
ArmaTweet: Detecting Events
by Semantic Tweet Analysis
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Abstract. Armasuisse Science and Technology, the R&D agency for the
Swiss Armed Forces, is developing a Social Media Analysis (SMA) sys-
tem to help detect events such as natural disasters and terrorist activity
by analysing Twitter posts. The system currently supports only keyword
search, which cannot identify complex events such as ‘politician dying’ or
‘militia terror act’ since the keywords that correctly identify such events
are typically unknown. In this paper we present ArmaTweet, an extension
of SMA developed in a collaboration between armasuisse and the Univer-
sities of Fribourg and Oxford that supports semantic event detection. Our
system extracts a structured representation from the tweets’ text using
NLP technology, which it then integrates with DBpedia and WordNet in
an RDF knowledge graph. Security analysts can thus describe the events
of interest precisely and declaratively using SPARQL queries over the
graph. Our experiments show that ArmaTweet can detect many complex
events that cannot be detected by keywords alone.

1 Introduction

Twitter1 is a popular microblogging service. As of late 2016, an estimated 317
million users produce around 500 million messages (or tweets) per day that are
broadcast to the users’ followers. Tweets contain up to 140 characters and cover
almost any topic, including personal messages and opinions, celebrity gossip,
entertainment, news, and more. Current events are widely discussed on Twitter;
for example, around 1.7 M tweets were sent on 7/1/2015 in response to the Char-
lie Hebdo attacks in Paris. Twitter users often provide live updates in critical
situations; for example, users tweeted ‘In Brussels Airport. Been evacuated afer
[sic] suspected bomb.’ and ‘Stampede now. Everyone running’ during the attack
at the Brussels airport on 22/3/2016. Most tweets can be read by unregistered
users, so Twitter can potentially provide a real-time source of information for
detecting newsworthy events before the conventional broadcast media channels.
Thus, the development of techniques for tweet analysis and event detection has

1 http://twitter.com/
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attracted considerable attention. The Natural Language Processing (NLP) com-
munity adapted their techniques to tweets [9,17,23], which are short and often
use a colloquial style with nonstandard acronyms, slang, and typos. These tools
were used to develop numerous approaches to event detection on Twitter, and
we survey the NLP tools and the event detection approaches in Sect. 2.

Based on these results, armasuisse Science and Technology—the R&D agency
of the Swiss Armed Forces—is developing a Social Media Analysis (SMA) system,
which aims to help security analysts detect security-related events. Similarly to
previous work [2,15], analysts currently describe the relevant events using key-
words, which are evaluated over tweets using standard Information Retrieval (IR)
techniques. This approach, however, cannot detect events with complex descrip-
tions. For example, to detect deaths of politicians, an analyst might query the
SME system using keywords ‘politician die’, but this results in both low preci-
sion and low recall. For example, the system misses the death of Edward Brooke
(the first African American US senator) since, instead of the word ‘politician’,
most tweets about this event contain phrases such as ‘the senator’ or ‘elected
to the US Senate’; similarly, the word ‘die’ is very frequent on Twitter and so
the query retrieves mostly irrelevant tweets. To reliably detect such events, one
must understand the intended meaning of the query, know which people are
politicians, and identify tweets that mention such a person as a subject of a verb
‘to die’. Similarly, to match a query for ‘militia terror act’ to an attack of Boko
Haram on a village in Nigeria, one must know that Boko Haram is a militia
group and that terror acts include kidnappings and bombings.

In this paper we present ArmaTweet—an extension of SMA to semantic event
detection developed in a collaboration between armasuisse and the Universities
of Fribourg and Oxford. Our system uses NLP technique to extract a structured
representation from tweets and integrate it with DBpedia and WordNet in an
RDF knowledge graph. Users can thus describe relevant event categories by
using semantic queries over the knowledge graph. The system evaluates these
queries using semantic technologies to retrieve the relevant tweets and passes
them to an anomaly detection algorithm to determine whether and how they
correspond to actual events. We evaluated our system on the 1%-sample of tweets
collected by the Twitter’s streaming API during the first six months of 2015.
The system detected a total of 941 events across seven different event categories.
We evaluated our results using three different definitions of which tweets should
be considered relevant to the query. Depending on the selected relevance metric,
our system achieved precision between 46% and 67% across all categories. Most
of these events could not be detected by the previous version of the system,
showing clearly how our approach complements standard keyword search.

2 Related Work

Although analysing tweets is very challenging, initiatives such as the Named
Entity rEcognition and Linking (NEEL) Challenge have spurred on the NLP
community to develop a comprehensive set of tools including Part-of-Speech
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(POS) taggers [17], Named Entity Recognisers [5,22], and dependency parsers
[9]. To understand the syntactic structure of tweets, our system must identify
dependencies between terms (e.g., identify the subject of a given verb, determine
grammatical cases, and so on). We do not know of a Twitter-specific system that
provides such functionality, so decided to use the Stanford CoreNLP library [14]
that was originally designed to analyse cleaner text.

A recent survey of the methods for event detection on Twitter [7] classi-
fies existing approaches into three groups. The first one contains approaches for
detecting unspecified events—that is, events of general interest with no advance
description. These approaches typically detect trends in features extracted from
tweets and/or cluster tweets based on their topic [3,13,29]. Several systems
detect breaking news [18,19,26], and one additionally classifies events into prede-
fined types such as ‘Sports’, ‘Death’, or ‘Fashion’ [23]. Some approaches use prob-
abilistic similarity instead of clustering [31]. Analogously to these approaches,
we also identify events by detecting trends, but only after semantic queries have
been used to identify the tweets matching the user’s interests (see Sect. 3).

The second group contains approaches for detecting predetermined events,
such as concerts [4], controversial events [20], local festivals [10], earthquakes [25],
crime and disaster events [12], and disease progression [27]. Such systems are
specifically tailored to an event type, and they usually involve training a classi-
fier on manually annotated tweets to learn the correlation of features that identi-
fies tweets talking about an event. The EMBERS system [21] goes a step further
by aggregating many sources of information (Twitter, Web searches, news, blogs,
Internet traffic, and so on) to detect and predict instances of civil unrest.

The third group contains approaches for detecting specific events, which typi-
cally use IR methods to match a query (i.e., a Boolean combination of keywords)
to a database of tweets. Queries are either provided by the users or are learned
from the context [2], and recall can be improved by query expansion [15]. These
techniques have been combined with geographical proximity analysis to detect
civil unrest [30] and model events in Twitter streams [8]. ArmaTweet also identifies
tweets using queries provided by users and thus, broadly speaking, falls into this
category; however, instead of keyword queries, it uses semantic queries describing
the relationships between entities in tweets. The system thus supports queries for
specific events (e.g., ‘Obama meets Trump’) that can be captured using keywords,
as well as more complex queries specifying an event type (e.g., ‘somebody hacks a
company’) for which a keyword-based approach is not effective. Our system does
not rely on a training phase, but requires users to specify their interests precisely
by constructing semantic queries. An approach most similar to ours constructs a
knowledge graph of events from news articles [24], and the main difference to our
work is that it focuses on longer, cleaner texts.

3 Motivation and Methodology

Motivation. Detecting Twitter events using complex descriptions (e.g., based
on entities’ classes or their relationships) is still very challenging. Consider, for
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example, the ‘politician dying’ description from the introduction, and the death
of Edward Brooke on 3/1/2015. The event has been widely discussed on Twitter,
and running the keyword query ‘edward brooke’ for that day in SMA returns
121 tweets. This, however, is just a tiny fraction of all tweets produced on that
day, and so this event is unlikely to be detected by the techniques for unspecified
events (see Sect. 2); for example, the technique by Ritter et al. [23] detected just
five completely unrelated events on that day.2 Moreover, there are no obvious
keyword queries: ‘die’ returns 5161 mostly irrelevant tweets in SMA, ‘politician’
returns 46 irrelevant tweets, and ‘politician die’ and ‘senator die’ return no results
(note that SMA uses just 1% of all tweets). Thus, although ‘edward brooke’ is
an effective query, it is unclear how to construct it from description ‘politician
dying’. Similarly, it is unclear how to exploit classification-based techniques since
common features, such as n-grams or bags of words, are unlikely to reflect the
semantic information that Edward Brooke was a politician. Other examples of
complex events that we consider in this paper include ‘politician visits a country’,
‘militia terror act’, or ‘capital punishment by country’.

Approach. Since the objective of armasuisse was to detect events with com-
plex descriptions, we depart from statistical and IR approaches and use semantic
search instead. In particular, we use natural language processing to associate
each tweet with a set of quads of the form (subject,predicate,object,location),
describing who did what to whom and where; any of these components can
be empty, which we denote by ×. We also associate with each tweet a set
of entities whose role (subject or object) in the tweet could not be deter-
mined. Subjects, objects, locations, and entities are matched to DBpedia [11], a
knowledge base extracted from Wikipedia, and predicates are matched to verb
synsets in WordNet [16], an extensive lexicon. Thus, DBpedia and WordNet
provide us with a vocabulary and background knowledge for describing complex
events. For example, tweets about the death of Edward Brooke are associated
with quads of the form (dbr:Edward Brooke,wnr:200359085-v,×,×), where
wnr:200359085-v identifies the synset ‘to die’ in WordNet, and DBpedia clas-
sifies dbr:Edward Brooke as an instance of yago:Politician110451263. Our
simple quad model cannot represent semantic relationships such as appositions,
adverbs, dependent clauses, modalities, or causality. While such relationships
would clearly be useful, our evaluation (see Sect. 7) demonstrates that our model
is sufficient for detecting many kinds of complex event that cannot be detected
using keywords only.

Semantic Event Descriptions. To use ArmaTweet, users must first describe
formally the events of interest. To facilitate that, the system provides an intu-
itive and declarative query interface that allows users to query quads in our
knowledge graph while exploiting the background knowledge from DBpedia and
WordNet. For example, ‘politician dying’ events can be precisely described by a

2 http://statuscalendar.com/month/201501/ accessed on 14 December 2016.

http://statuscalendar.com/month/201501/
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Fig. 1. ArmaTweet architecture

query that identifies all quads in our knowledge graph whose subject is of type
yago:Politician110451263, and whose predicate is wnr:200359085-v. As we
discuss in Sect. 5, such queries are matched to the knowledge graph in a way that
attempts to compensate for the imprecision of natural language analysis. Queries
are currently constructed manually, which allows users to precisely describe their
information needs. In our future work we shall investigate techniques that can
automate, or at least provide some help with, query construction.

System Output. Given a set of tweets and a set of queries describing complex
events, ArmaTweet produces a list of events, each consisting of an event date, an
event summary, and a set of relevant tweets. The event summary is specific to
the event type; for example, for ‘politician dying’, it identifies the politician in
question, and for ‘militia terror act’, it identifies the militia group and the verb
describing the act. Finally, the set of relevant tweets allows the user to validate
the system’s output, gain additional information, and possibly initiate an appro-
priate event response. The system currently does not detect long-running events
(e.g., political turmoil or health crises)—that is, each event is associated with
a single day only. Thus, the same real-world event can be reported as several
events having the same summary but occurring on distinct days. Longer-running
events are often reported as events with the same summary occurring in close
succession, and we shall investigate ways to exploit this in our future work.

System Architecture. Figure 1 shows the architecture of ArmaTweet and its
three main components. The Natural Language Processing component analyses
the tweets’ text and extracts the quads and entities, and it is independent of
the complex event descriptions. The Semantic Analysis component converts the
output of the NLP step into RDF, which is then analysed and filtered using
the user’s event descriptions. The output of this component is a set of tweet
time series, each consisting of a summary and a set of tweets. Finally, the Event
Detection component uses an anomaly detection algorithm to extract from each
time series zero or more dates that correspond to the actual events. The resulting
events and their summaries are finally reported to the user.
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Fig. 2. Data structures produced by OpenIE on two example tweets

To understand the conceptual difference between time series and events, con-
sider the ‘militia terror act’ event query. Our Semantic Analysis component pro-
duces one time series with subject ‘Boko Haram’ and predicate ‘to attack’, which
contains all tweets talking about attacks by Boko Haram regardless of the time
of the tweets. Next, the Event Detection component groups the tweets by time
and detects anomalies (e.g., abrupt changes in the number of tweets per day).
Since Boko Haram committed several attacks in our test period, our system
extracts and reports several events from this particular tweet time series.

Our NLP processing is computationally intensive, but it is massively parallel
since each tweet can be processed independently; hence, we parallelised it using
Apache Spark. Moreover, we used the state of the art semantic store RDFox3

to manage and process our knowledge graph. The parts of our system that are
independent from the Spark environment (i.e., the core of the NLP component
and the queries/rules used for semantic analysis) are available online.4

4 Natural Language Processing of Tweets

The NLP component of ArmaTweet extracts from tweets in English a set of
quads consisting of a subject, predicate, object, and location, and a set of entities
that cannot be assigned to a quad. Predicates are matched to verb synsets in
WordNet, and the remaining components are matched to DBpedia resources.

Data Preparation. For each tweet, we first prepare certain data structures.
Specifically, we first clean the text by removing emoticons and uncommon char-
acters, we substitute # and @ characters with whitespace, and we split Camel-
Case words. Next, the OpenIE annotator from the Stanford CoreNLP library [1]
transforms the text into text triples consisting of a subject, a predicate, and an
object; the name ‘text triples’ emphasises that the components are pieces of text,
and not DBpedia or WordNet resources. OpenIE also annotates the mentions of
named entities (i.e., objects with a proper name) with the entity types (location,
organisation, or person); it annotates the text with part-of-speech (POS) tags,

3 http://www.cs.ox.ac.uk/isg/tools/RDFox/
4 http://github.com/eXascaleInfolab/2016-armatweet

http://www.cs.ox.ac.uk/isg/tools/RDFox/
http://github.com/eXascaleInfolab/2016-armatweet
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which describe the relation of a word with adjacent or related words; and it
produces a (dependency-based) parse tree, which represents the syntactic depen-
dencies between sentence parts using labelled edges between words.

Figure 2 shows the output of OpenIE on two example tweets. The tweet text is
shown in bold. Named entity types are coded using colours: the locations ‘Hawija’
and ‘White House’ are shown in green, the organisation ‘ISIS’ is shown in blue, and
the persons ‘Obama’ and ‘Trump’ are shown in yellow. The POS tags are shown
in italic below the words: ‘Hawija’ is a singular proper noun (NNP), ‘was’ is a verb
in past tense (VBD), and ‘again’ is an adverb (RB). Finally, the parse trees are
shown as labelled arrows connecting words. The roots of the trees are words with-
out incoming edges—‘bombed’ and ‘met’ in this case. Moreover, in the rightmost
tree, ‘Obama’ is the subject of the verb ‘met’ (denoted by a nsubj dependency),
while ‘Trump’ is its direct object (denoted by a dobj dependency). Finally, the
text triples are shown at the bottom of the figure.

Our NLP component also passes the text to DBpedia Spotlight [6], which
identifies entity mentions in the text and associates with each mention an appro-
priate DBpedia resource. For example, on the example shown in Fig. 2, Spot-
light annotates ‘Hawija’ with dbr:Hawija, ‘ISIS’ with dbr:ISIS,5 ‘Obama’ with
dbr:Barack Obama, ‘Trump’ with dbr:Donald Trump, and ‘White House’ with
dbr:White House. We chose Spotlight due to its scalability and ease of use.
Spotlight is parameterised by a confidence value that regulates the precision of
annotation, and a support value used to filter out uncommon entities, and we
empirically determined 0.5 and 20, respectively, as values appropriate for our
system. Please note that this step is complementary to the named entity recog-
nition of OpenIE: Spotlight provides us with links to DBpedia, whereas OpenIE
provides us with high-level entity categories that we use for text analysis.

Location Extraction. We next try to identify the location of the action in
text triples by observing that words introducing a grammatical case in a sen-
tence that are connected to a location often describe the verb’s spatial location.
Thus, we first extend each text triple into a text quad by specifying the location
as unknown. Next, for each text quad where the object is a location (as indicated
by entity recognition), we check whether the parse tree contains a grammatical
case dependency between a word occurring in the quad’s predicate and a word
occurring in its object; if so, we move the quad’s object to its location. For exam-
ple, the object of (‘Obama’, ‘met Trump in’, ‘White House’) in Fig. 2 has been
classified as a location, and the parse tree contains a grammatical case depen-
dency between the word ‘House’ occurring in the object and the preposition ‘in’
occurring in the predicate, and so we treat ‘White House’ as a location instead
of an object. Please note that a location in the subject often does not specify the
location of an action; for example, the subject of the sentence ‘Oxford is a city’ is
a location, but ‘Oxford’ should not be used as a location in a quad since it does
not describe the location of an action. We found no clear dependency pattern
that could distinguish such cases and reliably extract location from subjects.
5 We abbreviate the actual resource dbr:Islamic State of Iraq and the Levant.
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Passive Voice Correction. Passive voice can be problematical; for example,
in (‘Hawija’, ‘was bombed by’, ‘ISIS’) from Fig. 2, ‘Hawija’ is the subject and
‘ISIS’ is the object, which does not correctly reflect the intended meaning of
the tweet. To correct such situations, for each text quad, we check whether the
predicate contains a word that was classified by the POS tagger as a verb and
that has (i) an outgoing passive auxiliary modifier dependency (to any other
word), (ii) a passive subject dependency to a word occurring in the subject, and
(iii) an agent dependency to a word occurring in the object; if so, we swap the
subject and the object. In our example, ‘was’ is an auxiliary modifier, ‘ISIS’ is
an agent, and ‘Hawija’ is a passive subject’, so we apply the correction.

Entity Resolution. We next match the subject, object, and location of each
text quad to the annotations of Spotlight. In case of an exact match we replace
the component with the DBpedia resource, and otherwise we replace it with ×.

Verb Resolution. Since Spotlight does not handle verbs, we developed our own
approach to verb resolution. First, we identify all verb occurrences in a tweet
using POS tags. Next, we lemmatise each verb occurrence—that is, we substitute
it with the verb’s infinitive form (e.g., ‘met’ becomes ‘to meet’, ‘bombed’ becomes
‘to bomb’, and so on)—and then we search the tweet’s parse tree for any phrasal
verb particles connected to the verb’s occurrence. Such a dependency indicates
that the verb and the particle form an idiomatic phrase (e.g., ‘take off’ or ‘sort
out’) and should be analysed together, so, whenever we find one, we concatenate
the verb with the phrasal verb particle. We finally match the (possibly extended)
verb occurrence to a WordNet synset; if several candidate synsets exist, we select
the one that is most frequent according to the WordNet’s statistics. The output
of this part of our system is thus similar to that of Spotlight.

Finally, we resolve the predicates in the quads to the matched verbs. Unlike
entities, which we resolved using exact matches, we substitute the predicate of
a quad with a matched verb if the former contains the latter. This allows us to
match ‘was bombed by’ in Fig. 2 to the synset for ‘to bomb’. Again, we replace
predicates that could not be resolved with ×.

Quad Output. For each tweet, we return all quads except those containing
only × markers. In addition, for each verb that was resolved to the tweet’s text
but could not be associated with a quad, we also return a fresh quad where the
subject, object, and location are empty. Finally, we return the set of all entities
that were detected by Spotlight but could not be matched to a quad.

5 Semantic Analysis

The Semantic Analysis component of ArmaTweet integrates DBpedia, WordNet,
and the quads in a knowledge graph, and it evaluates complex event descriptions
provided by the users. We next discuss the structure of the knowledge graph and
the event descriptions, and we describe how we identify the tweet time series.
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5.1 The RDF Knowledge Graph for Event Detection

We use RDF as the data model for the knowledge graph. Thus, the RDF ver-
sions of DBpedia and WordNet can be imported directly, and we encode tweet
information using a simple schema. Each tweet is identified by a URI obtained
from the tweet’s ID; it is an instance of the aso:Tweet class; and data properties
aso:createdAt and aso:tweetText specify the time of the tweet’s creation and
its text, respectively. A tweet can be associated with zero or more quads, each
with at most one aso:quadSubject, aso:quadPredicate, aso:quadObject, and
aso:quadLocation property value. Finally, a tweet can be associated with zero
or more entities whose role in a sentence could not be determined (see Sect. 4).

Figure 3 shows the tweet ast:551507074258325504 with two quads: one con-
nects dbr:Edward Brooke from DBpedia with the WordNet synset ‘to die’, and
another connects dbr:Edward Brooke with dbr:Reconstruction Era (due to
the imprecision of NLP analysis). Finally, the tweet is also directly associated
with dbr:Birmingham, whose role in the sentence could not be determined.

The time series detected by Semantic Analysis component, each consisting
of a summary and a set of tweets, are also stored in the knowledge graph. For
example, :ts-sp 4344996 1855965 in Fig. 3 is a tweet time series containing
all tweets about Edward Brooke dying, and the Event Detection component
(cf. Sect. 6) will extract from it zero or more events. Our system currently does
not take into account that a person can die only once, and so it can potentially
report multiple ‘Edward Brooke dies’ events. Each time series is classified accord-
ing to the type of the summary information; currently, this includes subject–
predicate (SP), predicate–object (PO), subject–country (SC), predicate–country
(PC), and subject–predicate–country (SPC) time series. For example, the time
series in Fig. 3 is determined by a subject and a verb, and so it belongs to

Fig. 3. A fragment of the RDF knowledge graph
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the aso:TimeSeries-SP class and the values of aso:timeSeriesSubject and
aso:timeSeriesPredicate determine the time series summary.

5.2 Resolving Location in the Knowledge Graph

We observed that the granularity of the event location often varies between
tweets; for example, tweets about the Charlie Hebdo attacks refer both to France
and Paris. To simplify event detection, we decided to aggregate event information
at the country level. Thus, we extend the knowledge graph by resolving references
to locations mentioned in tweets to the corresponding countries. For example,
the tweet shown in Fig. 3 refers to dbr:Birmingham so, since DBpedia contains
the information that Birmingham is a city in the UK, we associate the tweet with
dbr:United Kingdom using the aso:tweetCountry property. Entities in tweet
quads are resolved to countries in a similar vein.

5.3 Describing Complex Events and Extracting Time Series

Events of interest are described using conjunctive SPARQL queries that select
the relevant quads. For example, queries (1) and (2) describe the ‘politician
dying’ and the ‘unrest in a country’ events, respectively, where aso:UnrestVerb
contains all verbs from WordNet that we identified as indicating unrest. The
answer variables of each query determine the time series summary.

SELECT ?S wnr:200359085-v WHERE { ?Q aso:quadPredicate wnr:200359085-v .
?Q aso:quadSubject ?S . ?S rdf:type yago:Politician110451263 } (1)

SELECT ?P ?C { ?Q aso:quadCountry ?C .
?Q aso:quadPredicate ?P . ?P rdf:type aso:UnrestVerb } (2)

We next explain why querying quads is important. In particular, tweets often
mention a politician and the verb ‘to die’, but not in a desired semantic relation-
ship. For example, tweet ast:551766588421312512 (not shown in Fig. 3) says
‘@BarackObama @pmharper I’m just trying to get some realization, is school
supposed to cause you so much stress&anxiety that you want to die?’ and it
is annotated with dbr:Barack Obama and wnr:200359085-v, but, as one might
expect from the text, there is no quad connecting the two resources. The lack of a
semantic relationship, however, does not always indicate that a tweet is irrelevant
to the event query. For example, tweet ast:555598764589977600 (not shown in
Fig. 3) says ‘Edward Brooke, first black US senator elected by popular vote, dies
- Reuters’, and it is annotated with dbr:Edward Brooke and wnr:200359085-v,
but, due to the complex sentence structure, the NLP component could not iden-
tify the semantic relationship correctly. In fact, our knowledge graph contains
44 tweets with quads matching ‘Edward Brooke dies’, as well as 111 additional
tweets without the semantic relationship.

To exploit the knowledge graph as much as possible but without losing pre-
cision, our system proceeds as follows. It creates a tweet time series for each
distinct result of a quad query (or, equivalently, for each distinct time series
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summary), to which it adds as ‘high confidence’ members all tweets contain-
ing a matching quad. Next, for each time series created in this way, the sys-
tem adds to the time series as ‘low confidence’ members all tweets mentioning
the relevant entities/predicates without the semantic relationship. For exam-
ple, our system creates a time series for each distinct value of ?S produced by
query (1), and this includes :ts-sp 4344996 1855965 from Fig. 3 that contains
tweets ast:551507074258325504 and ast:555598764589977600 as ‘high’ and
‘low confidence’ members, respectively. In contrast, no time series is created for
dbr:Barack Obama since our knowledge graph does not contain a quad match-
ing query (1) where ?S is dbr:Barack Obama. Intuitively, the presence of ‘high
confidence’ tweets raises the importance of the ‘low confidence’ tweets, which
helps compensate for the imprecision of the NLP analysis.

The Semantic Analysis component was realised using the RDFox system,
which supports reasoning over RDF datasets using datalog rules. For each time
series query, the user must provide the time series name and classify the query
according to the summary type, and then the query is converted into a data-
log rule that creates the tweet time series and identifies the ‘high confidence’
tweets. For example, query (1) is named aso:PoliticianDying and classified
as a subject–predicate query, and so it is converted into the following datalog
rule:

[?TS, rdf:type, aso:PoliticianDying], [?TS, aso:timeSeriesSubject, ?S],
[?TS, aso:timeSeriesVerb, wnr:200359085-v], [?TS, aso:timeSeriesHigh, ?TW] :-

[?TW, aso:tweetQuad, ?Q], [?Q, aso:quadSubject, ?S],
[?S, rdf:type, yago:Politician110451263], [?Q, aso:quadPredicate, wnr:200359085-v],
BIND(SKOLEM("ts-sp", ?S, wnr:200359085-v) AS ?TS) .

(3)

This rule uses the datalog syntax of RDFox, which supports calling SPARQL
builtin functions in its body. The SKOLEM function is an RDFox-specific extension
that creates a blank node uniquely determined by the function’s parameters, thus
simulating function symbols from logic programming. Thus, for each value of ?S,
rule (3) assigns to ?TS a unique blank node that identifies the time series, and its
head atoms then attach to ?TS the relevant information and the ‘high confidence’
tweets. A fixed (i.e., independent from the queries) set of rules then identifies the
‘low confidence’ members of each time series by selecting tweets that mention
all entities/predicates from the time series summary, but without the semantic
relationship. For example, for subject–predicate time series, these rules select all
tweets that mention the subject and the predicate outside a quad.

6 Event Detection

The Event Detection component accepts as input the tweet time series produced
by the Semantic Analysis component, and it identifies zero or more associated
events. This is done using the Seasonal Hybrid ESD (S-H-ESD) test [28] devel-
oped specifically for detecting anomalies in Twitter data. The algorithm is given
a real number p between 0 and 1, a set of time points T , and a real-valued func-
tion x : T → R that can be seen as a sequence of observations of some value on T
where x(t) is the value observed at time t ∈ T . The algorithm identifies a subset
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Table 1. Evaluation results by event category

Event category Type Total Events Positive instances by relevance

R3 R3+R2 R3–R1

Aviation accident SP 84 44 (52%) 51 (61%) 64 (76%)

Cyber attack on a company PO 129 20 (16%) 42 (33%) 57 (44%)

Capital punishment in a country PC 153 47 (31%) 67 (44%) 92 (60%)

Militia terror act SP 220 92 (42%) 125 (57%) 141 (64%)

Politician dying SP 111 76 (68%) 80 (72%) 85 (77%)

Politician visits a country SPC 44 29 (66%) 36 (82%) 44 (100%)

Unrest in a country PC 200 125 (63%) 133 (67%) 148 (74%)

Total: 941 433 (46%) 534 (57%) 631 (67%)

Ta of T of time points at which the value of x is considered to be anomalous,
while ensuring that |Ta| ≤ p · |T | holds; thus, p is the maximal proportion of the
time points that can be deemed anomalous. Roughly speaking, the S-H-ESD test
first determines the periodicity/seasonality of the input data; next, it splits the
data into disjoint windows each containing at least two weeks of data; finally,
for each window, it subtracts from x the seasonal and the median component
and applies to the result the Extreme Student Derivative (ESD) test—a well-
known anomaly detection technique. Twitter is currently using this technique
on a daily basis to analyse their server load. ArmaTweet uses the open-source
implementation of this test from the R statistical platform.6

To apply the S-H-ESD test, each tweet time series is converted into a sequence
of temporal observations by aggregating the tweets by day—that is, the set T
corresponds to the set of all days with at least one tweet, and the value of x(t)
is the number of (both ‘high’ and ‘low confidence’) tweets occurring on the day
t ∈ T . We then run the S-H-ESD test with p = 0.05—that is, at most 5% of the
time points can be deemed anomalous. Moreover, we configured the algorithm
to detect only positive anomalies (i.e., cases where the number of tweets is above
the expected value), which is natural for event detection.

7 Evaluation

Evaluating ArmaTweet was difficult since there is no ground truth: a list of all rel-
evant events does not exist, so we could not determine the recall of our technique.
Thus, we focused on determining the precision and the benefits of semantic event
detection. We next present our experimental setup and discuss our findings.

We processed 195.7 M tweets in English collected in the first half of 2015
using Twitter’s streaming API (which returns about 1% of all tweets). The NLP
component extracted 14.5 M quads from 12.8 M tweets (i.e., 6% of the input).
Most quads have two components: 6.2 M quads contain a predicate and an object,
and 5 M quads contain a subject and a predicate; the remaining 0.7 M quads have

6 http://github.com/twitter/AnomalyDetection.

http://github.com/twitter/AnomalyDetection
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three components, and no quads have four components. About 0.5 M quads
contain location information. Integrating the quad information with DBpedia
and WordNet produced a knowledge graph containing a total of 725.8 M triples,
which increased to 800 M triples after applying the semantic analysis rules.

Determining Complex Events. We consulted the Wikipedia page for 20157

to identify interesting concrete events, which provided us with a starting point
for a series of workshops in which we identified events and event types of interest
to armasuisse customers. We eventually settled on the seven complex event cat-
egories shown in Table 1. We made sure that our categories cover many different
types of event summary (i.e., subject–verb, verb–object, etc.).

Creating Category Queries. For each event category, we constructed a
semantic query as follows. We first identified the entities from our example events
on Wikipedia (e.g., dbr:Edward Brooke), which we then looked up in DBpedia
to identify their types (e.g., yago:Politician110451263). Next, we queried our
knowledge graph for the verbs occurring together with the sample entities in the
tweets. We ranked these verbs by the frequency of their occurrence, and then
selected those best matching the event category. Finally, we formulated the cat-
egory query and tested it on example events. Most queries capture the meaning
of the categories directly, apart from the ‘Aviation incident’ query where, to
select useful data, we ask for a subject of type ‘airline’ and a verb indicating a
crash. Creating the queries took about four person-days of an expert in semantic
technologies, and optimising this process is the main topic for our future work.

Event Validation. By evaluating the event categories over the knowledge graph
and detective events as discussed Sects. 5 and 6, we identified a total of 941 events
(see Table 1), which we validated manually—that is, we determined whether the
reported event is a positive instance. This, however, turned out to be surprisingly
challenging. First, we could often not verify whether the event really happened,
so we decided to just evaluate whether the retrieved tweets correctly talk about
the event; we justify this choice by noting that detecting ‘invented’ events could
also be very important to security analysts. Second, some events happened in
the past (e.g., the anniversary of Robert Kennedy’s assassination was widely
discussed on Twitter), but we decided to count these as positive instances as
well since they are also likely to be of interest. Third, in some cases the retrieved
events were only partially relevant to the query, and so we assigned each event
one of the following three relevance scores:

– R3 are clear positive instances of the category in question;
– R2 are positive instances where the entity resolution (e.g., dbr:British Raj

vs. dbr:India) or the subject–object relationships (e.g., ‘ISIS attacked X’ vs.
‘X attacked ISIS’) in the event summary are incorrect;

7 http://en.wikipedia.org/wiki/2015

http://en.wikipedia.org/wiki/2015
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– R1 are events with a ‘fuzzy’ relationship to the category (e.g., ‘ISIS kills X’
or ‘policeman killed’ for the ‘Unrest in a country’ category); and

– R0 are events with no relevance to the event category.

Results. Table 1 shows the total number of detected events per category and
the numbers of positive instances for different relevance scores. As one can see,
precision varies considerably across categories. Visits and deaths of politicians
could be reliably detected: our NLP component seems very effective on the rele-
vant tweets, and type filtering seems very effective at identifying the appropriate
entities. In contrast, detecting cyber attacks is difficult: our query searches for
‘company hacked’, but the verb ‘to hack’ often means ‘to cut’ or ‘to manage’ so
the query retrieved many irrelevant tweets (e.g., about a blogger being stabbed).

A particular problem for ArmaTweet was to correctly differentiate the subject
from the object of an action: the approach to passive voice detection we described
in Sect. 4 was effective, but should be further improved. Moreover, precision
often suffered due acronyms; for example, ‘APIs’ (i.e., ‘Application Programming
Interfaces’) was resolved to ‘Associated Press’. Finally, popular entities posed a
particular problem. For example, ISIS appears in a great number of tweets,
which increases the likelihood of incorrect event recognition; in contrast, Boko
Haram is not that well known and thus seems to be mainly mentioned in tweets
reporting terrorist activity. We plan to further investigate ways to ‘normalise’
the tweet time series based on the ‘popularity’ of the entities involved.

8 Conclusion

We have presented ArmaTweet—a system developed by armasuisse and the Uni-
versities of Fribourg and Oxford for semantic event detection on Twitter. The
system represents the tweets’ contents in an RDF knowledge graph, thus allow-
ing users to precisely describe the events of interest. The results of our evaluation
show that ArmaTweet can detect events such as ‘politician dying’ and ‘militia
terror act’, which cannot be detected by conventional keyword-based methods.
We see two main challenges for future work. First, to help users describe com-
plex events, we will develop adequate user interfaces, as well as investigate ways
to extract semantic queries from example tweets. Second, we plan to improve
the precision of the NLP component, particularly focusing on the correction of
passive voice and the quality of entity resolution in the presence of acronyms.
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