
Chapter 8

Loops and Networks

Abstract

The analysis so far concerned only one-dimensional epistemic chains. In
this chapter two extensions are investigated. The first treats loops rather than
chains. We show that generally, i.e. in what we have called the usual class,
infinite loops yield the same value for the target as do infinite chains; it is
only in the exceptional class that the values differ. The second extension
involves multi-dimensional networks, where the chains fan out in many dif-
ferent directions. As it turns out, the uniform version of the networks yields
the fractal iteration of Mandelbrot. Surprising as it may seem, justificatory
systems that mushroom out greatly resemble fractals.

8.1 Tortoises and Serpents

In 1956 Wilfrid Sellars famously diagnosed the malaise of epistemology as
an unpalatable either/or:

One seems forced to choose between the picture of an elephant which rests
on a tortoise (What supports the tortoise?) and the picture of a great Hegelian
serpent of knowledge with its tail in its mouth (Where does it begin?). Neither
will do.1

Up to this point our focus has been on finite and infinite chains of proposi-
tions. We looked, as it were, at an elephant which rests on a tortoise, which
in turn might rest on a second tortoise, and so on, without end. Pace Sellars’
pessimism, we have seen that such structures are not particularly problematic
if one takes seriously that the relation of support is probabilistic.
1 Sellars 1956, 300.
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168 8 Loops and Networks

There are now two ways in which we could extend our investigation and
go beyond one-dimensional chains. The first is to keep the one-dimension-
ality, but to look at loops rather than chains: this would take us to the sec-
ond horn of Sellars’s dilemma, where knowledge is pictured as Kundalini
swallowing its own tail. The other way is to give up one-dimensionality al-
together and to study multi-dimensional networks. This would take us to the
coherentist caucus in epistemology, or rather to an infinitist version of it, in
which ultimately the network stretches out indefinitely in infinitely many di-
rections. It might seem that such a version will be especially vulnerable to
the standard objection to coherentism, according to which coherentist net-
works of knowledge hang in the air without making contact with the world.
Indeed, as Richard Fumerton noted, if we worry about “the possibility of
completing one infinitely long chain of reasoning, [we] should be downright
depressed about the possibility of completing an infinite number of infinitely
long chains of reasoning”.2

Remarkably enough however, the opposite is the case. Since the connec-
tions between the propositions in the network are probabilistic in character,
we are dealing with conditional probabilities. As we explained in Section
4.4, the conditional probabilities together carry the empirical thrust, and this
is even more so in a multi-dimensional system than in a structure of only
one dimension, for the simple reason that now there are more conditional
probabilities that may be linked to the world.

Extending the chains to networks thus enables us to catch it all: to develop
a form of coherentism which not only is infinitist, but also acknowledges the
foundationalist maxim that a body of knowledge worthy of the name must
somehow make contact with the world.3

We start in Section 8.2 by discussing one-dimensional loops. We will see
that, if justification is interpreted probabilistically, then it is in general un-

2 Fumerton 1995, 57.
3 Thus we do not have many quibbles with William Roche when he argues that
foundationalism, if suitably generalized, can be reconciled with infinite regresses
of probabilistic support (Roche 2016). Much depends on what is meant by foun-
dationalism: as we indicated in Section 4.4, we do not want to become embroiled
in a verbal dispute. Some commentators write as if foundationalism were the sole
guardian of empirical credibility and connection to the world. Although others might
find that position unduly imperialistic, we do not object to being called foundation-
alists in that sense. We have no issue with a form of foundationalism that takes into
account fading foundations and the related concept of trading off as it is applied
to doxastic justificatory chains. Our concern is less about the classification of our
results than about the results themselves.
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problematic to maintain that a target is justified by a loop. In Section 8.3 we
turn to multi-dimensional networks, where the tentacles stretch out in many
different directions. In Section 8.4 we explain that such a multi-dimensional
network takes on a very interesting and intriguing shape when it goes to
infinity. Surprising and somewhat strange as it may sound, if epistemic jus-
tification is interpreted probabilistically, and if we accept that it can go on
without end, then justification is tantamount to constructing a fractal of the
sort that Benoı̂t Mandelbrot introduced many years ago.

In the final section we explain what happens when the multi-dimension-
ality springs from the connections in the network rather than from the nodes,
i.e. when it originates from the conditional probabilities rather than from the
unconditional ones. We shall see that in a generalized sense the Mandelbrot
construction is preserved.4

8.2 One-Dimensional Loops

Finite loops embody the simplest coherentist system. What about infinite
ones? It seems that an infinite loop cannot really be called a loop, since there
is no end of the tail that the Hegelian serpent can swallow. A loop after all in-
volves a repeat of the same; it may be long, indeed more than cosmologically
long, but it seems that it may not be infinite, on pain of having no repetition
at all. Even Henri Poincaré, when he formulated his recurrence theorem, had
to assume that the universe is finite in spatial extent and of finite energy.

However, from the fact that a finite loop differs from an infinite ‘loop’,
it does not follow that an infinite loop is in fact an infinite chain. Our in-
vestigation in this section will explain that such a conclusion would be un-
warranted. In what we have called the usual class, the infinite loop indeed
produces the same result as does the corresponding infinite chain; but in the
exceptional class infinite loops and infinite chains yield different results, as
we shall show.

We saw in Chapter 3 that the probability of the target in a finite linear
chain can be written as in (3.20), where we have reinstated q in place of A0:

P(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1) .

4 Section 8.2 in this chapter, about the loops, is based on Atkinson and Peijnenburg
2010a; Sections 8.3 and 8.4, which deal with networks, are based on Atkinson and
Peijnenburg 2012.
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The general formulation of a finite loop with m+1 propositions has a similar
form, except that the (m+1)st proposition is q itself. Mathematically, there
is no problem if we insert Am+1 = q into the above equation to yield

P(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(q) ,

for this yields

P(q) =
β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm

1− γ0γ1 . . .γm
, (8.1)

which is well-defined, on condition that γ0γ1 . . .γm is not equal to unity.5

With that proviso, the solution demonstrates the viability of the coherentist
scenario in its simplest form, that of a finite one-dimensional loop.

The fact that a self-supporting finite loop or ring makes good mathemat-
ical sense is of course not enough. Does it also make sense elsewhere? Can
a loop that closes upon itself occur in reality? A temporal example of such a
loop is difficult to come by in the real world, but it can occur in the science
fiction of time travel. Let q be a proposition stating that young Biff decides
in 1955 to use the 2015 edition of the sports almanac, A1 a proposition as-
serting that he continues his successful career as bettor until 2015, and A2
a proposition explaining how old Biff succeeds in borrowing Doc Brown’s
time machine in 2015, and returns to 1955 in order to give the almanac to
his younger self. A3 = q would then be a proposition stating that young Biff
decides in 1955 to use the 2015 edition of the sports almanac . . . and so on.

In fact, the events need not follow one another in time. Consider the fol-
lowing three propositions:

C: “Peter read parts of the Critique of Pure Reason”.
P: “Peter is a philosopher”.
S: “Peter knows that Kant defended the synthetic a priori”.

Assuming that all philosophers read at least parts of the Critique of Pure
Reason as undergraduates, if Peter is a philosopher, then he read parts of the
Critique. Of course, even if he is not a philosopher, he may still have read
Kant’s magnum opus. If Peter knows that Kant defended the synthetic a pri-
ori, he very likely is a philosopher, whereas if he does not, he is probably not
a philosopher, although of course he might be an exceptionally incompetent

5 If γ0γ1 . . .γm = 1, it follows that each γn is equal to one. But then all the αn are
equal to one also, and all the βn are equal to zero, which is the condition of bi-
implication. This already indicates that a loop does not make sense when entailment
relations are involved.
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one, not having understood anything of Kant or the Critique. Finally, if he
read the Critique, he quite likely knows that Kant defended the synthetic a
priori, whereas this is rather less likely if he never opened the book. Here
then is a simple finite loop, consisting of a fixed number of links, namely
three:

C ←− P ←− S ←− C , (8.2)

where the arrow indicates that the proposition at the right-hand side proba-
bilistically supports the one at the left.

We can make loop (8.2) nonuniform by investing the three propositions C,
P and S with for example the following dissimilar values for the conditional
probabilities:

C: α0 = P(C |P) = 1; β0 = P(C |¬P) = 1
10 ; γ0 = α0 −β0 =

9
10

P: α1 = P(P |S) = 9
10 ; β1 = P(P |¬S) = 1

5 ; γ1 = α1 −β1 =
7
10

S: α2 = P(S |C) = 4
5 ; β2 = P(S |¬C) = 2

5 ; γ2 = α2 −β2 =
2
5 .

Then the unconditional probabilities6 are

P(C) =
β0 + γ0β1 + γ0γ1β2

1− γ0γ1γ2
= 0.711

P(P) =
β1 + γ1β2 + γ1γ2β0

1− γ0γ1γ2
= 0.679

P(S) =
β2 + γ2β0 + γ2γ0β1

1− γ0γ1γ2
= 0.684 .

In the above example the number of links was fixed: there were exactly
three propositions. Here is an example in which the number of links, m,
can be whatever one likes, showing the cogency of any finite loop. Consider
again the example (3.21) in Section 3.5:

αn = 1− 1
n+2

+
1

n+3
; βn =

1
n+3

; γn = 1− 1
n+2

.

6 As they must, these numbers satisfy
P(C) = β0 + γ0P(P) P(P) = β1 + γ1P(S) P(S) = β2 + γ2P(C) .

Incidentally, there is a good reason for considering a loop of at least three propo-
sitions. For in a ‘loop’ of two links only, there are only three independent un-
conditional probabilities, for example P(q), P(A1) and P(q ∧ A1), whereas there
are four conditional probabilities around the loop, P(q|A1), P(q|¬A1), P(A1|q) and
P(A1|¬q), so there must be a relation between them. This difficulty does not arise
for a loop of three links, for in this case there are seven independent unconditional
probabilities and only six conditional probabilities around the loop. With more than
three links on the loop the difference between the numbers of unconditional and
conditional probabilities is even greater.
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This example is nonuniform (i.e. the conditional probabilities, αn and βn, are
not the same for different n), and it is in the usual class. It is shown in (A.18)
in Appendix A.5 that Eq.(8.1) reduces to

P(q) =
3
4
− 1

4(m+3)
. (8.3)

In Table 8.1 the values of P(q) for the chain are reproduced in the first line,
while the corresponding values for the loop, as specified in (8.3), are given
in the second line. The difference between the two cases is that, while for the
chain we had to specify a value for the probability of the ground, which we
put equal to a half, for the loop no such specification is required.

Table 8.1 Probability of q for chain and loop P(p) = 1
2 for chain

αn = P(An|An+1) = 1− 1
n+2 +

1
n+3 βn = P(An|¬An+1) =

1
n+3

Number of An 1 2 5 10 25 50 75 100 ∞

P(q) with chain .625 .650 .688 .712 .732 .741 .744 .745 .750
P(q) with loop .688 .700 .719 .731 .741 .745 .747 .748 .750

The probability of the target rises smoothly as the chain, or the loop, becomes
longer, eventually reaching the value of three-quarters for both the infinite
chain and the infinite loop. As can be seen, the values of P(q) for the loop
converge somewhat more quickly than do those for the chain.

The agreement between the infinite chain and the infinite loop is not lim-
ited to this special model, for it is an attribute of any example in the usual
class. This can be seen quite easily, for when the product γ0γ1 . . .γm tends to
zero as m goes to infinity, the loop (8.1) yields the infinite, convergent series

P(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 . . . , (8.4)

as for the infinite chain in the usual class.
The uniform case, in which the conditional probabilities are the same from

link to link, forms an interesting special case, for then the value of P(q)
turns out to be always the same, no matter how many links there are in the
loop. This can already be seen without doing the actual calculation. Since the
propositions are uniformly connected round and round the loop ad infinitum,
we can immediately understand why it should make no difference how many
links there are: the value of P(q) should be the same as that for an infinite,
uniform loop. The actual calculation goes as follows: (8.1) becomes
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P(q) =
β (1+ γ + γ2 + . . .γm)

1− γm+1 . (8.5)

The finite geometrical series 1+γ+γ2+ . . .γm is equal to (1−γm+1)/(1−γ),
and on substituting this we see that the factor (1− γm+1) cancels, so

P(q) =
β

1− γ
=

β
1−α +β

.

Indeed this does not depend on m at all, so the number of links may be finite,
or infinite, with no change in the value of P(q). It will be recognized that this
value is precisely the same as that for the infinite, uniform chain (see Section
3.7).

So much for the usual class. What of the exceptional class, in which the
infinite product of the γ’s is not zero? As we have seen, here the chain fails,
in the infinite limit, to produce a definite answer for the target probability.
The infinite loop on the other hand yields a unique value. To illustrate this,
consider again the example (3.25):

βn =
1

(n+2)(n+3)
γn =

(n+1)(n+3)
(n+2)2 = 1− 1

(n+2)2 .

We find now from (8.1) that

P(q) =
3
4
− 1

4(m+3)
, (8.6)

as we explain in detail in Appendix A.6, and this has the perfectly definite
limit 3

4 . Thus the infinite chain and the infinite loop only differ in the excep-
tional class. There the infinite chain fails to give a definite answer, but the
infinite loop does so.7

8.3 Multi-Dimensional Networks

Most systems of epistemic justification are of course much more compli-
cated than the one-dimensional chains and loops that we have considered so
far. Certainly modern coherentism envisages many-dimensional nets of in-
terlocking probabilistic relations. The concept of justification trees or J-trees

7 The fact that this value of P(q) is the same as that of the loop (8.3), in the usual
class, is just a coincidence.
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has been introduced as a graphic representation of the relation in such net-
works.8 Figure 8.1 is an example of a very simple justification tree. This
tree has two branches, with A1 and A′

1 as nodes on the one level, and A2 and
A′

2 as nodes on a lower level. It should be read as: proposition q is justified
by A1 and A′

1, A1 is justified by A2, and A′
1 is justified by A′

2. In this section
we shall describe what happens when we replace the finite or infinite one-
dimensional probabilistic chain by a finite or infinite probabilistic network
in two dimensions, along the lines of a justification tree.

����

����

q

A1

A2

A′
1

A′
2

Fig. 8.1 Basic justification tree

We now make the tree more complicated by allowing that A1 and A′
1 are each

supported by two, rather than by one proposition, as depicted in Fig. 8.2.

����

���� �� ��

q

A1

A2

A′
1

A′′′
2A′

2 A′′
2

Fig. 8.2 Complex justification tree

Here A1 is supported by A2 and A′
2; and A′

1 is supported by A′′
2 and A′′′

2 . In
their turn, A2, A′

2, A′′
2, and A′′′

2 may each be supported by two propositions.
A complicated tree as in 8.2 could serve as a model for the propagation

of genetic traits under sexual reproduction, in which the traits of a child

8 See for example Sosa 1979; Clark 1988, 374-375; Alston 1989, 19-38; Cortens
2002, 25-26; Aikin 2011, 74.



8.3 Multi-Dimensional Networks 175

are related probabilistically to those of both the mother and the father. Let
P(q) again be the unconditional probability that Barbara has trait T . This
time Barbara is not a bacterium as in Section 3.7, where the reproduction
was asexual. Rather she is now an organism with two parents, a father and a
mother. For the purpose of fixing ideas it will prove convenient to talk about
sexual reproduction and about fathers and mothers, but we should bear in
mind that the formalism is of course much more general. Also, although we
shall tell the story in terms of events, it should be kept in mind that everything
we say applies to justificatory relations between propositions as well.

Since Barbara stems from two parents, the probability that she has T is
determined by the characteristics of her mother and of her father. Rather than
two reference classes (the mother having or not having T ), we now have four:
both the mother and the father have T , neither of them has it, the father has
T but the mother does not, and the mother has T but the father does not. The
analogue of the rule of total probability is

P(q) = α0P(A1 ∧A′
1)+β0P(¬A1 ∧¬A′

1)

+γ0P(A1 ∧¬A′
1)+δ0P(¬A1 ∧A′

1) , (8.7)

where A1 represents Barbara’s mother having T and A′
1 her father having T .

Here α0 means “the probability that Barbara has T , given that her mother
and father both have T ”. The other conditional probabilities are analogously
defined: β0 corresponds to neither parent having T , and γ0 and δ0 to the two
situations in which one parent does, and the other does not have T .

In the nth generation the corresponding expression is

P(An) = αnP(An+1 ∧A′
n+1)+βnP(¬An+1 ∧¬A′

n+1)

+γnP(An+1 ∧¬A′
n+1)+δnP(¬An+1 ∧A′

n+1) , (8.8)

where An stands for one individual in the nth generation, An+1 and A′
n+1 for

that individual’s mother and father. The conditional probabilities are

αn = P(An|An+1 ∧A′
n+1)

βn = P(An|¬An+1 ∧¬A′
n+1)

γn = P(An|An+1 ∧¬A′
n+1)

δn = P(An|¬An+1 ∧A′
n+1) .

In order to iterate the two-dimensional (8.8), much as we did in the one-
dimensional case, we now need more complicated relations for the uncondi-
tional probabilities. It is no longer sufficient to consider P(A1) and replace it
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by β0 +(α0 −β0)P(A2), and so on, for now we are dealing with the proba-
bility of a conjunction of two parents, A1 and A′

1. Each of these parents has
two parents, so we encounter in fact the probabilities of conjunctions of four
individuals. This can be continued further and further, involving more and
more progenitors, confronting us with a tree of increasing complexity.

Fortunately, however, we can often make simplifying assumptions. Here
we will work under three simplifications:

1. Independence. The probabilities for the occurrence of the trait T in fe-
males and in males is independent of one another in any of the n genera-
tions:

P(An+1 ∧A′
n+1) = P(An+1)P(A′

n+1) .

This assumption seems reasonable in the genetic context; and it will also
apply in many more general epistemological settings.

2. Gender symmetry. The probability of the occurrence of the trait T is the
same for females and for males in any of the n generations:

P(An) = P(A′
n) .

Thus we only consider inheritable traits which are gender-independent,
such as having blue eyes or being red-haired, and not, for example, having
breast cancer or being taller than two metres. Similarly, in an epistemolog-
ical context this assumption will sometimes, but not always be satisfied.
With this assumption the prime can be dropped on A′

n, and in combination
with the first assumption we obtain

P(An+1 ∧A′
n+1) = P(An+1)P(An+1) = P2(An+1) .

3. Uniformity. The conditional probabilities are the same in any of the n
generations. That is, αn, βn, γn and δn are independent of n, so we may
drop the suffix.

Together these assumptions enable us to simplify (8.8) to the quadratic func-
tion

P(An) = αP2(An+1)+βP2(¬An+1)+(γ +δ )P(An+1)P(¬An+1) . (8.9)

As we will show in the next section, (8.9) leads to a surprising result, for it
generates a structure similar to the Mandelbrot fractal.
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8.4 The Mandelbrot Fractal

In 1977 Mandelbrot introduced his celebrated iteration:

qn+1 = c+q2
n, (8.10)

where c and q are complex numbers.9 Starting with q0 = 0, the iteration gives
us successively

q1 = c

q2 = c+ c2

q3 = c+(c+ c2)2

q4 = c+
(
c+(c+ c2)2)2

, (8.11)

and so on. For many values of c, the iteration will diverge, allowing qn to
grow beyond any bound as n becomes larger and larger. For example, if c= 1
we obtain q1 = 1, q2 = 2, q3 = 5 and q4 = 26, and so on.

But if for instance c = 0.1, then qn does not diverge, and in this case
actually converges to the number 0.11271 . . . . Taken together, all the values
of c for which the iteration (8.10) does not diverge form the Mandelbrot set,
which is reproduced in Figure 8.3.

Fig. 8.3 The Mandelbrot fractal is generated by the complex quadratic iter-
ation qn = c+q2

n+1, where c = x+ iy.

9 Mandelbrot 1977. The variables qn in this section should not be confused with q
in (8.7), the target proposition of the two-dimensional net.
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The black area contains the points that belong to the Mandelbrot set.
Each point corresponds to a complex number, c, being the ordered pair of
the Cartesian coordinates, (x,y). The edge of the Mandelbrot set forms the
boundary between those values of c that are members of the set and those
that are not. It is this boundary, the ‘Mandelbrot fractal’, that has the well-
known property of being infinitely structured in a remarkable way: no matter
how far you zoom in on it, you will always find a new structure that is similar
to, although not completely identical with the Mandelbrot set itself.

Our aim in this section is to demonstrate that, on condition that α +β �=
γ + δ , the quadratic relation (8.9) is equivalent to the Mandelbrot iteration
(8.10). As it turns out, c will be a function of the conditional probabilities
α , β , γ and δ alone, and will thus be a known quantity. The q’s, on the
other hand, will be directly related to the unconditional probabilities; these
are unknown and their values are to be determined through the iteration.

It will prove convenient first to define ε as the average of the conditional
probabilities γ and δ , that is

ε def
= 1

2(γ +δ ) ,

which is the mean conditional probability that the target — in our case Bar-
bara — has the trait T , given that only one of her parents has T . Eq.(8.9) now
becomes

P(An) = β +2(ε −β )P(An+1)+(α +β −2ε)P2(An+1) . (8.12)

On the one hand, this iteration may not look very much like the Mandelbrot
form (8.10). Firstly, in the latter we go as it were upwards, starting from qn

and then counting to qn+1, whereas in (8.12) we start with P(An+1) and it-
erate downwards to P(An). Secondly, (8.12) is about conditional and uncon-
ditional probabilities, and thus about real numbers between zero and one,
whereas (8.10) is an uninterpreted formula involving complex numbers. On
the other hand, however, we see that there is an important similarity between
(8.10) and (8.12). Both are quadratic expressions: the former contains q2

n and
the latter P2(An+1). In order to transform (8.12) into (8.10) we introduce a
linear mapping that serves to remove from (8.12) the term 2(ε −β )P(An+1),
and also the coefficient (α + β − 2ε). The appropriate linear mapping that
does the trick, P(An)→ qn, is defined by

qn = (α +β −2ε)P(An)−β + ε . (8.13)

On substituting (8.12) for P(An) in (8.13) we obtain a formula that can be
rewritten as
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qn = ε(1− ε)−β (1−α)+q2
n+1 . (8.14)

The details of this calculation can be found in Appendix D.2.
Now define

c = ε(1− ε)−β (1−α) . (8.15)

Note that c involves only the conditional probabilities, α , β and ε , and so
is an invariant quantity during the execution of the iteration. On the other
hand, qn also contains the unconditional probability, P(An), which we seek to
evaluate through the iteration. With the definition (8.15), Eq.(8.14) becomes

qn = c+q2
n+1 . (8.16)

Evidently (8.16) is very similar to the standard Mandelbrot iteration (8.10).
There is only the one difference which we have already mentioned: instead
of an iteration upwards from n = 0, the iteration in (8.16) proceeds from a
large n value, corresponding to the primeval parents, down to the target child
proposition at n = 0. This difference is however only cosmetic and has no
significance for the iteration as such.

We are now in a position to take advantage of some of the lore that has ac-
cumulated about the Mandelbrot iteration. Some but not all, for there is still
the second difference that we mentioned: epistemic justification as we dis-
cuss it here deals with probabilities, and those are real numbers, rather than
complex ones. Hence we must concentrate on the real subset of the complex
numbers c in (8.15), namely those for which c = (x,0), corresponding to the
x-axis in Figure 8.3. It should be noted that, when c is real, all the qn are auto-
matically real — compare the explicit expressions for the first few n-values,
just after (8.11). It is known that the real interval −2 ≤ c ≤ 1

4 lies within
the Mandelbrot set, but not all of these values correspond to an iteration that
converges to a unique limiting value.

However, let us now impose the condition of probabilistic support, with
exclusion of zero and one. Although 0 < β < α < 1 has the same form as the
condition of probabilistic support for the one-dimensional chain, it should
be realized that α and β do not have quite the same meanings in the two
contexts. In the one-dimensional chain, α > β means that the probability of
the child’s having trait T is greater if the mother has it than if the mother
does not have it. In the two-dimensional net, however, α > β means that the
probability of the child’s having trait T is greater if both of her parents have
it than if neither of them do.

The essential point is that with 0 < β < α < 1 we can show from (8.15)
that −1

4 < c < 1
4 (see again Appendix D.2). In this domain the Mandelbrot

iteration is known to converge to a unique limit. Were it not for probabilistic
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support, convergence would not be guaranteed, indeed a so-called two-cycle,
in which qn flips incessantly between two values, would have been a possibil-
ity. Hence the condition of probabilistic support is necessary for convergence
in this case.

A fixed point of the mapping (8.16) is a number, q∗, that satisfies

q∗ = c+q2
∗ . (8.17)

In Appendix D it is proved that the solution

q∗ =
c

1
2 +

√
1
4 − c

, (8.18)

is the so-called attracting fixed point of (8.16), meaning that the iteration
(8.16) converges to q∗. Independently of the value one takes as the starting
point for the iteration (i.e. qN for some large N), attraction to the same q∗
takes place (on condition that the starting point is not too far from q∗ —
technically, the condition is that it is within the basin of attraction of the fixed
point). Under these conditions the starting point or ground has no effect on
the final value of the target, q0. The phenomenon is precisely that of fading
foundations, now in the context of a two-dimensional net.

This fixed point (8.18) corresponds to the following fixed point of (8.12):

p∗ =
β

β + 1
2 − ε +

√
β (1−α)+(ε − 1

2)
2
. (8.19)

Note that, if ε = 1
2(α + β ), which is equivalent to α + β = γ + δ , p∗ re-

duces to β/(1−α +β ), and this agrees with the sum of the one-dimensional
iteration (3.17).

If β tends to zero the solution (8.19) is interesting, for it vanishes only
if ε ≤ 1

2 . If ε > 1
2 it tends to the nontrivial value (2ε − 1)/(2ε −α) — see

Appendix D.2. This behaviour is different from that of the one-dimensional
case, in which the solution always vanishes when β tends to zero.

The two-dimensional network is generated by the same recursion that pro-
duces the Mandelbrot set in the complex plane. True, we have only to do with
the real line between − 1

4 and 1
4 , and not with the complex plane (where the

remarkable fractal structure is apparent). But the point is that the algorithm
which produces our sequence of probabilities, and that which generates the
Mandelbot fractal, are the same.

We have used three simplifying assumptions in proving the above prop-
erties, viz. those of independence, probabilistic symmetry between An+1 and
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A′
n+1, and uniformity. There are however strong indications that essentially

similar results also hold when these assumptions are dropped. Imagine a
situation in which the probabilities are different for An+1 and A′

n+1. Then
there will be two coupled quadratic iterations, one for P(An) and one for
P(A′

n). Each of these is related to P(An+1) as well as P(A′
n+1). This is how-

ever merely a technical complication, for it is still possible to find a domain
in which the iterations converge. The relation is in fact a generalized Man-
delbrot iteration, and analogous results obtain.

The same applies if we drop the assumption of independence. Clearly,
if An+1 and A′

n+1 are stochastically dependent, we may have to include
more distant links in the network, which of course complicates matters
considerably. However, in general terms it means nothing more than that
the final fixed-point equations will be of higher order. Again a generalized
Mandelbrot-style iteration will hold sway, and again domains of convergence
will exist.

Furthermore, in many situations the conditional probabilities may not be
uniform: they may change from generation to generation. In those cases the
iteration will become considerably more involved. We have seen that for
the one-dimensional chain it proved possible to write down explicitly the
result of concatenating an arbitrary number of steps. It is true that for a two-
dimensional net this would be very cumbersome. However, with the use of a
fixed-point theorem it is possible to give conditions under which convergence
once more occurs.

What will happen when the network has more dimensions than two? In
that case the fixed-point equations will be of even higher order, necessitat-
ing computer programs for their calculation. The picture itself however re-
mains essentially the same. The probabilities are determined by polynomial
recurrent expressions, and there will be a domain in which they are uniquely
determined.

We conclude that probabilistic epistemic justification has a structure that
gives rise to a generalized Mandelbrot recursion. This still holds when
we abandon our three simplifying assumptions, or when we work in more
than two dimensions. In short, not only do the algorithms describing ferns,
snowflakes and many other patterns in nature generate a fractal, but the same
is true for the description of our patterns of reasoning.
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8.5 Mushrooming Out

Consider once more our justificatory chain in one dimension

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

where the arrow is again interpreted as probabilistic support. Above we have
constructed multi-dimensional networks by letting new chains spring from
the nodes, that is the unconditional probabilities. However chains can also
arise from the connections, that is from the arrows. This possibility seems to
be have been anticipated by Richard Fumerton.

Fumerton has observed that many examples of sceptical reasoning rely
on a principle which he calls the Principle of Inferential Justification. The
principle consists of two clauses:

To be justified in believing one proposition q on the basis of another proposi-
tion A1, one must be (1) justified in believing A1 and (2) justified in believing
that A1 makes probable q.10

He then argues that, ironically, the same principle is used to reject scepticism
and to support classic foundationalism:

The foundationalist holds that every justified belief owes its justification ul-
timately to some belief that is noninferentially justified. . . . The principle of
inferential justification plays an integral role in the famous regress argument
for foundationalism. If all justification were inferential, the argument goes,
we would have no justification for believing anything whatsoever. If all jus-
tification were inferential, then to be justified in believing some proposition
q I would need to infer it from some other proposition A1. According to the
first clause of the principle of inferential justification, I would be justified in
believing q on the basis of A1 only if I were justified in believing A1. But
if all justification were inferential I would be justified in believing A1 only
if I believed it on the basis of something else A2, which I justifiably believe
on the basis of something else A3, which I justifiably believe on the basis of
something else A4, . . . , and so on ad infinitum. Finite minds cannot complete
an infinitely long chain of reasoning, so if all justification were inferential we
would have no justification for believing anything.11

10 Fumerton 1995, 36; 2001, 6. We have substituted q and A1 for Fumerton’s P and
E. Fumerton applies the principle in particular to scepticism of what he calls the
“strong” and “local” kind (Fumerton 1995, 29-31). Strong scepticism denies that
we can have justified or rational belief; it is opposed to weak scepticism, which
denies that we can have knowledge. Local scepticism is scepticism with respect to
a given class of propositions, whereas global scepticism denies that we can know or
rationally believe all truth.
11 Fumerton 1995, 56-57.
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We recognize here the finite mind objection to infinite justificatory chains,
which we discussed in Chapter 5. This objection, that serves as an argument
in support of foundationalism, alludes to the first clause of the Principle of
Inferential Justification, and it consitutes the first part of Fumerton’s epis-
temic regress argument for foundationalism.12 There is however a second
part to Fumerton’s epistemic regress argument. This part depends on the
second clause of the Principle of Inferential Justification, and it has to do
with multi-dimensionality arising from chains that spring from connections
rather than from nodes. Here again an infinite number of infinite regresses
mushroom out in infinitely many directions:

To be justified in believing q on the basis of A1, we must be justified in be-
lieving A1. But we must also be justified in believing that A1 makes probable
q. And if all justification is inferential, then we must justifiably infer that A1
makes probable q from some proposition B1, which we justifiably infer from
some proposition B2, and so on. We must also justifiably believe that B1 makes
probable that A1 makes probable q, so we would have to infer that from some
proposition C1, which we justifiably infer from some proposition C2, and so
on. And we would have to infer that C1 makes probable that B1 makes prob-
able that A1 makes probable q . . . The infinite regresses are mushrooming out
in an infinite number of different directions.13

The consequences of this particular mushrooming out seem to be bleak in-
deed, as Fumerton notes:

If finite minds should worry about the possibility of completing one infinitely
long chain of reasoning, they should be downright depressed about the pos-
sibility of completing an infinite number of infinitely long chains of reason-
ing.14

Fortunately, however, things are not as grim as Fumerton suggests. The sit-
uation is on the contrary very interesting. For Fumertonian mushrooming
out generates a Mandelbrot-like iteration of the sort that we described in the
previous section.

Let us explain. In the previous chapters we have thought of the conditional
probabilities as somehow being given: they were measured or estimated, for

12 For Fumerton’s distinction between the epistemic and the conceptual regress ar-
gument for foundationalism, see Section 6.1. There we argued that the conceptual
regress argument amounts to the no starting point objection to infinite epistemic
chains.
13 Fumerton 1995, 57. B1, C1 etc. come in the place of Fumerton’s F1, G1.
14 Ibid.
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instance in a laboratory, as in our example about the bacteria. With given con-
ditional probabilities, there is of course no Fumertonian mushrooming out:
we can iterate the unconditional probabilities in the usual way on the ba-
sis of the conditional probabilities as our pragmatic starting point. However,
Fumerton is right to intimate that sometimes the conditional probabilities are
unknown or at least uncertain; then their values have to be justified by some
further proposition, which has to be justified by yet another proposition, and
so on, and we are faced with mushrooming in Fumerton’s sense. How to deal
with this situation?

Again let q be probabilistically supported by A1:

P(q|A1)> P(q|¬A1) .

Now suppose that these two conditional probabilities are not given. The only
thing we know is that “q is probabilistically supported by A1” is in turn made
probable by another proposition, for example by B1. The way to express
this is by writing down the relevant rules of total probability, this time for
conditional rather than unconditional probabilities:

P(q|A1) = P(q|A1 ∧B1)P(B1|A1)+P(q|A1 ∧¬B1)P(¬B1|A1) (8.20)

P(q|¬A1) = P(q|¬A1 ∧B1)P(B1|¬A1)+P(q|¬A1 ∧¬B1)P(¬B1|¬A1) .

These rules are clearly more complicated than the simple rule for an uncon-
ditional probability, although we already encountered this complicated form
in (7.26) of Chapter 7, when we discussed our model for higher-order prob-
abilities.15

The unconditional probability P(q) can be written as

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1) ,

and on using (8.20) to evaluate the two conditional probabilities, we find that

P(q) =
[
P(q|A1 ∧B1)P(B1|A1)+P(q|A1 ∧¬B1)P(¬B1|A1)

]
P(A1)

+
[
P(q|¬A1 ∧B1)P(B1|¬A1)+P(q|¬A1 ∧¬B1)P(¬B1|¬A1)

]
P(¬A1)

= α0P(A1 ∧B1)+ γ0P(A1 ∧¬B1)+δ0P(¬A1 ∧B1)+β0P(¬A1 ∧¬B1) .

The last line has precisely the structure of (8.7), reading B1 here for A′
1 there.

This shows that a single mushrooming out à la Fumerton is isomorphic to
the two-dimensional equations of the previous section.

15 An intuitive way of seeing that (8.20) is correct is to realize that, in the reduced
probability space in which A1 is the whole space, all the occurrences of A1 can be
omitted. Then (8.20) reduces to the rule of total probability for an unconditional
probability.
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We have seen that, where chains spring from the nodes, the two-dimens-
ional equations could be extended to equations in many, and even infinitely
many dimensions, yielding a Mandelbrot structure. The same reasoning can
be applied here, where chains spring from the connections. If many, or even a
denumerable infinity of conditional probabilities are in turn probabilistically
supported, then one has to do with the many-dimensional generalization.

Of course we will never deal with all these dimensions in reality. Our
result is first and foremost a formal one. Having said this we should not
underestimate the relevance of formal results for real life justification. Al-
though it is true that in justifying our beliefs we can handle only short, finite
chains, it is thanks to formal reasoning that we can recognize in these chains
the manifestation of fading foundations: solely through formal proofs do we
know that what we see in real life justification is not a fluctuation or a coin-
cidence.16

8.6 Causal Graphs

In the first chapter we briefly referred to the similarities between epistemic
and causal chains. Especially at a formal level, as we stressed in Chapter 2,
a chain of reasons and a chain of causes are very much alike. Thus the linear
chain

A0 ←− A1 ←− A2 ←− A3 ←− A4 ←− . . . (8.21)

can be interpreted as a one-dimensional causal series, where A0 is the fact
or event (rather than the proposition) that bacterium Barbara from Chapter
3 has trait T , and A1 is the fact or event that her mother had T , and so on,
backwards in time. The arrows in (8.21) stand for probabilistically causal in-
fluences: if a mother has T , it is more likely, but not certain, that her daughter
will have T . This is in line with ordinary usage, for example when one says
that smoking causes lung cancer, even though one knows that not all smokers
contract the affliction, and that some non-smokers succumb to it. To avoid
cumbersome language, we shall sometimes say that A0 stands for Barbara

16 As the size and complexity of the multi-dimensional networks increase, it will
become more and more difficult to have them correspond to empirically based con-
ditional probabilities. A rather wild speculation is that in the end such a world-
network might have only one solution. See Atkinson and Peijnenburg 2010c, where
we mull over the implications of such a speculation, taking as our starting point
Susan Haack’s crossword metaphor for ‘foundherentism’ (Haack 1993, Chapter 4).
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(rather than for the fact that Barbara has T ), that A1 stands for her mother
(rather than for the fact that her mother has T ), and so on.

In the language of Directed Acyclic Graphs (DAGs) one would say that
(8.21) is a DAG just in case the Markov condition holds.17 This means in
particular that A1 screens off A0 from A2 in the sense of Reichenbach, that A2
screens off A1 from A3, and so on.18 However, the Markov condition is much
stronger than a screening-off constraint that involves only three successive
events. The idea is that the ‘parent event’ of a ‘child event’ screens off the
child from any and all ‘ancestor events’, or combinations thereof. For the
chain of (8.21), the condition is formally as follows:

P(An|An+1 ∧Z) = P(An|An+1)

P(An|¬An+1 ∧Z) = P(An|¬An+1) ,

for all n ≥ 0. Here Z stands for any event, Am, in the chain, apart from the
descendents of An, i.e. for any m ≥ n+ 2, or for any conjunction of such
events, or their negations. This can be written succinctly as

P(An|±An+1 ∧Z) = P(An|±An+1) ,

where it is understood that +An+1 simply means An+1, and −An+1 means
¬An+1. The idea, informally, is that the Markov condition ensures that
the causal influences which probabilistically circumscribe Barbara’s genetic
condition are determined by her mother alone, and that one can forget about
all her ancestors except for her mother.

It should be stressed that our analysis of the probabilistic regress in no
way requires the imposition of the Markov condition: fading foundations and
the emergence of justification in the case of a justificatory regress work just
as well with, as without the Markov condition. The causal influence of the
primal ancestor fades away as the distance between Barbara and the ancestor
increases, and Barbara’s probabilistic tendency to have T emerges from the
causal regress, whether or not the Markov condition holds.

It is certainly possible, in a particular causal chain, that fact A2 could have
a causal influence on A0 directly, apart from its indirect influence through
A1. Hesslow has given an example.19 Birth control pills, A2, directly increase
the probability of thrombosis, A0, but indirectly reduce it in sexually active
women by reducing the probability of pregnancy, A1, which itself constitutes

17 Spirtes, Glymour and Scheines 1993; Pearl 2000; Hitchcock 2012.
18 Reichenbach 1956.
19 Hesslow 1976.
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a thrombosis risk. Then the Markov condition, as we have stated it for (8.21),
would break down, and one would have to add a direct causal link between
A0 and A2, as shown in Figure 8.4. In this case a modified Markov condition
could still be in force: now both A1 and A2 count as parent events of A0, and
they together might screen off A0 from the rest of the chain (depending on
the details of the case, of course).

←

A0 ←− A1 ←− A2 ←− A3 ←− A4 ←− . . .

Fig. 8.4 Modified causal chain

An advantage of the above considerations concerning the Markov condi-
tion is that they facilitate a demonstration of the consistency of our proba-
bilistic regress.20 This works just as well for the regress of justification as
it does for the regress of causes. The idea is that, with the Markov condi-
tion in place, one can work out the probabilities of the conjunction of any of
the An in terms of the usual conditional probabilities and the unconditional
probabilities of the An, which, as we know, can be calculated from the con-
ditional probabilities alone (on condition of course that the latter are in the
usual class). For example, as shown in Appendix A.8,

P(A1 ∧¬A3 ∧A4) = (β1 + γ1β2)(1−α3)P(A4) .

So there is a probability distribution over all the conjunctions of events (or
propositions), and thus the probabilistic regress is consistent in this sense.
If the Markov constraint is not imposed, on the other hand, so that the chain
may not be a genuine DAG, then there are in general many ways to distribute
probabilities over the various conjunctions; but we are sure that there is at
least one way, thanks to Markov, that is consistent.

Let us now progress from one to two dimensions. Consider the tree 8.2 of
Section 8.3, but now reinterpreted as a causal net:
Note that, while the direction of epistemic support in Figure 8.2 is from the
bottom of the figure to the top, the direction of causal influence in Figure 8.5
is from top to bottom. Thus event q probabilistically causes events A1 and A′

1,
and A1 in turn causes A2 and A′

2, while A′
1 causes A′′

2 and A′′′
2 . For example,

q could stand for Barbara’s grandmother — more accurately, for the event
that Barbara’s grandmother had T . Through binary fission this grandmother

20 Herzberg 2013.
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Fig. 8.5 Two-dimensional causal net with common causes

would split into two daughter cells, which would probably, but not certainly,
have T . Then A1 could stand for Barbara’s mother, and finally A2 for Barbara
herself, A′

2 for her sister bacterium. The eventualities A′
1, A′′

2 and A′′′
2 would

have analogous meanings in respect of Barbara’s aunt and her cousins.
One would expect the following Markov condition to hold, namely that

A1 screens off A2 and A′
2 from all the other events in the net. Thus

P(A2|±A1 ∧Z) = P(A2|±A1)

P(A′
2|±A1 ∧Z) = P(A′

2|±A1) ,

where Z can be any of q, A′
1, A′′

2 or A′′′
2 , or their negations, or any conjunctions

of the same. Similarly, A′
1 screens off A′′

2 and A′′′
2 from q, A1, A2 and A′

2. One
would also expect A2 and A′

2 to be positively correlated, so

P(A2 ∧A′
2)> P(A2)P(A′

2) ,

although they are conditionally independent in the sense that

P(A2 ∧A′
2|±A1) = P(A2|±A1)P(A′

2|±A1) .

This equation is in fact a consequence of the Markov condition. Following
Reichenbach, we say that A1 is the common cause of A2 and A′

2, and that
event A1 has brought it about that A2 is more likely to occur if A′

2 occurs, and
vice versa.

A different kind of causal net is shown in Figure 8.6. Here the causal ar-
rows go from bottom to top, which is the same as the direction of epistemic
support in Figure 8.2. In Figure 8.6, A2 could stand for a mother (i.e. for
the event that a mother carries a particular trait, for example having blue
eyes), A′

2 could stand for her husband, and A1 could stand for their daughter.
Assuming that mother and father were not related, A2 and A′

2 are uncondi-
tionally independent,

P(A2 ∧A′
2) = P(A2)P(A′

2) ,
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but they become correlated on conditionalization by A1,

P(A2 ∧A′
2|±A1) �= P(A2|±A1)P(A′

2|±A1) .

������

������ ��� ���
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2 A′′
2

Fig. 8.6 Two-dimensional causal net with unshielded colliders

The subgraph involving A2, A′
2 and A1 is a so-called unshielded collider.

The behaviour of this collider, insofar as conditional and unconditional de-
pendencies are concerned, is just the opposite of the behaviour of the com-
mon cause. Clearly Figure 8.6 is more like the two-dimensional justification
tree of 8.2 than is the common cause graph of Figure 8.5. In the justification
tree, proposition A1 is probabilistically supported by A2 and A′

2: moeities of
justification accrue to A1 from A2 and A′

2, and from the conditional proba-
bilities. In the causal collider, A1 is probabilistically caused by A2 and A′

2.
Similarly, parents A′′

2 and A′′′
2 cause A′

1, the event that their son carries the
trait in question. And finally A1 and A′

1 can cause the event that a child in the
third generation has blue eyes.

Strictly speaking, Figure 8.6 is inaccurate, or at least ambiguous. The
point is that A1 would not be caused at all by A2 in the absence of A′

2. We
should replace Figure 8.6 by Figure 8.7, in which the joint nature of the
causal influences is explicitly represented.

Mathematically, such a picture is called a directed hypergraph; and its
properties have been studied by Selim Berker in the context of justificatory
trees rather than causal trees.21 Berker makes the point that such hypergraphs
offer coherentists and infinitists a way of attaching a justification tree of be-
liefs or propositions to empirical facts. This is done without thereby making
them foundational trees in which the facts constitute grounds in the sense
of the foundationalist, that is as regress stoppers. For example, suppose now
that A2 in Figure 8.7 is an agent’s experience that the sun is shining, and that

21 Berker 2015.



8 Loops and Networks

6

@@��

6

@@��

6

@@��

q

A1

A2

A′1

A′′′2A′2 A′′2

Fig. 8.7 Two-dimensional hypergraph

A′2 is her belief that her eyes and visual cortex are functioning normally. Then
A1 could be the belief that the sun is indeed shining. The crux of the matter
is that the fact A2 does not by itself justify A1, but does so only together with
A′2.

Berker claims that a coherentist (or infinitist) account of justification can-
not consistently be based on probabilistic considerations. His reasoning is
that the probabilistic coherence of a set of beliefs and experiences is the
same as that of a similar set in which however all the experiences have been
replaced by corresponding beliefs. He argues that the first set, the one includ-
ing experiences, should be accorded a higher degree of justification than the
second, which lacks experiences and is nothing but a collection of beliefs.

Berker’s idea seems to hinge on a Humean view in which experiences
outweigh beliefs. More importantly in the present context, it only bears on
models in which probabilistic coherence is a sufficient determinant of justifi-
cation. For models like ours, in which probabilistic coherence is only neces-
sary, it is not apposite. And of course the phenomenon of fading foundations
is not restricted to propositions or beliefs: it manifests itself also in the do-
main of experiences.

Just as the ground’s share in the epistemic justification lessens, so the mea-
sure of the ground’s causal influence vanishes in the end. In general, whether
a regress is epistemic or causal, or whether it is in one or in many dimen-
sions, justification and causation will progressively emerge and foundations
will gradually fade away.
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