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Abstract. The number of sensors producing data streams at a high
velocity keeps increasing. This paper describes an attempt to design an
inference-enabled, distributed, fault-tolerant framework targeting RDF
streams in the context of an industrial project. Our solution gives a spe-
cial attention to the latency issue, an important feature in the context of
providing reasoning services. Low latency is attained by compressing the
scheme and data of processed streams with a dedicated semantic-aware
encoding solution. After providing an overview of our architecture, we
detail our encoding approach which supports a trade-off between two
common inference methods, i.e., materialization and query reformula-
tion. The analysis of results of our prototype emphasize the relevance of
our design choices.

1 Introduction

Semantic information of the Web of data, generally represented with the
Resource Description Framework (RDF)! data model, is now being considered
for real time analysis. This is the case in the Waves project?, where we provide
real-time analytics of RDF data streams for an international company leading
innovation technologies for smart water network management. In particular, we
are analyzing data captured from potable water networks in major cities in the
world, e.g., studying pressure, flow, turbidity, pH, chlore and other chemical
measures, in almost real-time. Some of the key goals of this project are to iden-
tify malfunctions in these water networks, e.g., water leaks by analyzing flow and
pressure measures, to explain their origins leveraging knowledge base enrichment
and to predict potential issues within the pipeline system. With more relevant
and faster agent interventions on the network, such research and development
can have a substantial impact at both the environmental (to limit potable water
loss) and economic (to reduce financial costs) levels. In fact, one must bear in
mind that worldwide water leaks peaked to 32 billion m?/year within last years,
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90% of them being invisible due to the underground nature of the network, which
makes it a burning issue for the 21st Century.

Detecting water leakage could be performed using quantitative data without
exploiting the possibilities of semantic web technologies. However, since we aim
to explain discovered leaks, taking advantage of RDF technologies (e.g., RDFS,
OWL and SPARQL) and functionalities (e.g., data and knowledge integration,
reasoning) becomes a necessity. Such scenarios imply the association of expres-
sive schemata, denoted as ontologies, and explicit measured data. Therefore, an
intelligent knowledge management system should enable to infer valuable infor-
mation that can help in providing sound and complete answers to a continuous
query processing component or to help in the design of efficient data analytics.

The integration of a reasoning component in Event Stream Processing (hence-
forth ESP) is a complex task due to the general cost, in terms of computing
resources and time, of inferring data using expressive ontologies. In order to
address these requirements, we have designed a prototype system based on the
following contributions: (i) we present a generic distributed streaming architec-
ture that addresses materialization and query reformulation reasoning services
(Sect. 2), (ii) we propose an encoding approach that minimizes system latency
and supports inferences (Sects.4 and 5), (iii) we highlight the efficiency of our
compressing approach with results of an experimentation (Sect.6).

2 Architecture

In Fig.1, we present an overview of our architecture. Due to the usage of the
Apache Kafka [14] and Apache Storm [12] components, we have designed a sys-
tem capable of ensuring scalability, fault-tolerance, high throughput and low
latency properties.

One characteristic of our project is its capacity to handle both static and
dynamic data and knowledge. By static, we mean data and knowledge that are
rarely updated while the dynamic aspect relates to the notion of streams arriving
at a fast pace, potentially thousands of them per second.

The static aspect of our system consists in encoding a set of ontologies and
knowledge bases that are specific to the application domain. In the case of the
Waves project, the ontologies are addressing the following topics: sensors, e.g.,
SSN? (Semantic Sensor Network), hydrology, e.g., CUAHSI* and modeling phys-
ical quantities, units of measure, and their dimensions, e.g., QUDT?®. The system
also integrates additional knowledge bases to represent water network geographi-
cal aspects. This is supported by the Geonames® and DBpedia’ ontologies. These
knowledge bases are stored in our external knowledge base component which is
currently handled by the Virtuoso RDF store®.

3 https://www.w3.0rg/2005 /Incubator /ssn/ssnx /ssn.
* http://his.cuahsi.org/ontologyfiles.html.

5 http://linkedmodel.org/catalog/qudt/1.1/.

5 http://www.geonames.org)/.

" http://wiki.dbpedia.org/.

8 http://virtuoso.openlinksw.com/.
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Fig. 1. Architecture overview

The remaining of the architecture is concerned with dynamic, event-based
data which are handled by distributed components: Kafka as a distributed, parti-
tioned, replicated commit log service, Storm as the distributed stream processing
engine and Redis” as a key-value memory store.

A typical scenario in our system is as follows. First, measures are captured
from a given sensor network. These streams are cleaned, filtered and possibly
sampled before being serialized in a compact RDF format. These data are per-
sisted on-demand to a Redis key-value store and sent to the Apache Kafka
message broker. The Kafka component is becoming a standard in streaming
processing engines and can be connected to most open source streaming engines
(e.g., Storm). Data are fetched from Kafka by a set of distributed nodes which
implement the so-called Storm topology, i.e., a network of so-called spouts and
bolts. A spout is the source of data streams and can read data from an external
framework like Kafka. A bolt is a processing logic unit that performs any kind
of processing such as filtering, aggregating, joining, interacting with data stores.
Each spout or bolt executes as many tasks across a Storm cluster, and each task
corresponds to one thread of execution. Topologies execute across one or more
worker processes. Each worker process is a physical Java Virtual Machine (JVM)
and executes a subset of all the tasks for the topology. In a Waves topology,
each spout subscribes to one stream represented by a Kafka topic, and each bolt

9 http://redis.io/.
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decompresses data and performs a continuous SPARQL query, whose language
is inspired by C-SPARQL [2].

The streaming engine is connected to a visualization module whose only
goal is to ease the interpretation of analyzed streams through different forms
of graphics. Some of these visualizations may require some data enrichment
supported by the set of reasoning services.

In the remaining of this paper, we focus on reasoning aspects which is tightly
coupled with the RDF serialization solution. Due to space limitations, we do not
address other components of the architecture.

3 Running Scenario

In this section, we present a practical use case of the Waves project in which a
set of sensors is generating simple RDF streams corresponding to some physical
measures. In Fig.2(a), we present a simple, raw stream, denoted S, providing
a pressure measure from a sensor characterized with identifier “Q250HP”. In
order to detect and predict interesting situations in real-time, end-users of our
platform can define continuous queries to the system. Figure 2(b) proposes such
a query expressed in C-SPARQL [2], henceforth denoted Q. Intuitively, the query
computes the pressure average, expressed in the Pascal unit, measured in fixed
windows lasting 5min and sliding every 2min. Moreover, these averages are
only computed for sensors situated in a certain location (a bounding box is
specified from ranges of latitude and longitude values) and for a certain sensor
type (namely Sensor2). Clearly, this raw stream S does not satisfy the WHERE
clause of the C-SPARQL query Q: neither the type of the sensor, the unit of its
measure and location are specified in the raw stream. Hence, the result set of @)
over S would be empty. We consider that given the messages sent by real-world
sensors, such situations are bound to occur frequently.

In fact, sensor “Q250HP” is providing measures in the Pascal unit, is of
type Sensor3 and is situated in the bounding box expressed in ). But these
information are only stored in some external knowledge base.

This knowledge base contains two components. An ontology stating that
Sensor3d and Sensord are sub classes of Sensor2, expressed in a Description
Logic [1] formalism as Sensor3 C Sensor2 and Sensord T Sensor2. And
a set of facts stating that sensor Q250HP provides pressure values expressed in
the Pascal unit and is located at latitude 48.59 and longitude 2.75. Thus the
data stream, if properly enriched, can satisfy the continuous query Q.

Instead of performing joins at run-time for each incoming events, we prefer
to materialize these events with the information that may satisfy a continuous
query. Intuitively, the continuous queries are retrieving events from a given set
of Kafka topics. Thus it is possible to define possible materialization when a
query is associated to a topic. The problem then amounts to define a compact
and efficient serialization for the RDF graphs corresponding to the events.
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/ Continuous SPARQL Query \

SELECT (avg(?pressure) as ?avg)
FROM STREAM .. [RANGE 5m STEP 2m]
WHERE {

?x ssn:isProducedBy ?s.

?x ssn:hasValue ?pm.

?pm qudt:unit unit:Pa.

?pm qudt:numericValue ?pressure.

?s type Sensor2.

?s hasLat ?lat.

?s hasLon ?lon.

(a) filter (2lat> 48.0 && 21at<49.0)
filter (?lon> 2.5 && 2lon<3.0)

(b)

RDF stream

ssn:isProducedBy Q250HP

ssn:startTime “2016-01-01T01:15:00”"xsd:dateTime
ssn:hasValue _ix2

qudt:numericValue “1.43"

Fig. 2. (a) RDF stream S and (b) continuous query Q

4 Compression Approaches

4.1 Knowledge Base Encoding

With our knowledge base encoding approach, we provide an efficient encoding
scheme and data structures to support the reasoning services associated to the
terminological and assertional boxes (resp. Thox and Abox). The input ontology
is considered to be the union of all ontologies necessary to operate over one’s
application domain (e.g., SSN, CUAHSI, QUDT, Geonames and DBpedia). In
the current version of our work, we address the pdf [10] subset of RDFS, mean-
ing that we are only interested in the rdfs:subClass0f, rdfs:subProperty0f,
rdfs:domain and rdfs:range constructors. Our Thox encoding scheme uses our
LiteMat system (full details in [5]). Intuitively, it provides a unique, semantic-
based identifier to each entry of the Tbox (i.e., class and properties). That is,
the identifier of each Thox element is prefixed by the binary identifier of its
super element. This approach enables to represent the class and property hier-
archies in a compact way since the identifier of a given class (resp. property)
provides all its direct and indirect super classes (resp. properties). Moreover,
to capture all inferences related to the class hierarchy, the encoding relies on
a classification performed by an OWL reasoner. To support rdfs:domain and
rdfs:range inferences, the property dictionary is extended with the class iden-
tifiers that respectively correspond to their domain and range. A final dictionary
is generated over instances of the Abox. Once all these dictionaries have been
computed and stored in a Redis key/value store, the system can encode the
whole Abox, which is then constituted of integer value triples and stored in a
Virtuoso instance.

4.2 RDF Distributed Stream Compression

A distributed architecture integrating reasoning services requires low latency to
cope with massive real-time streams. However, frequent data transfers between
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several components (e.g., messaging middleware, data stores, etc.) produce sig-
nificant network overhead. There are quite various methods to deal with this
complex issue and the one we focus on is compression. RDF data are particu-
larly adapted to efficient compression.

Like RDSZ [8] and ERI [6], our approach assumes that events in a given
stream share structural similarities, i.e., the RDF graph shapes are similar. We
can leverage on this aspect to limit the stream memory footprints. As the com-
pression exploits structural similarities, a new graph (e.g., set of RDF triplets)
can be represented on the basis of the previous graph. Our approach breaks up
each graph into two parts, namely the graph Pattern and value/variable Bindings
that are associated to a graph pattern, hence the PatBin denotation.

In Fig. 3, we present the different steps necessary to generate a pattern signa-
ture. This deterministic approach will serve to compare stream graph signature
with continuous query signatures in an efficient manner. Considering an arriving
graph event corresponding to data stream S of our running example, Fig. 2(a), we
use our previously computed property dictionary, Fig.3(a), to replace property
IRIs with integer values. We thus obtain a more compact set of triples (Fig. 3(b)).
The compactness of this signature takes benefits from the facts that all events we
have encountered correspond to trees. Starting from the root node of our tree,
we then sort the graph, in a level-wise manner, according to the property integer
values. This order is then used to define a pattern signature (Fig.3(c)). Intu-
itively, a signature is composed of property identifiers separated by ‘:’ symbols
to delimit properties occurring at the same tree level, ‘(‘,’)” symbols to describe
sub-trees. Note that subjects and objects are not necessary in these signatures
since our signature language enables to easily reconstruct the original shape of
the tree, i.e., by abstracting subjects and objects with variables.

Correspondences between implicit graph pattern variables and their values
(i.e., on triple subjects and objects) are represented by bindings and are sent to
Kafka. For a graph N, the bindings are compressed using a differential approach

(a) Property Dictionary extract

http://purl.oclc.org/NET/ssnx/ssn#isProducedBy : 144
http://purl.oclc.org/NET/ssnx/ssn#hasValue : 140
http://purl.oclc.org/NET/ssnx/ssn#startTime : 80
http://data.nasa.gov/qudt/owl/qudt#numericValue : 86

(b) Intermediary (sorted) pattern
:x1 140 "2016-01-01T01:15:00"""xsd:dateTime
:x1 144 Q250HP

:x1 80 _:x2
:x2 86 1.43

(c¢) Output pattern signature

140:144:80: (86)

Fig. 3. Pattern signature process
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based on the bindings of the previous graph N — 1. If the graph N shares some
bindings with the N — 1 graph, then they are replaced by blanks.

Moreover, the mechanism is still not adapted for distributed computing,
since encoding the current N graph is based on the bindings of the previously
processed N — 1 graph. However, this implies data exchange between distrib-
uted machines if these graphs are processed in different nodes, leading to a
network overhead. To solve this, we propose to encode the current N graph
based on the bindings of the initially processed graph from which the pattern
has been extracted and stored. Hence, we create a context in which we put the
pattern, the bindings of the graph from which the pattern has been extracted
and the occurring namespaces. All the incoming graphs are encoded based on
the context with which they share the same pattern. To guarantee the access to
contexts in the distributed infrastructure, we need to store them in a centralized
system. Again, Redis has been chosen for storage due to its convenient features
(e.g. key-value in-memory store, fast read/write, etc.). Each context created is
automatically stored in Redis. The contexts being stored in a centralized sys-
tem, all the machines have access to compress and decompress operations of
RDF graphs. In addition, each machine benefits from its local cache LRU (Least
Recently Used) mechanism. That is each machine contains the latest recently
used patterns processed by this machine and serves to speed up the contexts
read access.

5 Inference Solution

In this section, we present our reasoning approach which is based on a trade-
off between materialization and query reformulation. Although these inference
solutions can be used independently, i.e., materialization or query reformulation
alone, we highlight that the full potential of the approach is to combine both of
them.

5.1 Materialization

The goal of the materialization step is to enrich raw RDF streams in such a way
that they can potentially satisfy some given continuous queries. By potentially
satisfying a query, we mean that there is a graph homomorphism between a
stream and a continuous query graph pattern. It does not necessarily means
that a materialized streaming graph pattern actually satisfies the query since
some values may not satisfy certain conditions, e.g., filters, of the query. This
enrichment is based on retrieving some additional data from external knowledge
bases which are stored and possibly encoded in an RDF repository (e.g., the
Virtuoso RDF store).

Of course, the task of discovering to what extent a materialization can trans-
form an unsatisfiable raw stream into a potentially satisfiable one, must be per-
formed automatically by the system. That is, the system has to find out a set of
sound transformations according to a set of continuous queries and knowledge
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base axioms. We compute such discoveries using graph matching operations over
the graph patterns of RDF streams and continuous queries. This approach is
valid since the vocabularies used in these two components correspond to our
predefined set of encoded ontologies (Sect. 4.2).

Given the potential high volume of different data stream types, e.g., in our use
case, measures such as pressure, flow, chlorine, turbidity, etc., and the number
of continuous queries, it is important to propose an efficient discovery approach.
Our method considers that streams are submitted to Kafka topics and that these
topics are processed to retrieve stream graph patterns. Moreover, the continuous
queries (implemented as Storm bolts) are connected to Storm Spouts which are
themselves related to Kafka topics. Hence, it is possible to reduce the space search
by matching pairs of stream and continuous query graph patterns connected to
the same Kafka topics.

Given a Kafka topic T', the graph matching discovery problem amounts to
finding if a Stream Graph Pattern SGP is a sub graph of a given continuous
query graph pattern C'Q, i.e., excluding FILTER, GROUP BY and OPTIONAL
clauses and considering group graph patterns related by UNION clauses as indi-
vidual queries. This search for a sub graph relationship is semantic-aware, mean-
ing that class and property subsumption relationships are taken into account. For
instance, with our previously defined ontology, the following situation: SGP =
_: x1 type Sensor3, CQ = _: x4 type Sensor2 would correspond to a sub graph
relationship due to the Sensor3 C Sensor2 axiom. Note that this is not the case
for this other example: SGP = _: x1 type Sensor2, CQ = _: x4 type Sensor3.

If SGP is not a sub graph of CQ then we consider that this sort of data
streams can not be enriched to satisfy the continuous query. In the case SGP
is equal to C'QQ then no materialization is required since SGP can potentially
satisfy C'Q out-of-the-box. Finally, if SGP is a sub graph of C'QQ then the triple-
based difference between C'QQ and SGP is computed to identify the set of triples
that are missing in SGP to potentially satisfy C'Q). Based on mapping assertions
between subject and object identifiers of SGP and C(@Q, we can instantiate a
computed triple set from external knowledge bases. In our running example, this
amounts to generating the bold lines of Fig. 4(a). Basically, the unit, location and
type of sensor “Q250HP” triples are added to the streams. Note that the sensor
type is expressed with the integer value corresponding to its binary encoding:
the binary identifiers of Sensor2, Sensor3 and Sensor4 are respectively 101100,
101110 and 101101 which respectively correspond to the 44, 45 and 46 integer
values.

The discovery of a graph match is fast due to our compact, deterministic
graph signature representation. Nevertheless, it may become a performance bot-
tleneck due to high velocity stream production. To prevent this from happening,
the system stores discovered graph pattern correspondences and only searches
for new ones when novel stream patterns are recorded in the system and/or when
continuous queries are updated or inserted. A discovered graph pattern exactly
matches the graph associated to a materialized stream and is expressed as the
original graph patterns, i.e., as defined in Sect. 4.2.
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ﬂeformulated Continuous C-SPARQL Query\

SELECT (avg(?pressure) as ?avq)
STREAM .. [RANGE S5m STEP 2m)

Materialized RDF stream

:x1 ssn:isProducedBy Q250HP Wi
rtTime “2016-01-01T01:15:00”"xsd:dateTime
Value _x2

mericValue “1.43”

ProducedBy ?s.
sValue ?pm.
unit unit:Pa.

1x2

_:X2 qudt:unit unit:Pa 2 numericValue ?pressure.
Q250HP type 46" ?s rdf:type ?st.
Q250HP hasLat “48.5" ?s hasLat ?lat.
Q250HP hasLon “2.74" ?s hasLon ?lon.

filter (?lat> 48.0 && ?1lat<49.0)

filter (2?lon> 2.5 && ?lon<3.0)
(a) Qlter (?st>= 44 && ?st<=46)

(b)

Fig. 4. Materialized RDF stream and reformulated continuous query

5.2 Query Reformulation

The goal of the query reformulation component is to modify the original continu-
ous query such that subsumption relationships are properly addressed. A special
attention is given to classes specified in rdf : type triples. If any of these classes
are at some point a super class in our Thbox then some reformulation is neces-
sary. The system proceeds as follows: in each triple pattern with a rdf:type
property, replace the class C' (object position) with a non previously used vari-
able (denoted V;). In Fig.2(b), the ?s type Sensor2 triple is replaced by the
triple ?s type ?st in Fig.4(b). Then a SPARQL FILTER clause is introduced in
the reformulated query on that variable V;. The goal is to cover all possible sub
classes of the original class C. The specification of these classes are performed
at the encoding level and hence benefits from the nice properties of our ontology
encoding. Due to our encoding approach, we know that sub classes of Sensor2
are necessarily included in the “101100” and “101111” identifier range which cor-
respond to respectively to the 44 and 46 values. These lower and upper bound
values are easily computed (using two bit shift operations) from the binary ver-
sion of C’s identifier. With this approach, we cover all sub classes of a given
class with a single FILTER query line, independently of the length of this class
subsumption relationships. The last bold line of Fig.4(b) represents this filter
clause for our running example.

A similar approach is perform for the property hierarchy. It consists of ana-
lyzing whether any of the non rdf:type properties is at some point a super
property. Then the system operates in an identical manner: it replaces the prop-
erty with a new variable and inserts a FILTER line that restricts the range of
accepted property values for that variable.

Note that this approach is particularly efficient when several reformulation
(e.g., on classes and properties) are needed in a single query. With our filter app-
roach, a reformulated query grows linearly and not exponentially as is generally
the case for standard query reformulation approaches.
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6 Evaluation

In this evaluation section, we provide results of experiments about the ontology
and the stream compression components. The evaluation has been conducted on
real dataset describing some characteristics of Waves’s water network for a large
city in the Paris area (France). In the following, we present the computational
environment, the dataset and the results obtained. Due to space limitations, this
experimentation focuses on the PatBin and reasoning aspects.

6.1 Computational Environment

Throughout this experimentation section, we are using two different computa-
tional settings. The evaluation concerning the compression have been realized
on a laptop with a Windows 8 operating system, equipped with an Intel Core
i7 processor (2.90 GHz), 16 GB of RAM, running JDK/JRE 1.8. The ontology
encoding evaluation has been performed on a Linux Ubuntu 14.04 distribution
with 16 GB of RAM, Intel Core I5 quad-core processor and running a JDK 1.8.
We used the HermiT version 1.3.8 as an external reasoner and programmed the
encoding solution with Apache Jena 3.0.0. Finally, we are using Apache Spark
[15] version 1.5.2 for the encoding of the ABox. The Spark cluster consists of 3
Dell PowerEdge machines equipped with 64 GB of RAM.

6.2 Datasets

For experimentation, we use a real world dataset describing different water mea-
surements captured by sensors. Values of flow, pressure and chlorine are exam-
ples of these measurements. These data are provided in CSV format and need
to be represented in a semantic model. For this, we are annotating values using
three popular ontologies: SSN, CUAHSI-HIS and QUDT. Each sensor observes
at least one physical phenomenon or a chemical property, and hence produces
timestamped streams containing an observation.

6.3 Results

Knowledge Base Encoding Evaluation. We ran our ontology compression
Java program a total of five times and obtained an average of 18.8s for the
merged ontology presented in Table 1. With respect to the low numbers of classes
and properties, this duration can be considered rather long. In fact, this can be
justified by the rather high expressivity of the resulting ontology which happens
to correspond to SROZQ(D) Description Logics. This expressiveness matches
the OWL2 DL ontology language which is known to be the OWL fragment with
the highest computational complexity for standard inference services (apart from
OWL Full which is undecidable).

Comparatively, The same algorithm is able to encode the DBPedia OWL
ontology, which contains over 800 classes and 3000 properties, in less than
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Table 1. Compressed ontology in terms of number of classes, object and data type
properties

Ontology #classes | #object pr | #data pr | Duration (sec.)
SSN 117 142 6 —

QUDT 229 69 29 —

CUAHSI extract | 103 0 0 -

Merged ontology | 449 174 35 18.8

DBPedia 814 3,035 1,310 4.1

Wikidata 213,958 | 255 98 118

4s for an expressivity corresponding to ALCHF (D) DL. The encoding of the
Wikidata ontology takes approximatively 2 min. This is mainly due to the large
class hierarchy (over 200,000 classes) and not to its expressiveness which corre-
sponds to the AL DL.

Finally, we provide an evaluation of a data instance encoding which is needed
for static knowledge bases. This processing is distributed over our Spark cluster
and the measures are presented in Table 2. These measures are about 70% faster
than state of the art compression approaches defined over Apache Hadoop [13].

Table 2. Duration and throughput of data instances, triples in *10°, duration in
seconds and throughput in triples/sec.

Dataset | #Triples | Duration | Throughput
DBPedia | 79.1 282.2 | 280 943
Wikidata | 242.1 1334.8 |181 394

Signature Generation Performance. We used RDSZ results to check the
algorithm’s compression performance. A specific Java class stores the algorithm
statistics in terms of performance and compression rate, thus we made some
similar measures for PatBin to ensure a fair comparison. The system time was
measured once the input file was parsed as a Java String containing all triples,
and a second time right after the compression step. The subtraction of those
values gives the compression performance. RDSZ’s statistics also provide infor-
mation about the compression rate, by giving the size of the compressed output
(in UTF-8 bytes); therefore we used this method for our algorithm again. Both
those measures are presented in Table 3; we performed a series of verification
for different input file sizes (using the turtle serialization). We used the basic
configuration of RDSZ algorithm, with no specific argument. As we can see, the
compression performance is much faster for PatBin; this is mostly due to the
fact that we only have to deal with predicates. Indeed, RDSZ must initialize its
binding table with both subject and predicates, and verify for each class if it is
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Table 3. Signature generation performance for RDSZ and PatBin, time of compression
in microseconds, size of he signature in bytes

RDSZ time | PatBin time | RDSZ size | PatBin size
5 triples | 383 1 312 13
10 triples | 387 2 370 29
25 triples | 394 3 425 89
50 triples |397 6 523 184
100 triples | 401 10 750 382

not already present in the table. We have twice less work to do with only the
properties. PatBin also has better results in terms of compression rate, which
tends to decrease for big input files: this is mostly due to the fact that we used
examples files that are represented as big forests, thus having a long signature
on several lines.

Graph Matching Performance. The graph matching performance has been
performed by checking the equality between a newly compressed string, and an
array of stored compressed strings, acting as a cache. We made our evaluation
on several sizes of cache, to vary the number of comparison made; we also tested
different sizes of files (different numbers of triples) in order to have an output
longer or shorter. For each individual evaluation, we took files with the same
number of triples, and we also made sure that the input file was not in the
cache; this ensured each value in the cache would be verified, and thus the
test would not be biased by ending the checking too soon. Both the results in
cache and to be checked were (different) compressed results obtained from a
C-SPARQL query. The results are displayed in the Fig. 5; since the results have
a very high variance, we had to do an average of different results to have valid
results. The measures concern only the matching: the signature generation for
the file to be matched is not taken in account. Each measure has been identified
by a point on its curve, for better visualization. The three measures for PatBin
appear mingled with the lower (X) axis, because the computation time is much
shorter than RDSZ. In both cases, the matching time increases when we the
cache size and/or the triple number. For PatBin, the results are much better:
with 25 triples and a cache size of 100 compressed strings, the checking time is
only about 19 s, i.e., two orders of magnitude lower than RDSZ. This proportion
cannot be established precisely because of the variance, however the computation
times remain much better for PatBin. This is due to the fact that the signature
obtained after compression is much more compact that the one of RDSZ, since
PatBin does not retain the triples in its signature. We also checked hot and
cold performances for cache searching: in both cases, we filled a cache with 1000
random patterns, and checked if a new entry was present in the cache. We verified
that the randomness ensures the caches are completely verified in both cases.
The cold performances give an execution time of 105 ws for PatBin, and 156 for
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Graph matching performance
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Fig. 5. Materialized RDF stream and reformulated continuous query

RDSZ. For the hot performances, we computed the average of five executions:
PatBin is still more efficient, with 95 s of matching time against 160 for RDSZ.

7 Related Work

We consider two systems that integrate reasoning within a RDF streaming con-
text. IMaRS [3] incrementally maintains a materialization of ontology entail-
ments in a timely manner. The system extends the DRed [9] approach with
the use of the window operators and the introduction of an expiration time for
each triple. The system does not interact with a query reformulation compo-
nent, is not distributed and it is recognized that automatically defining efficient
expiration time is difficult in a streaming context. Finally, StreamQR, [4] pro-
poses a query reformulation solution which is based on the kyrie rewriter. The
architecture of the system does not support scalability and interactions with a
materialization component have not been considered.

Several systems consider RDF stream compression. The Zstreamy [7] sys-
tem is presented as a scalable platform for publishing semantic streams on the
Web. The compression approach is simply based on a standard Zlib compres-
sion. CQELS Cloud [11] addresses the problem of scalable stream processing
and proposes a simple dictionary encoding approach reminiscent of RDF stores.
RDSZ [8] (RDF Differential Stream compressor based on Zlib) and ERI [6]
(Efficient RDF Interchange format) correspond to lossless RDF stream com-
pression approaches. Both take advantage of structural similarities of RDF graph
events. ERI proposes a more fine-grained approach to pattern and pattern bind-
ing representations. Moreover, ERI does make an extended usage of differential
compression as RDSZ does. In general, the compression approaches of the two
systems are comparable with RDSZ being slightly more efficient for randomly
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distributed data and streams using a small set of predicates. In terms of process-
ing performance, ERI is more efficient than RDSZ for the compression phase
while the RDSZ is faster than ERI for the decompression operation. Concern-
ing compression, RDSZ pays the cost of the differential computing while for
decompression, ERI is slower due to the possibly large numbers of sequence of
RDF molecules. These systems are not benefiting from a compact, semantic-
aware KB encoding, do not propose a graph pattern signature nor interact with
materialization/query reformulation components.

8 Conclusion and Lessons Learned

In the context of the Waves project, we were confronted to a real-world use
case that is principally ingesting numerical measures from a set of sensors. At
first sight, such a scenario does not seem like the ideal playground for semantic
technologies. Nevertheless, due to the integration of external (e.g., Geonames,
DBpedia) and domain specific (e.g., SSN, CUAHSI) knowledge bases, as well as
RDF related technologies (e.g., SPARQL, RDFS, OWL), we were able to high-
light the added value of a semantic approach. The main impact was the ability to
explain some network malfunctions via the execution of inference-enabled con-
tinuous SPARQL queries. Of course, one of the key learned lesson concerns the
impact of reducing latency when reasoning over large event streams. We found
out that finding a trade-off between materialization and query reformulation was
an important factor in reducing processing latency. But this approach is reach-
ing its full potential with the kind of semantic-aware encoding and compression
presented in this work.

As future work, we aim to test Waves’s system on diverse IoT contexts and
thus emphasize that our approach can be generalized to different use cases.
Moreover, we are currently implementing an adaptive query processing engine
to guarantee the execution of optimized continuous SPARQL queries. Finally,
we will extend LiteMat’s inference capabilities with support for RDFS++ (an
ontology language supported by the Allegrograph RDF Store), i.e., supporting
RDFS as well as owl:sameAs, owl:transitiveProperty and owl:inverseOf
ontology constructs.
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