructure = Infrastructure

"igraph" "location ⇒ policy set" "actor ⇒ bool" "location ⇒ bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
infrastructure. The enables predicate specifies that an actor a can perform an
action a’∈ e at location l in the infrastructure I if a’s credentials (stored in
the tuple space tspace I a) imply the location policy’s (stored in delta I l)
condition p for a:

enables I l a a’ ≡ ∃ (p,e) ∈ delta I l. a’ ∈ e

∧ (tspace I a ∧ lspace I l −→ p(a))

342 F. Kammüller

We demonstrate the application of the Isabelle Insider framework in Sect. 5.1 on
our running example of an Insider case study from the health care sector.

2.2 Attack Trees

Attack Trees [19] are a graphical tree-based design language for the stepwise
investigation and quantification of attacks. They have been integrated as an
extension to the Isabelle Insider framework [10,18]. In this Isabelle framework,
base attacks are defined as a datatype and attack sequences as lists over those:

datatype baseattack = None | Goto "location"

| Perform "action" | Credential "location"

type synonym attackseq = baseattack list

The following definition attree defines the nodes of an attack tree. The simplest
case of an attack tree node is a base attack. Attacks can also be combined as
the “and” of other attacks. The third element of type attree is a baseattack
(usually a Perform action) that represents this attack, while the first element
is an attack sequence and the second element is the attribute, simply a “string”:

datatype attree = BaseAttack "baseattack" ("N (_)") |

AndAttack "attackseq" "string" "baseattack" ("_ ⊕()
∧ _")

The functions get attseq and get attack are corresponding projections on
attack trees returning the entire attack sequence or the final base attack (the
root), respectively.

The main construction concept for attack trees is refinement defined by an
inductive predicate refines to syntactically represented as the infix operator
�. There are rules trans and refl making the refinement a preorder; the rule
refineI shows how attack vectors can be integrated into the refinement process.
We will investigate this rule in detail when integrating with modelchecking in
Sect. 4.2 because this is where modelchecking and attack tree refinement com-
plement each other nicely.

The refinement of attack sequences allows the expansion of top level abstract
attacks into longer sequences. Ultimately, we need to have a notion of when a
sufficiently refined sequence of attacks is valid. This notion is provided by the
final inductive predicate is and attack tree. We will not focus on this here.
For details, see [10] or the online formalisation [6]).

Intuitively, the process of refining corresponds to enlarging an attack tree as
depicted in Fig. 1.

2.3 Modelchecking

Modelchecking is often advertised as a ‘push-button’ technique in contrast to
automated verification techniques, for example with Isabelle, where the user has
to interact with the tool to verify properties. Thus it is in practice very success-
ful mainly due to this full automation. The applications in the Isabelle Insider

Formal Modeling and Analysis with Humans in Infrastructures 343

Perform eval

Goto bankapp

Goto sphone Goto bankapp

Perform eval

Goto bankapp

Goto sphone Goto bankapp

Perform get Goto sphone

Fig. 1. Attack refinement for healthcare case study (see also Sect. 2.3).

framework that we construct are mostly performed by simple combinations of
automatic proof procedures once the theorem and lemmas have been stated.
The most well known problem of Modelchecking is the exponential growth of
the number of states, the ‘state explosion’ common in most applications because
of infinite data domains. Due to this restriction, models often oversimplify.

Another important advantage of modelchecking is the natural use of temporal
logic to express system constraints, e.g., M �AG send -> AF ack to express “on
all paths in the model M it is the case that a send request is eventually followed
by an acknowledgement ack”.

Due to the expressiveness of HOL, Isabelle allows us to formalise within HOL
the notion of Kripke structures, temporal logic, and formalise the semantics of
modelchecking by directly encoding the fixpoint definitions for each of the CTL
operators [7]. To realize this, a change of the state of the infrastructure needed to
be incorporated into the Isabelle Insider framework. A relation on infrastructures
is defined as an inductive predicate called state transition. It introduces the
syntactic infix notation I →iI’ to denote that infrastructures I and I’ are in
this relation.

inductive state_transition ::

[infrastructure, infrastructure] ⇒ bool ("_ →i _")

The definition of this inductive relation is given by a set of rules. To give an
impression of this definition, we show here just the rule for the move action.

move: [[G = graphI I; a @G l; l ∈ nodes G; l’ ∈ nodes G;

a ∈ actors_graph(graphI I); enables I l (Actor a) move;

I’ = Infrastructure (move_graph_a a l l’

(graphI I))(delta I)(tspace I)(lspace I)

]] =⇒ I →i I’

3 Health Care Case Study in Isabelle Insider Framework

The case study we use as a running example in this paper is a simplified sce-
nario from the context of the SUCCESS project for Security and Privacy of

344 F. Kammüller

the IoT [2]. A central topic of this project for the pilot case study is to support
security and privacy when using cost effective methods based on the IoT for
monitoring patients for the diagnosis of Alzheimer’s disease. As a starting point
for the design, analysis, and construction, we currently develop a case study of
a small device for the analysis of blood samples that can be directly connected
to a mobile phone. The analysis of this device can then be communicated by a
dedicated app on the smart phone that sends the data to a server in the hospital.

In this simplified scenario, there are the patient and the carer within a room
together with the smart phone.

We focus on the carer having access to the phone in order to support the
patient in handling the special diagnosis device, the smart phone, and the app.

The insider threat scenario has a second banking app on the smart phone
that needs the additional authentication of a “secret key”: a small electronic
device providing authentication codes for one time use as they are used by many
banks for private online banking.

Assuming that the carer finds this device in the room of the patient, he can
steal this necessary credential and use it to get onto the banking app. Thereby
he can get money from the patient’s account without consent.

room

healthapp

bankapp

CarerPatient

Fig. 2. Health care scenario: carer and patient in the room may use smartphone apps.

4 Combining Modelchecking and Attack Trees

We now show the interaction of the modelchecking and attack tree approaches
by introducing the necessary extensions to the Isabelle Insider framework while
highlighting the adaptations that manifest the combination. We use the health
care case study introduced in the previous section to show how this combination
enables the analysis of the Insider risk given by the carer.

4.1 Relation Between State Transition and Attack Sequences

Modelchecking introduces the concept of state transition explicitly into the
Isabelle Insider model. The relation →i (see Sect. 2.3) provides a transition
between different states of the infrastructure that can evolve into each other
through changing actions taken by actors. By contrast, in the attack tree world,
we have not explicitly introduced an effect on the infrastructure’s state but we

Formal Modeling and Analysis with Humans in Infrastructures 345

have equally investigated and refined attacks as sequences of actions eventually
mapping those actions onto sequences of base attacks.

The main clue to combine modelchecking and attack tree analysis is intu-
itively described as using the Kripke models as the models for the attack tree
analysis. More precisely, the sequences of attack steps that are eventually found
through the process of refining an attack, need to be checked against sequences
of transitions possible in the Kripke structure that consists of the graph of
infrastructure’s state changes.

Technically, this transformation needs a slight transformation between
sequences of steps of the infrastructure’s state changing relation →i and that
same relation but with the actions leading to the exact same state changes
annotated at the transitions. Those annotations then naturally correspond to
the paths that determine the way through the Kripke structure. They can be
one-to-one translated into attack vectors.

Formally, we simply define a relation very similar to →i but with an addi-
tional parameter added as a superscript after the arrow.

inductive state_step ::

[infrastructure, action, infrastructure] ⇒ bool ("_ →() _")

For the definition of this inductive relation we show here again just the rule for
the move action which is nearly identical to before just adding the action.

move: [[G = graphI I; a @G l; l ∈ nodes G; l’ ∈ nodes G;

a ∈ actors_graph(graphI I); enables I l (Actor a) move;

I’ = Infrastructure (move_graph_a a l l’

(graphI I))(delta I)(tspace I)(lspace I)

]] =⇒ I →move I’

We define an iterator relation state step list over the state step that
enables collecting the action sequences over state transition paths.

inductive state_step_list ::

[infrastructure, action list, infrastructure] ⇒ bool ("_ →() _")

where
state_step_list_empty: I →[] I |

state_step_list_step : [[I →[a] I’; I’ →l I’’]] =⇒ I →a#l I’’

Note, how in Isabelle overloading of the operator →() can be neatly applied.
With this extended relation on states of an infrastructure we can now trace

the modelchecking action sequences. Finally, a simple translation of attack
sequences from the attack tree model to action sequences can simply be for-
malised by first defining a translation of base attacks to actions.

primrec transform :: baseattack ⇒ action

where
transform_move: transform (Goto l’) = move |

transform_get: transform (Credential l’) = get |

transform_perform: transform (Perform a) = a

346 F. Kammüller

From this we define a function transf for transforming sequences of attacks.

primrec transf :: attackseq ⇒ action list

where
transf_empty : transf [] = [] |

transf_step: transf (ba#l) = (transform ba)#(transf l)

4.2 Improving Attack Refinement

This relative simple adaptation of the modelchecking state transitions to action
sequences paired with the transformation from attack traces has a simplifying
as well as unifying effect: the attack tree approach necessitated the explicit defi-
nition of “attack vectors” that could be used to replace an abstract attack node
by a sequence of attacks (see Sect. 2.2). This was manifested by the rule refineI
which required a predefined list of attack vectors.

[[P ∈ attack_vectors; P I s l a;

sublist_rep l a (get_attseq A) = (get_attseq A’);

get_attack A = get_attack A’]] =⇒ A 	I A’

An example of an attack vector that had to be replaced for P and provided as
premise to the above rule is the example UI AV7 of unintentional Insider attack
vectors [10].

[[enables I l a move; enables (add_credential I a s) l a get]]
=⇒ UI_AV7 I s

(get_attackseq ([Goto l, Perform get] ⊕move−intercept
∧ Credential l))

(Credential l)

Previously, such attack vectors had to be defined as inductive rules in an
axiomatic fashion. Now, the attack vectors can be inferred from the modelcheck-
ing process. The new rule in the attack refinement definition is refineIMC.

[[I →l′ I’; transf l = l’;

sublist_rep l a (get_attseq A) = (get_attseq A’);

get_attack A = get_attack A’]] =⇒ A 	I A’

An application can be seen in the following section.

5 Analysing Carer Attack

5.1 Health Care Case Study in Isabelle Insider Framework

We only model two identities, Patient and Carer representing a patient and
his carer. We define the health care scenario in the locale scenarioHealthcare.
The syntax fixes and defines are keywords of locales that we drop together
with the types for clarity of the exposition from now on. The double quotes
‘‘s’’ represent strings in Isabelle/HOL. The global policy is ‘no one except the
patient can use the bank app’:

Formal Modeling and Analysis with Humans in Infrastructures 347

fixes global_policy :: [infrastructure, identity] ⇒ bool

defines global_policy I a ≡ a
= ’’Patient’’ −→
¬(enables I bankapp (Actor a) eval)

The graph representing the infrastructure of the health care case study has the
following locations: (0) smart phone, (1) room, (2) bank app, and (3) health app:
In order to define the infrastructure, we first define the graph representing the
scenario’s locations and the positions of its actors. The actors patient and carer
are both initially in room. The graph is given as a set of nodes of locations and
the actors residing at certain locations are specified by a function associating
lists of nodes with the locations.

ex_graph ≡ Lgraph

{(room, sphone), (sphone, healthapp), (sphone, bankapp)}

(λ x. if x = room then [’’Patient’’, ’’Carer’’] else [])

In the following definition of local policies for each node in the office scenario,
we additionally include the parameter G for the graph. The predicate @G checks
whether an actor is at a given location in the graph G.

local_policies G ≡
(λ x. if x = room then {(λ y. True,{get, put, move}) }

else (if x = sphone then

{((λ y. has (y, ’’PIN’’)), {put,get,eval,move}), (λ y. True, {})}

else (if x = healthapp then

{((λ y. (∃ n. (n @G sphone) ∧ Actor n = y)),

{get,put,eval,move})}

else (if x = bankapp then

{((λ y. (∃ n. (n @G sphone) ∧ Actor n = y ∧
has (y, ’’skey’’))), {get,put,eval,move})}

else {}))))

In this policy, any actor can move to the room and when in possession of the PIN
can move onto the sphone and do all actions there. The following restrictions
are placed on the two other locations.

healthapp: to move onto the healthapp and perform any action at this location,
an actor must be at the position sphone already;

bankapp: to move onto the bankapp and perform any action at this location, an
actor must be at the position sphone already and in possession of the skey.

The possession of credentials like PINs or the skey is assigned in the infrastruc-
ture as well as the roles that actors can have. We define this assignment as a
predicate over actors being true for actors that have these credentials. For the
health care scenario, the credentials express that the actors Patient and Carer
possess the PIN for the sphone but Patient also has the skey.

ex_creds ≡ (λ x. if x = Actor ’’Patient’’ then

has (x,’’PIN’’) ∧ has (x, ’’skey’’)

else (if x = Actor ’’Carer’’ then

has (x, ’’PIN’’) else True))

348 F. Kammüller

The graph and credentials are put into the infrastructure hc scenario.

hc_scenario ≡ Infrastructure

ex_graph (local_policies ex_graph) ex_creds ex_locs

5.2 Modelchecking Supported Attack Tree Analysis

As a setup for the state analysis, we introduce the following definitions to denote
changes to the infrastructure. A first step towards critical states is that the carer
gets onto the smart phone. We first define the changed infrastructure graph.

ex_graph’ ≡ Lgraph

{(room, sphone), (sphone, healthapp), (sphone, bankapp)}

(λ x. if x = room then [’’Patient’’] else

(λ x. if x = sphone then [’’Carer’’] else []))

The dangerous state has a graph in which the actor Carer is on the bankapp.

ex_graph’’ ≡ Lgraph

{(room, sphone), (sphone, healthapp), (sphone, bankapp)}

(λ x. if x = room then [’’Patient’’] else

(λ x. if x = bankapp then [’’Carer’’] else []))

The critical state of the credentials is where the carer has the skey as well.

ex_creds’ ≡ (λ x. if x = Actor ’’Patient’’ then

has (x,’’PIN’’) ∧ has (x, ’’skey’’)

else (if x = Actor ’’Carer’’ then

has (x, ’’PIN’’) ∧ has (x, ’’skey’’)

else True))

We use these changed state components to define a series of infrastructure states.

hc_scenario’ ≡ Infrastructure

ex_graph (local_policies ex_graph) ex_creds’ ex_locs

hc_scenario’’ ≡ Infrastructure

ex_graph’(local_policies ex_graph’) ex_creds’ ex_locs

hc_scenario’’’≡ Infrastructure

ex_graph’’(local_policies ex_graph’’) ex_creds’ ex_locs

We next look at the abstract attack that we want to analyse before we see how
the modelchecking setup supports the analysis.
The abstract attack is stated as ([Goto bankapp] ⊕move−grab

∧ Perform eval).
The following refinement encodes a logical explanation of how this attack can
happen by the carer taking the skey, getting on the phone, on the bankapp and
then evaluating.

([Goto bankapp] ⊕move−grab
∧ Perform eval)

	hc scenario

([Perform get, Goto sphone, Goto bankapp)] ⊕move−grab
∧ Perform eval)

Formal Modeling and Analysis with Humans in Infrastructures 349

This refinement is proved by applying the rule refineI (see Sect. 4.2). In fact,
this attack could be found by applying refineI and using interactive proof with
the modelchecking extension of the Isabelle Insider framework to instantiate the
higher order parameter ?l in the following resulting subgoal.

hc_scenario →transf(?l) hc_scenario’’’

This proof results in instantiating the variable ?l to the required attack sequence
[Perform get, Goto sphone, Goto bankapp].

So far, we have used the combination of a slightly adapted notion of the
state transition from the modelchecking approach to build a model for attack
refinement of attack trees. We can further use the correspondence between mod-
elchecking and attack trees to find attacks. To properly employ modelchecking,
we first define the Kripke structure for the health case scenario representing the
state graph of all infrastructure states reachable from the initial state.

hc_states ≡ { I. hc_scenario →∗
i I }

hc_Kripke ≡ Kripke hc_states {hc_scenario}

Following the modelchecking approach embedded into the Isabelle Insider frame-
work [7], we may use branching time logic CTL to express that the global policy
(see Sect. 5.1) holds for all paths globally.

hc_Kripke � AG {x. global_policy x ’’Carer’’}

Trying to prove this must fail. However, using instead the idea of invalidation
[12] we can prove the negated global policy.

hc_Kripke � EF {x. ¬ global_policy x ’’Carer’’}

The interactive proof of this EF property means proving the theorem

hc_Kripke � EF {x. enables x bankapp (Actor ’’Carer’’) eval}

This results in establishing a trace l that goes from the initial state hc scenario
to a state I such that enables I bankapp (Actor ’’Carer’’) eval. This
I is for example hc scenario’’’ and the action path get, move, move is a
side product of this proof. Together with the states on this path the transf
function delivers the required attack path [Perform get, Goto sphone, Goto
bankapp].

6 Conclusions

Summarizing, we have considered the benefits of relating earlier extensions to the
Isabelle Insider framework to modelchecking and to attack trees and illustrated
the benefits on a health care case study of an Insider attack.

Clearly relevant to this work are the underlying framework and its extensions
[7,9,10,14] but also the related experiments with the invalidation approach for

350 F. Kammüller

Insider threat analysis using classic implementation techniques like static analy-
sis and implementation in Java [18] or probabilistic modeling and analysis [1].

We believe that the combination of modelchecking and attack trees is novel
at least in the way we tie these concepts up at the foundational level. Considering
the simplicity of this pragmatically driven approach and the relative ease with
which we arrived at convincing results, it seems a fruitful prospect to further
explore this combination. Beyond the mere finding of attack vectors in proofs,
the expressivity of Higher Order Logic will allow developing meta-theory that
in turn can be used for the transfer between modelchecking and attack tree
analysis.

There are excellent foundations available for attack trees based on graph
theory [15]. They provide a very good understanding of the formalism, various
extensions (like attack-defense trees [16] and differentiations of the operators (like
sequential conjunction (SAND) versus parallel conjunction [4]) and are amply
documented in the literature. These theories for attack trees provide a thorough
foundation for the formalism and its semantics. The main problem that adds
complexity to the semantical models is the abstractness of the descriptions in the
nodes. This leads to a variety of approaches to the semantics, e.g. propositional
semantics, multiset semantics, and equational semantics for ADtrees [16]. The
theoretical foundations allow comparison of different semantics, and provide a
theoretical framework to develop evaluation algorithms for the quantification of
attacks.

Surprisingly, the use of an automated proof assistant, like Isabelle, has not
been considered despite its potential of providing a theory and mechanised analy-
sis of attacks simultaneously. The essential attack tree mechanism of tree refine-
ment is relatively simple. The complexity in the theories available in the litera-
ture is caused by the attempt to incorporate semantics to the attack nodes and
relate the trees to actual scenarios. This is why we consider the formalisation of
a foundation of attack trees in the interactive prover Isabelle since it supports
logical modeling and definitions of datatypes very akin to algebraic specifica-
tion but directly supported by semi-automated analysis and proof tools. There
have already been attempts at formalising attack trees for specific application
domains in the interactive theorem prover Isabelle [10] (for IoT Insider attacks).
They are also based on the Isabelle Insider framework but support only the use
of axiomatized “attack vectors” derived from real Insider attacks. It is necessary
to assume these attack vectors to provide the semantics of attack tree refine-
ment. Clearly, in state based systems, attacks correspond to paths of attack
steps. Hence, it is quite obvious to use a modelchecking approach to analyse
attack trees. In fact, implementations like the ADTool [17] use modelchecking
based on the guarded command language gal to analyse scenarios expressed as
graphs. Surprisingly, again, it has not been considered to use a logical framework
powerful enough to emulate modelchecking to augment this natural approach
to modeling and analysing attack trees. The modelchecking approach brings
the additional advantage of exploring and thus finding possibilities of attack
refinements necessary for the attack tree development. If embedded within an

Formal Modeling and Analysis with Humans in Infrastructures 351

interactive theorem prover, the integration of the formalism can be applied to
case studies and meta-theory can be proved with the additional support and
safety guarantees of a proof assistant.

The presented foundation of attack trees in Isabelle is consistent with the
existing foundations [4,15,16] but instead of providing an on paper mathemat-
ical foundation it provides a direct formalisation in Higher Order Logic in the
proof assistant. This enables the application of the resulting framework to case
studies and does not necessitate a separate implementation of the mathematical
foundation in a dedicated tool. Clearly, the Isabelle framework is less efficient and
the application to case studies requires user interaction. However, the formali-
sation in Isabelle supports not only the application of the formalised theory but
furthermore the consistent development of meta-theorems. In addition, dedicated
proof automation by additional proof of supporting lemmas is straightforward
and even code generation is possible for executable parts of the formalisation.

Again in comparison to the existing foundation [4,15,16], the presented
attack tree framework is restricted. For example, it does not yet support dis-
junctive attacks nor attack-defense trees, i.e., the integration of defenses within
the attack tree. We are convinced that this is a straightforward future develop-
ment and will be provided in due course.

Acknowledgement. Part of the research leading to these results has received fund-
ing from the European Union (CHIST-ERA 2015) under grant agreement no. 102112
(SUCCESS). This publication reflects only the authors’ views and the Union is not
liable for any use that may be made of the information contained herein.

References

1. Chen, T., Kammüller, F., Nemli, I., Probst, C.W.: A probabilistic analysis
framework for malicious insider threats. In: Tryfonas, T., Askoxylakis, I. (eds.)
HAS 2015. LNCS, vol. 9190, pp. 178–189. Springer, Cham (2015). doi:10.1007/
978-3-319-20376-8 16

2. CHIST-ERA: Success: secure accessibility for the internet of things (2016). http://
www.chistera.eu/projects/success

3. Hempel, C.G., Oppenheim, P.: Studies in the logic of explanation. Philos. Sci. 15,
135–175 (1948)

4. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack
trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC
2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). doi:10.1007/
978-3-319-18467-8 23

5. Henrio, L., Kammüller, F., Rivera, M.: An asynchronous distributed component
model and its semantics. In: Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 159–179. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04167-9 9

6. Kammüller, F.: Isabelle insider framework with attack trees and modelchecking
(2016). https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi0
4Og4NLa?dl=0

http://dx.doi.org/10.1007/978-3-319-20376-8_16
http://dx.doi.org/10.1007/978-3-319-20376-8_16
http://www.chistera.eu/projects/success
http://www.chistera.eu/projects/success
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-642-04167-9_9
http://dx.doi.org/10.1007/978-3-642-04167-9_9
https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0
https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0

352 F. Kammüller

7. Kammüller, F.: Isabelle modelchecking for insider threats. In: Livraga, G., Torra,
V., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2016. LNCS, vol. 9963,
pp. 196–210. Springer, Cham (2016). doi:10.1007/978-3-319-47072-6 13

8. Kammüller, F., Kerber, M.: Investigating airplane safety and security against
insider threats using logical modeling. In: IEEE Security and Privacy Workshops,
Workshop on Research in Insider Threats, WRIT 2016. IEEE (2016)

9. Kammüller, F., Kerber, M., Probst, C.W.: Towards formal analysis of insider
threats for auctions. In: 8th ACM CCS International Workshop on Managing
Insider Security Threats, MIST 2016. ACM (2016)

10. Kammüller, F., Nurse, J.R.C., Probst, C.W.: Attack tree analysis for insider threats
on the IoT using Isabelle. In: Tryfonas, T. (ed.) HAS 2016. LNCS, vol. 9750, pp.
234–246. Springer, Cham (2016). doi:10.1007/978-3-319-39381-0 21

11. Kammüller, F., Paulson, L.C.: A formal proof of sylow’s theorem. J. Autom. Rea-
son. 23(3), 235–264 (1999)

12. Kammüller, F., Probst, C.W.: Invalidating policies using structural information. In:
IEEE Security and Privacy Workshops, Workshop on Research in Insider Threats,
WRIT 2013. IEEE (2013)

13. Kammüller, F., Probst, C.W.: Combining generated data models with formal inval-
idation for insider threat analysis. In: IEEE Security and Privacy Workshops,
Workshop on Research in Insider Threats, WRIT 2014. IEEE (2014)

14. Kammüller, F., Probst, C.W.: Modeling and verification of insider threats using
logical analysis. IEEE Syst. J. (2016). Special Issue on Insider Threats to Informa-
tion Security, Digital Espionage, and Counter Intelligence

15. Kordy, B., Pitre-Cambacds, L., Schweitzer, P.: Dag-based attack and defense mod-
eling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14, 1–38
(2014)

16. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014). Oxford Journals

17. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack-defense trees (extended version). CoRR abs/1305.6829 (2013). http://arxiv.
org/abs/1305.6829

18. Probst, C.W., Kammüller, F., Hansen, R.R.: Formal modelling and analysis of
socio-technical systems. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Seman-
tics, Logics, and Calculi. LNCS, vol. 9560, pp. 54–73. Springer, Cham (2016).
doi:10.1007/978-3-319-27810-0 3

19. Schneier, B., Secrets, L.: Digital Security in a Networked World. Wiley, Hoboken
(2004)

http://dx.doi.org/10.1007/978-3-319-47072-6_13
http://dx.doi.org/10.1007/978-3-319-39381-0_21
http://arxiv.org/abs/1305.6829
http://arxiv.org/abs/1305.6829
http://dx.doi.org/10.1007/978-3-319-27810-0_3

	Formal Modeling and Analysis with Humans in Infrastructures for IoT Health Care Systems
	1 Introduction
	2 Isabelle Insiders, Modelchecking and Attack Trees
	2.1 Isabelle Insider Framework
	2.2 Attack Trees
	2.3 Modelchecking

	3 Health Care Case Study in Isabelle Insider Framework
	4 Combining Modelchecking and Attack Trees
	4.1 Relation Between State Transition and Attack Sequences
	4.2 Improving Attack Refinement

	5 Analysing Carer Attack
	5.1 Health Care Case Study in Isabelle Insider Framework
	5.2 Modelchecking Supported Attack Tree Analysis

	6 Conclusions
	References

