
Chapter 3

The Probabilistic Regress

Abstract

During more than twenty years Clarence Irving Lewis and Hans Reichen-
bach pursued an unresolved debate that is relevant to the question of whether
infinite epistemic chains make sense. Lewis, the nay-sayer, held that any
probability statement presupposes a certainty, but Reichenbach profoundly
disagreed. We present an example of a benign probabilistic regress, thus
showing that Reichenbach was right. While in general one lacks a criterion
for distinguishing a benign from a vicious regress, in the case of probabilis-
tic regresses the watershed can be precisely delineated. The vast majority
(‘the usual class’) is benign, while its complement (‘the exceptional class’)
is vicious.

3.1 A New Twist

The previous chapter indicated how intricate the debate about epistemic just-
ification has become. A mixed bag of knotty details and drawbacks compli-
cates the subject, giving rise to a variety of different positions. But although
nobody knows what exactly epistemic justification is, the idea that it involves
probabilistic support is widespread among epistemologists of all sorts and
conditions. Internalists, externalists, foundationalists, anti-foundationalists,
evidentialists and reliabilists: most of them assume that ‘A j justifies Ai’ im-
plies that Ai somehow receives probabilistic support from A j.

In this chapter and the ones to follow we want to make clear how sig-
nificant this turn towards probability actually is, and what surprising conse-
quences it has. The debate about epistemic regresses acquires a completely
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60 3 The Probabilistic Regress

new twist when Kolmogorovian probability is brought into the picture; for
as we will see a probabilistic regress turns out to be immune to many of the
objections that have routinely been raised against the traditional regress of
entailments. The situation is to a certain extent reminiscent of the two causal
regresses that we encountered in Chapter 1. Whereas a causal series per se
only makes sense if it has a first member, this is not so for a causal series
per accidens. Similarly, as we will argue, a traditional regress of entailments
needs a first member, but a regress of probabilistic support may not.

In the present chapter we will describe the concept of a probabilistic
regress, that is a regress in which (1.1) of Chapter 1,

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

is reinterpreted as: q is probabilistically supported by A1, which is proba-
bilistically supported by A2, and so on, ad infinitum.1 It is assumed that every
link in this chain satisfies the condition of probabilistic support (2.1). As we
have seen, this condition is quite weak, falling considerably short of the title
‘justification’. But for our purposes this minimal requirement is enough.

Our exposition of a probabilistic regress takes as its starting point a his-
torical debate between Hans Reichenbach (1891-1953) and Clarence Irving
Lewis (1883-1964). Lewis and Reichenbach are both early defenders of the
view that epistemic justification is probabilistic in character, holding that A j

might justify Ai even if the former does not logically entail the latter but only
provides probabilistic support. They disagree, however, as to the implica-
tions of this claim. Lewis insists that probabilistic justification must spring
from a ground that is certain, whereas Reichenbach maintains that proba-
bilistic justification remains coherent, even if it is not rooted in firm ground.
The disagreement between Lewis and Reichenbach extended over more than
two decades, from 1930 until 1952, and it is well documented in letters and
in journal contributions.

In Sections 3.2 and 3.3 we will give an overview of the dispute. We first
describe Lewis’s main claim, viz. that any proposition of the form ‘q is prob-
able’ or ‘q is made probable by A1’ must presuppose a proposition that is
certain. Lewis’s argument for this claim is that without such a presupposi-
tion we will end up with a probabilistic regress that has the absurd conse-
quence of always yielding probability value zero for q. Next we describe
Reichenbach’s objection to this argument. We then explain that Lewis is not
convinced by it and challenges Reichenbach to produce a counterexample,

1 The term ‘probabilistic regress’ was coined by Frederik Herzberg (Herzberg
2010).
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i.e. a probabilistic regress that yields a number other than zero for the target
proposition q.

Reichenbach never took up Lewis’s challenge, but we will meet it in Sec-
tion 3.4. By presenting a probabilistic regress that converges to a non-zero
limit, we demonstrate that a target can have a definite and computable value,
even if it is probabilistically justified by a series that continues ad infinitum.
In this manner we show that Reichenbach rather than Lewis was correct, and
also that a probabilistic regress can make sense.

The counterexample to Lewis in Section 3.4 has a simple, uniform struc-
ture. In Section 3.5 we offer a nonuniform and thus more general counterex-
ample. Both counterexamples belong to what we call ‘the usual class’, i.e.
the class of probabilistic regresses that yield a well-defined probability for
the target proposition. We distinguish it from ‘the exceptional class’, which
contains the probabilistic regresses that are not well-defined. In Section 3.6
we will spell out the conditions for membership of the usual and the excep-
tional classes. As it turns out, exceptional probabilistic regresses are charac-
terized by the fact that here probabilistic support comes very close to entail-
ment. Not surprisingly, therefore, probabilistic regresses in the exceptional
class need a ground in order to bestow a value on the target, and in that sense
count as vicious.

The uniform and the nonuniform counterexamples in 3.4 and 3.5 are rather
abstract in nature; but in Section 3.7 we offer two real-life probabilistic re-
gresses, based on the development of bacteria.

3.2 The Lewis-Reichenbach Dispute

In 1929 Lewis published his first major work, Mind and the world order.
An outline of a theory of knowledge.2 Here he starts from the traditional
view that our knowledge is partly mathematical and partly empirical. The
mathematical part deals with knowledge that is a priori and analytic; the
empirical part concerns our knowledge of nature. This knowledge of nature,
says Lewis, is always only probable:

. . . all empirical knowledge is probable only . . . our knowledge of nature is a
knowledge of probabilities.3

2 The present section is based on Peijnenburg and Atkinson 2011.
3 Lewis 1929, 309-310.
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Since the crucial issue for any theory of knowledge is the character of em-
pirical knowledge, it follows that

. . . the problem of our knowledge . . . is that of the validity of our probability
judgements.4

What about the validity of probability statements? In Mind and the world
order, Lewis stresses time and time again that probability judgements only
make sense if they are based on something that is certain:

The validity of probability judgements rests upon . . . truths which must be
certain.5

. . . the immediate premises are, very likely, themselves only probable, and per-
haps in turn based upon premises only probable. Unless this backward-leading
chain comes to rest finally in certainty, no probability-judgment can be valid
at all.6

Lewis is not the only philosopher who has argued that probability judge-
ments presuppose certainties. The idea can already be found in David Hume’s
Treatise of human nature and it has also been defended by, among others,
Keith Lehrer, Richard Fumerton, and Nicholas Rescher.7 Lewis is however
one of the few who discusses the claim in more detail. His explanation can
be summarized as follows.

A statement of the form ‘q is probable’ or ‘the probability of q is x’ is in
fact elliptical for ‘q is probable, given A1’, or ‘the probability of q given A1 is
x’, where x is a number between one and zero. In symbols: the unconditional
P(q) = x is elliptical for the conditional P(q|A1) = x. In many cases, A1 is
itself only probable, so we obtain ‘A1 is probable’, which is shorthand for ‘A1
is probable, given A2’. Again, if A2 is only probable, we need A3, et cetera.
A probabilistic regress threatens. Lewis’s claim is that in the end we must
encounter a statement, p, that is certain (or has probability 1 — we will not
distinguish here between these two cases):

q ←− A1 ←− A2 ←− A3 ←− A4 ←− . . .←− p.

Denying that this is so, and claiming that such a certain p is not needed,
says Lewis, amounts to making nonsense of the original statement (‘q is

4 Ibid., 308.
5 Ibid., 311.
6 Ibid., 328-329.
7 Hume 1738/1961, 178; Lehrer 1974, 143; Fumerton 2004, 162; Fumerton and
Hasan 2010; Rescher 2010, 36-37.
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probable’) itself. Thus we can only give a probability value to a target, q, if
we suppose that there is a ground or foundation, p, that is certain.8.

Reichenbach read Mind and the world order soon after it came out. Al-
though he concurred with many of Lewis’s reasonings, he profoundly dis-
agreed with the claim that probability statements only make sense if they
are based on certainties. On July 29, 1930, he sent Lewis a letter, enclosing
some of his own manuscripts. Unfortunately this letter is now lost. We only
know of its existence from a reply that Lewis wrote to Reichenbach, dated
August 26, 1930.9 We are unable to infer from this reply what exactly Re-
ichenbach had written, since Lewis mainly writes about the manuscripts that
Reichenbach had sent him.10

Between 1930 and 1940 a correspondence developed, which was partly
about practical matters (Reichenbach had fled Berlin in 1933 and went to Is-
tanbul, from where he tried to find an academic position in the U.S.A.), and
partly about Lewis’s claim that probability judgements presuppose certain-
ties. As far as the latter is concerned, it is clear that Reichenbach’s arguments
did not convince Lewis, for sixteen years later, in his book An analysis of
knowledge and valuation, Lewis stresses the same point again:

If anything is to be probable, then something must be certain. The data which
themselves support a genuine probability, must themselves be certainties.11

The disagreement between Lewis and Reichenbach reached its height in De-
cember 1951, at the forty-eighth meeting of the Eastern Division of the
American Philosophical Association at Bryn Mawr. At that meeting there
was a symposium on ‘The Given’, where Lewis, Reichenbach and Nelson
Goodman read papers. Their contributions were published a year later in
The Philosophical Review, and there we learn that Lewis sticks to his guns:

8 As James Van Cleve has noted, Lewis’s text appears to be ambiguous between two
readings (Van Cleve 1977, 323-324). According to the first, Lewis says something
like: ‘The probability of q given p is x, and moreover p is certain’. In symbols:
P(q|p) = x and P(p) = 1. According to the second reading he says: ‘It is certain
that the probability of q given p is x’, that is P(P(q|p) = x) = 1. It can however be
proven that the two readings are equivalent, so this ambiguity is merely apparent.
We will come back to this matter in Chapter 7.
9 “Your very kind letter of July 29th has reached me, here at my summer address.”
The summer address was, by the way, Briar Hill in New Hampshire, close to Ver-
mont.
10 And apparently did not know quite what to do with them: “I find difficulty in
understanding the ground from which they arise.”
11 Lewis 1946, 186.



64 3 The Probabilistic Regress

The supposition that the probability of anything whatever always depends on
something else which is only probable itself, is flatly incompatible with the
assignment of any probability at all.12

But Reichenbach, too, insisted on his own views. Already in his major epis-
temological work, Experience and prediction, he had found an apt metaphor
for his anti-foundationalist position:

All we have is an elastic net of probability relations, floating in open space.13

Fifteen years later Reichenbach still had the same conviction. He calls the
claim of Lewis that probabilities must be grounded in certainties “just one
of those fallacies in which probability theory is so rich”.14 In an attempt to
understand the root of the fallacy he writes:

We argue: if events are merely probable, the statement about their probability
must be certain, because ... Because of what? I think there is tacitly a concep-
tion involved according to which knowledge is to be identified with certainty,
and probable knowledge appears tolerable only if it is embedded in a frame-
work of certainty. This is a remnant of rationalism.15

And being a rationalist would of course be a thorn in Reichenbach’s logical-
empiricist side. Lewis, in turn, rejects the accusation of being an old fash-
ioned rationalist and replies that, on the contrary, he is trying to save em-
piricism from what he calls ‘a modernized coherence theory’ like that of his
opponent. He writes:

...the probabilistic conception [of Reichenbach] strikes me as supposing that
if enough probabilities can be got to lean against one another they can all be
made to stand up. I suggest that, on the contrary, unless some of them can
stand up alone, they will all fall flat.16

Who is right in this debate? Some authors, such as James Van Cleve and
Richard Legum, have argued that it is Lewis.17 To explain why we dissent,
we will first spell out the argument that Lewis puts forward in support of
his claim that probability judgements presuppose certainties. It is true that
the negation of Lewis’s claim leads to an infinite regress, but since not all
regresses are vicious, an argument is required in order to show that this par-
ticular regress is of the unacceptable kind.
12 Lewis 1952, 173.
13 Reichenbach 1938, 192.
14 Reichenbach 1952, 152.
15 Ibid.
16 Lewis 1952, 173.
17 Van Cleve 1977; Legum 1980.
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3.3 Lewis’s Argument

As Mark Pastin correctly notes, the claim that probabilities presuppose cer-
tainties was repeated by Lewis “throughout his writings but [he] gave little
attention to defending it”.18 The most extensive defence can be found in
Mind and the world order, which contains the following argument:

Nearly all the accepted probabilities rest upon more complex evidence than
the usual formulations suggest; what are accepted as premises are themselves
not certain but highly probable. Thus our probability judgement, if made ex-
plicit, would take the form: the probability that A is B is a/b, because if C
is D, then the probability that A is B is m/n, and the probability of ‘C is D’
is c/d (where m/n× c/d = a/b). But this compound character of probable
judgement offers no theoretical difficulty for their validity, provided only that
the probability of the premises, when pushed back to what is more and more
ultimate, somewhere comes to rest in something certain.19

In other words, Lewis says that the judgement

A is B is probable, (3.1)

is elliptical for

A is B is probable, given C is D. (3.2)

Since we are dealing with empirical knowledge, C is D is itself also only
probable. The judgement ‘C is D is probable’ is in turn elliptical for ‘C is D
is probable, given E is F’. And so on.

We can formalize and quantify (3.1) and (3.2) by

P(A is B) = a/b (3.3)

which is elliptical for

P(A is B) = P(A is B|C is D)×P(C is D)

= m/n× c/d

= a/b, (3.4)

where a/b, m/n and c/d are probability values between 1 and 0. Now of
course the probability that C is D may also be elliptical. If this series were to

18 Pastin 1975, 410.
19 Lewis 1929, 327-28. Here ‘A is B’ means something like ‘all A-things are B-
things’. We have replaced Lewis’s ‘P is Q’ and ‘p/q’ by ‘C is D’ and ‘c/d’.
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go on and on, then, because all the factors in the multiplication are probabil-
ities and thus positive numbers less than one, the probability of the original
proposition A is B would always tend to zero. But this is ridiculous, so the
series of probability judgements must come to a stop in a statement that is
certain. This is Lewis’s argument for his claim that bestowing a probabil-
ity value on a target presupposes the acceptance of a ground that is certain:
without such a ground, the probability of the target will go to zero.

Lewis’s argument is however simply mistaken. For P(A is B) is not ellip-
tical for the product P(A is B|C is D)×P(C is D), but for the following sum
of products:

P(A is B) = P(A is B|C is D)×P(C is D)

+P(A is B|¬(C is D))×P(¬(C is D)). (3.5)

The first term of (3.5) coincides with (3.4), but (3.5) contains a second term,
which Lewis forgets. He ignores the fact that, if the probability of A is B
is conditioned by the probability of C is D, then you can only calculate the
former probability if you also take into account what that probability is in
case C is D is false.20 Eq.(3.5) is an instance of the rule of total probability,
which is a theorem of the calculus that Andrey Kolmogorov developed in his
Grundbegriffe der Wahrscheinlichkeitsrechnung.

Kolmogorov published his Grundbegriffe in 1933, which might explain
Lewis’s mistake. The same can however not be said of Bertrand Russell.
In 1948, nineteen years after Mind and the world-order, Russell published
Human knowledge: its scope and limits. Part 5 of this book is devoted to
the concept of probability, and there Russell criticizes several theories of
probability, including Reichenbach’s theory in his Wahrscheinlichkeitslehre
of 1935. It is interesting that, quite independently of Lewis (for he does not
mention him anywhere), Russell claims that attributing a probability value to
a proposition presupposes a certainty. Moreover, he defends this claim with
the same erroneous argument that Lewis had used. Russell writes:

At the first level, we say that the probability that an A will be a B is m1/n1; at
the second level, we assign to this statement a probability m2/n2, by making
it one of some series of similar statements; at the third level, we assign a

20 Mark Pastin seems to interpret Lewis as talking about the probability of the con-
junction of the propositions ‘A is B’ and ‘C is D’ (Pastin 1975, 413). In this read-
ing, Eq.(3.5) would be replaced by P

(
(A is B) and (C is D)

)
= P(A is B|C is D)×

P(C is D), and this expression has no second term. However in this case there would
not be a justificatory chain in which one proposition justifies the other. See footnote
31.
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probability m3/n3 to the statement that there is a probability m2/n2 in favour
of our first probability m1/n1; and so we go on forever. If this endless regress
could be carried out, the ultimate probability in favour of the rightness of our
initial estimate m1/n1 would be an infinite product

m2/n2 × m3/n3 × m4/n4 . . .

which may be expected to be zero.21

In other words, Russell argues that a series of statements like

s1 = A is B
s2 = The probability of s1 is m1/n1
s3 = The probability of s2 is m2/n2
. . .

implies that the probability of s1 will tend to zero.22 The argument is the
same as that of Lewis: the probability of s1 is the outcome of the multiplica-
tion of an infinite number of factors each of which is smaller than 1. It thus
fails for precisely the same reason as does Lewis’s argument. If a proposition

21 Russell 1948, 434; our italics. Where Russell has α and β we have used A and
B. It is assumed that 0 < mi/ni < 1 for all i. Presumably Russell, a competent
mathematician, wrote ‘may be expected to be zero’ because he knew that there exist
infinite products of factors, all less than one, that converge (i.e. that yield well-
defined, non-zero values). In this connection it is interesting that Quine, in his 1946
Lectures on David Hume’s Philosophy (Quine 2008), indeed makes the point that
such a product can be convergent: in fact he gives an explicit example. He fails,
however, to note that the point is irrelevant, for the probabilities in question should
not be multiplied together (because of the second term in (3.5)). Thanks to Sander
Verhaegh for bringing Quine’s lectures to our notice. We return to Quine’s reasoning
in Chapter 7.
22 Note that Russell here speaks about higher-order probability statements rather
than about the probability of a reference class in a conditional probability statement
(see footnote 8 for the difference). Russell says that such a series of higher-order
probability statements “leads (one is to suppose) to a limit-proposition, which alone
we have a right to assert. But I do not see how this limit-proposition is to be ex-
pressed. The trouble is that, as regards all the members of the series before it, we
have no reason . . . to regard them as more likely to be true than to be false; they
have, in fact, no probability that we can estimate.” (Russell 1948, 435; our italics).
In other words, Russell suggests that we cannot attribute a probability value to s1
because we are unable to compute the limit of the series. This seems to be at odds
with his earlier claim that the value of s1 goes to zero, but we will not dwell on
the matter here. In the next section we will rather specify the limit proposition that
Russell was vainly trying to express.
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with probability x is conditioned by a proposition with probability y, then the
probability of the first proposition is not given by xy, as Russell says, but by
xy+ x′(1− y), where x′ is the probability that the first proposition is true if
the second is false, and (1− y) is the probability that the second proposition
is indeed false. Just like Lewis, Russell forgets the second term in the rule of
total probability, namely x′(1− y).

Reichenbach notices that Russell makes the mistake, and points it out to
him in a letter of March 28, 1949.23 Russell clearly acknowledges his over-
sight, as we see from his reply three weeks later.24 Lewis, on the other hand,
seems to have persisted in his error, and Reichenbach confronts him with
this fact in 1951, at the forty-eighth meeting of the American Philosophical
Association at Bryn Mawr. Lewis appears however not to be impressed by
Reichenbach’s amendment:

. . . even if we accept the correction which Reichenbach urges here, I disbe-
lieve that it will save his point. For that, I think he must prove that, where
any regress of probability-values is involved, the progressively qualified frac-
tion measuring the probability of the quaesitum will converge to some deter-
minable value other than zero; and I question whether such a proof can be
given.25

In other words, Lewis fails to see the relevance of the second term in (3.5): he
simply does not believe that an infinite regress of probabilities can converge
to some value other than zero. Even if we do take Reichenbach’s amendment
into account, Lewis still thinks that an infinite series of probability statements
conditioned by probability statements will always converge to zero. And he
defies Reichenbach to prove the contrary. As far as we know Reichenbach
never took up the challenge. Perhaps he planned to, but never got around to
it; or maybe he had difficulties finding what Russell called “the limit proposi-
tion” (see footnote 22); or perhaps he simply got tired of the debate. We will
presumably never know, for in April 1953 Reichenbach died in California of
a heart attack.

23 The letter is printed in the volume with selected writings of Hans Reichenbach
edited by Maria Reichenbach and Robert Cohen (Reichenbach and Cohen 1978,
405-411).
24 “I perceive already that you are right as to the mathematical error that I commit-
ted on page 416” (letter from Russell to Reichenbach, April 22, 1949). Page 416
corresponds to page 434 in reprints of Russell’s book. We are grateful to Mr. L. Lu-
gar and Ms. B. Arden of the Pittsburgh Archive for sending us a copy of Russell’s
letter.
25 Lewis 1952, 172.
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In the next section we will take up Lewis’s gauntlet by presenting a coun-
terexample to his argument that a “regress of probability-values” always
tends to zero. This counterexample involves an infinite iteration of the rule
of total probability. Although this iteration produces a much more compli-
cated regress than the simple product that Russell and Lewis had envisaged,
it leads to a perfectly well-defined, and moreover nonzero probability for the
target proposition. It thus also produces the “limit-proposition” that Russell
was looking for.26

3.4 A Counterexample

Let our target proposition q be probabilistically justified by proposition A1.
We have seen that the unconditional probability of q, namely P(q), can be
calculated from the rule of total probability:

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1). (3.6)

To make contact with Lewis’s argument, we can take q to be ‘A is B’ and A1
to be ‘C is D’. If A1 is probabilistically justified by A2, then P(A1) can be
calculated from another instance of the rule,

P(A1) = P(A1|A2)P(A2)+P(A1|¬A2)P(¬A2), (3.7)

and if A2 is in turn probabilistically justified by A3 we have to repeat the rule
again,

26 Dennis Dieks put forward the possibility that Lewis might have been interested
only in those probabilistic regresses in which the second term may be legitimately
ignored (Dieks 2015). Dieks’ suggestion is intriguing, but it causes difficulties. First,
why did not Lewis make this explicit? In his debate with Reichenbach there appear
to have been opportunities enough. Second, even if An+1 has been called a reason for
An, we should not overlook the fact that other propositions, contained in the negation
of An+1, can well contribute to the justification of An. As Johan van Benthem phrases
it: “[P(An|¬An+1)] measures intuitively the ‘bonus’ that An receives even if An+1
were untrue. This inclusion might perhaps sound odd if we have just introduced
An+1 as reason for An — but we may, neither here nor in argumentation generally,
ignore the fact that a postulated claim can already enjoy support without An+1” (Van
Benthem 2015, 148, our translation from the Dutch; cf. Peijnenburg 2015, 205-206).
In any case, if Dieks were correct this would considerably restrict the domain in
which the Lewisian approach could apply, and it would appear to be inconsistent
with the probability calculus.
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P(A2) = P(A2|A3)P(A3)+P(A2|¬A3)P(¬A3). (3.8)

Can we continue this repetition, thus allowing for propositions being prob-
abilistically justified by other propositions, being probabilistically justified
by still other propositions, ad infinitum? It might look as though we cannot.
How would we ever be able to calculate P(q) if it is the outcome of an infinite
regress of instances of the rule of total probability? The calculation seems at
first sight to be too lengthy and too complicated for us to complete. After all,
insertion of Eq.(3.7), together with

P(¬A1) = P(¬A1|A2)P(A2)+P(¬A1|¬A2)P(¬A2) (3.9)

into the right-hand side of Eq.(3.6) leads to an expression with four terms,
namely:

P(q) = P(q|A1)P(A1|A2)P(A2)+P(q|¬A1)P(¬A1|A2)P(A2)+ (3.10)

P(q|A1)P(A1|¬A2)P(¬A2)+P(q|¬A1)P(¬A1|¬A2)P(¬A2).

A repetition of this manoeuvre to express P(A2) and P(¬A2) in terms of
P(A3) and P(¬A3) would produce no less than eight terms. After n+1 steps,
the number of steps is 2n+1, yielding an ungainly expression that seems hard
to evaluate in a simple, closed form.

There is however a way to reduce this complication of the rapidly in-
creasing number of terms. In explaining this we first simplify the notation by
abbreviating (3.6) by setting the two conditional probabilities, P(q|A1) and
P(q|¬A1), equal to α and β :

α = P(q|A1) β = P(q|¬A1) . (3.11)

Now P(q) becomes:

P(q) = αP(A1)+βP(¬A1)

= αP(A1)+β [1−P(A1)]

= β +(α −β )P(A1) . (3.12)

Clearly, we can only compute P(q) if we know P(A1). Of course, we also
have to know the values of the conditional probabilities α and β . Their status
is however rather different from that of the unconditional probabilities, and
we will come back to this matter in detail in Chapter 4. At this juncture,
we simply assume that α and β are given, and that they are the same from
link to link (the latter assumption is dropped in the next section). But what
is the value of P(A1)? We do not know. However, we do know that A1 is
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probabilistically justified by A2, and so we can calculate P(A1) in terms of
P(A2), and so on:

P(A1) = β +(α −β )P(A2)

P(A2) = β +(α −β )P(A3)

P(A3) = β +(α −β )P(A4) .

We can now see how to get rid of the unknown unconditional probabilities,
namely by nesting the formulas. Thus we can remove P(A1) by substituting
its value into (3.12), so that we obtain:

P(q) = β +(α −β )P(A1)

= β +(α −β )
[
β +(α −β )P(A2)

]
= β +β (α −β )+(α −β )2P(A2) . (3.13)

Next, by inserting the value of P(A2) into (3.13) we attain

P(q) = β +β (α −β )+(α −β )2[β +(α −β )P(A3)
]

= β +β (α −β )+β (α −β )2 +(α −β )3P(A3) , (3.14)

by which we got rid of P(A2). And so on. After a finite number m of steps
we obtain the following formula:

P(q)= β +β (α−β )+β (α−β )2+ . . .+β (α−β )m+(α−β )m+1P(Am+1) .
(3.15)

Eq.(3.15) is the beginning of the “regress of probability-values” that Lewis
is talking about. His argument is that, if this series is continued ad infinitum,
P(q) will always tend to zero, notwithstanding the fact that Reichenbach’s
correction has been taken into account. This is presumably why Lewis com-
ments: “I disbelieve that it [the addition of the second term] will save his
point.” Let us see whether Lewis’s disbelief is justified.

There are two things that should be noted about (3.15). The first is that
it contains only one factor of which the value is unknown. This is P(Am+1),
i.e. the probability of the first proposition, Am+1, in this finite series. Since
all the probabilities in the series are ultimately computed on the basis of this
unconditional probability, it seems that we must know its value in order to be
able to calculate P(q). The second thing is that, as m gets bigger and bigger,
so that the justificatory chain becomes longer and longer, (α − β )m+1 gets
smaller and smaller without limit, finally converging to zero. But of course,
if (α − β )m+1 converges to zero, then (α − β )m+1P(An+1) dwindles away
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to nothing too, for P(Am+1) cannot be greater than 1. The right-hand side of
Eq.(3.15) is a sum, and if a term in a sum goes to zero, it does not contribute
in the limit. With an infinite number of steps, the terms that remain are

P(q) = β +β (α −β )+β (α −β )2 + . . .

= β
[
1+(α −β )+(α −β )2 + . . .

]
= β

∞

∑
n=0

(α −β )n . (3.16)

Since α −β is less than one, the sum here is a convergent geometric series
which we can evaluate:

P(q) =
β

1−α +β
. (3.17)

In general, (3.17) does not yield zero. For example, if α is 3/4 and β is 3/8,
then P(q) is 3/5.27

We conclude that Lewis is mistaken. It is not the case that a “regress of
probability values” always yields zero. We have just seen an example of such
a series, consisting in a sum with an infinite number of terms, that yields a
number other than zero. Since Lewis’s statement is invalid, it cannot support
his main claim that probability statements only make sense if they presup-
pose certainties.28

3.5 A Nonuniform Probabilistic Regress

The counterexample in the previous section is a very special case. For in
demonstrating that a probabilistic regress makes sense, we have assumed
27 Eq.(3.17) gives in fact the fixed point of a Markov process. The stochastic matrix
governing the process is regular, and the iteration is guaranteed by Markov theory to
converge to the solution of the fixed point, p∗ = β +(α −β )p∗. However, this quick
route to (3.17) only works when the conditional probabilities are the same from step
to step: in the general case that we consider in the next section Markov theory does
not help, which is why we have not used it here. We shall discuss fixed points more
fully in Sections 8.4 and Appendix D.
28 This example shows that James Van Cleve’s defence of Lewis, and thereby his
attack on Reichenbach, is mistaken (Van Cleve 1977). Van Cleve argues that an in-
finite iteration of the rule of total probability must be vicious, because “we must
complete it before we can determine any probability at all” (ibid., 328). But our
counterexample to Lewis demonstrates that an infinite iteration may well be com-
pletable, in the sense that it is convergent and can be summed explicitly, yielding a
definite value for P(q).
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that the conditional probabilities are uniform, i.e. that they remain the same
throughout the entire justificatory chain. Such an assumption is of course
rarely fulfilled. It is very uncommon that the degree to which proposition q
is probabilistically supported by A1 is the same as the degree to which A1 is
probabilistically supported by A2, and so on.

However, it is possible to construct counterexamples without making the
assumption that the conditional probabilities are uniform. The rule of total
probability relating An to An+1 is

P(An) = P(An|An+1)P(An+1)+P(An|¬An+1)P(¬An+1) ,

or, with the abbreviation of the conditional probabilities as α and β , as in the
previous section:

P(An) = αP(An+1)+βP(¬An+1) .

In the nonuniform case the conditional probabilities differ from one link to
another, so we have to add an index n to α and β :

P(An) = αnP(An+1)+βnP(¬An+1)

= βn + γn P(An+1) , (3.18)

where αn, βn and γn are defined as follows:

αn = P(An|An+1)

βn = P(An|¬An+1)

γn = αn −βn . (3.19)

Imagine a finite probabilistic chain A0,A1, . . . ,Am+1, where again A0 is prob-
abilistically supported by A1, which is probabilistically supported by A2, and
so on. For notational convenience we have temporarily used A0 for the tar-
get proposition q and Am+1 for the grounding proposition p. It is possible to
concatenate all the instances of the rule of total probability to yield, for any
m ≥ 0,

P(A0) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1) .

(3.20)

Formula (3.20), of which a proof is given in Appendix A.1, is the nonuniform
counterpart of formula (3.15) in the uniform case.
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We have seen that, notwithstanding Lewis’s opinion, the extension of the
finite (3.15) to an infinite chain can be envisaged: in the uniform case the
infinite extension is well-defined if the extreme values 0 and 1 for the con-
ditional probabilities are excluded. Does it make sense to extend (3.20) to
an infinite number of links? Can a probabilistic regress in the nonuniform
case also be well-defined and moreover yield a nonzero value for the tar-
get? Again, one example is enough to refute Lewis’s argument in this more
general setting, and here it is:

αn = 1− 1
n+2

+
1

n+3
; βn =

1
n+3

; γn = 1− 1
n+2

. (3.21)

In (3.21) αn and βn depend nontrivially on n. The resulting infinite series is
not a geometric series, as it was in the uniform case that was introduced in
Section 3.4. Nevertheless, as is shown in Appendix A.5, when we insert the
formulae (3.21) into (3.20) we can work out the sum explicitly, obtaining

P(A0) =
3
4 − 2m+5

2(m+2)(m+3) +
1

m+2 P(Am+1) . (3.22)

In the limit that m goes to infinity, the second and the third terms on the
right-hand side of (3.22), namely 2m+5

2(m+2)(m+3) and 1
m+2 P(Am+1), both go to

zero. Thus only the term 3
4 survives in the limit, so that P(A0), that is the

probability of the target, P(q), equals 3
4 . Here then is a new and more general

case that invalidates Lewis’s argument that an infinite probabilistic regress
must yield zero.

3.6 Usual and Exceptional Classes

The above examples not only illustrate that Lewis was mistaken, but also that
a probabilistic regress can have a limit and in that sense be benign. But what
are the conditions under which this is so? When exactly does a probabilistic
regress yield a well-defined value for the target proposition?

In general there exist two conditions. Each of them is necessary, and to-
gether they are sufficient. Look again at our finite nonuniform chain, (3.20):

P(A0) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1).

The right-hand side of this equation consists of two parts, namely the sum of
conditional probabilities,
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β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm ,

and the remainder term,

γ0γ1 . . .γmP(Am+1) .

The first condition for a benign probabilistic regress is that the series of con-
ditional probabilities converges in the limit. The second condition is that, as
m is taken to infinity, the remainder term goes to zero.

As we prove in Appendix A.3, the first condition is always satisfied,
given that we assume probabilistic support, i.e. the constraint P(An|An+1)>
P(An|¬An+1) for all n. No matter whether we are dealing with uniform or
with nonuniform conditional probabilities, the infinite series

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + . . . , (3.23)

always converges. However, the matter is different as far as the second con-
dition is concerned. This condition is satisfied in the uniform situation (with
the restriction that α is not equal to one and β is not equal to zero), but it
is not always satisfied in the nonuniform situation. We shall call the class of
cases where both conditions are fulfilled the usual class.29 In the usual class
the probability of the target is equal to the following convergent series of
terms, each of which is a function of the conditional probabilities only:

P(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + . . . . (3.24)

The class of cases in which only the first requirement is fulfilled we will
call the exceptional class. Regresses in the exceptional class do not furnish
counterexamples to Lewis’s conclusion; but those in the usual class, on the
other hand, do so, on condition that at least one of the βn is nonzero.

When does a nonuniform probabilistic regress fall within the exceptional
class? For our purpose this question is of course important, since it creates
the watershed between probabilistic regresses which are benign (in the sense
that they yield an exact and well-defined value for the target) and those that
are not (in the sense that they only yield such a number if they have a first

29 In the usual class the infinite series (3.23) converges even if one relaxes the con-
dition of probabilistic support. However, since we are interested in justification, of
which probabilistic support is a necessary condition, this extension of the domain
of convergence is not required for our purposes. Moreover, the condition of proba-
bilistic support is needed for our conception of epistemic justification as a trade-off
(see Chapter 5) as well as for convergence in the probabilistic networks discussed
in Chapter 8.
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member, a ground). Clearly the answer to this question depends on whether
the remainder term vanishes in the limit. We have seen that this will be the
case if the factor γ0γ1 . . .γm vanishes as m goes to infinity. For then the re-
mainder term γ0γ1 . . .γmP(Am+1) will die out, since P(Am+1), the probability
of the grounding proposition, cannot be greater than one.

But when exactly does γ0γ1 . . .γm go to zero? That is the key question. As
we show in Appendix A.4, the answer depends entirely on the asymptotic
behaviours of αn and βn. The factor γ0γ1 . . .γm goes to zero if and only if
αn does not tend to one more quickly than 1/n tends to zero, or if βn does
not tend to zero more quickly than 1/n tends to zero. If at least one of these
disjuncts applies, then the nonuniform probabilistic regress falls within the
usual class. It then yields a unique probability value for the target proposi-
tion, A0 or q, which does not depend on an inaccessible unconditional prob-
ability at infinity. That is, it does not depend on the value of P(Am+1) —
or P(p) — in Eq.(3.20) in the limit that m goes to infinity.30 A nonuniform
probabilistic regress within this usual class constitutes a counterexample to
Lewis’s argument. A specific instance is provided by the example (3.21), for
this lies in the usual class, since the remainder term in (3.22), 1

m+2 P(Am+1),
goes to zero as m goes to infinity. In this limit the right-hand side of (3.22)
tends to 3

4 .
If, however, αn goes to one very quickly and βn goes to zero very quickly

as n tends to infinity, more quickly in fact than 1/n tends to zero, then the
nonuniform probabilistic regress belongs to the exceptional class. In this case
the regress does not result in a unique, well-defined probability value for the
target proposition, since the unknown probability of the ground still plays a
significant role. The regress is now vicious in the sense that the probability
of the target depends in part on the inaccessible ground, and it would not
form a counterexample to Lewis’s foundationalist argument.

An example of a regress in the exceptional class is as follows,

βn =
1

(n+2)(n+3)
γn = 1− 1

(n+2)2 , (3.25)

so that
αn = βn + γn = 1− 1

(n+2)2(n+3)
.

Here 1−αn and βn both tend to zero as n tends to infinity more quickly
than 1

n tends to zero, which shows that the example is indeed a member of

30 That the resulting system is consistent, in the sense that there exists at least one
assignment of probabilities for all possible conjunctions of the propositions An, has
been demonstrated by Frederik Herzberg (Herzberg 2013).
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the exceptional class. In Appendix A.6 we work out the expression for the
probability of the target proposition, obtaining

P(A0) =
3
8 − 2m+5

4(m+2)(m+3) +
1
2

m+3
m+2 P(Am+1) . (3.26)

In this case the remainder term, 1
2

m+3
m+2 P(Am+1), does not vanish in the limit. It

becomes formally one half times the limit of P(Am+1) as m tends to infinity,
which is ill-defined.

A probabilistic regress in the exceptional class is characterized by the fact
that it is actually very close to a regress of entailments, i.e. to the ‘classical’
regress, in which An+1 entails An for all n. It is therefore to be expected
that a straightforward classical regress will also fail to provide us with a
counterexample to Lewis’s claim, and this is indeed the case. Here is how a
classical regress looks in our probabilistic formalism. If An+1 entails An for
all n, then

αn = P(An|An+1) = 1;

and it is shown in Appendix A.7 that (3.20) reduces in this case to

P(¬A0) = γ0γ1 . . .γm P(¬Am+1) , (3.27)

for any m. We have to consider various possibilities for the behaviour of

βn = P(An|¬An+1)

as n tends to infinity. If βn were to tend to zero no more quickly than 1/n
does, the product γ0γ1 . . .γm in (3.27) would tend to zero as m tends to infin-
ity, so P(¬A0) = 0, irrespective of the behaviour of P(¬Am+1). Moreover it
follows also that P(¬An) = 0 for all n, which means that βn is not defined.
This is inconsistent, so we conclude that after all βn must tend to zero more
quickly than 1/n. But then the product γ0γ1 . . .γm tends to some non-zero
limit, and so P(¬A0) is not uniquely determined, since P(¬Am+1) can be as-
signed no particular limit as m goes to infinity. The regress of entailments, or
implications, is thus necessarily in the exceptional class.

A very special case is when

βn = P(An|¬An+1) = 0 (3.28)

for all n. We have then P(¬A0) = P(¬An) for all n, so all the proba-
bilities, P(An), have the same, undetermined value. Eq.(3.28) implies that
P(¬An|¬An+1) = 1, which is to say that ¬An+1 entails ¬An, which of course
means that An entails An+1 (up to measure zero). If αn = 1 and βn = 0, then
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An implies, and is implied by An+1: there is a regress of bi-implication all
the way along the chain. All the probabilities are the same, but the value is
undetermined by the regress. Such a regress of bi-implication is vicious in
our sense, for here the truth value of the target cannot be determined in the
absence of the truth value of the first member.

To summarize, the system of conditional probabilities belongs to the usual
class if and only if 1−αn or βn do not tend to zero more quickly than 1/n
tends to zero. On the other hand, if 1−αn and βn both tend to zero more
quickly than 1/n, then the system belongs to the exceptional class, and the
unconditional probabilities of the propositions are not determined. The sit-
uation in which αn is nearly one, and βn is nearly zero, is close to the case
of bi-implication. We therefore might call the exceptional class the case of
quasi-bi-implication.

3.7 Barbara Bacterium

In this chapter we have introduced the concept of a probabilistic regress, that
is an epistemic chain of the form

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

where the arrow is interpreted in terms of probabilistic support. We examined
Lewis’s view that such a regress is absurd, since it allegedly implies that
the probability of q is zero. According to Lewis, the only way to avoid the
absurdity was to stop at a proposition, p, which is certain:

q ←− A1 ←− A2 ←− A3 ←− A4 . . .←− p.

We have opposed Lewis’s argument by giving counterexamples, i.e. prob-
abilistic regresses which yield a unique, nonzero probability value for the
target. Some of these regresses were based on uniform conditional probabil-
ities, others on nonuniform ones.

All our counterexamples were abstract. This is somewhat unfortunate,
since a familiar objection to infinite regresses is that they are not concrete
and lack practical relevance. The objection becomes even more pressing if
one distinguishes (as we did not do here but will do in later chapters) be-
tween propositions and beliefs. Propositions are abstract entities, but beliefs
are propositional attitudes that people really have. Whereas the idea of an
infinite propositional regress might sound not unreasonable, an infinite dox-
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astic regress seems a contradiction in terms. Where could we ever find a
doxastic series of infinite length?

In the next chapters we will come back to this objection, and then we will
also discuss the distinction between a propositional and a doxastic regress.
At this juncture we will restrict ourselves to showing that a probabilistic
regress of propositions also is relevant to a real-life situation.

Imagine that we are trying to develop a new medicine to cure a disease.
In this connection, we want to know whether a particular bacterium has a
certain trait, T . Bacteria reproduce asexually, so one parent, the ‘mother’
bacterium, alone produces offspring. After having carried out many experi-
ments, one day we take from a batch a particular bacterium, which we call
Barbara. From our experiments we know that the probability that Barbara
has T is considerably greater if her mother has T than if her mother lacks it.
So if q is ‘Barbara has T ’ and A1 is ‘Barbara’s mother has T ’, then we can
say that A1 probabilistically supports q. It is not certain that Barbara has T if
her mother has the trait, but on the other hand Barbara could have T even if
her mother does not have it. Thus 1 > P(q|A1)> P(q|¬A1)> 0.

The unconditional probability of Barbara having T is given by

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1).

Whereas the conditional probabilities in this equation, P(q|A1) and P(q|¬A1),
may be assumed to have been determined from our experiments, obtaining
P(A1) is a problem. What is the probability that Barbara’s mother has T ? We
know that it is given by

P(A1) = P(A1|A2)P(A2)+P(A1|¬A2)P(¬A2),

where P(A2) is the probability that Barbara’s grandmother has T , which
in turn is conditioned by P(A3), the probability that Barbara’s great-grand-
mother has T .31

It will be clear that we can only compute P(q) if we know P(A3). And the
situation remains the same, even if we add more and more instances of the
rule of total probability, going further and further back in Barbara’s ancestry.
It seems we are only able to compute the probability that Barbara has T if
we know what is the unconditional probability that her primordial mother
had T . So at first sight it looks as though foundationalists are right: if q is
probabilistically justified by A1, which is probabilistically justified by A2,

31 In the reading of Pastin the probability intended by Lewis would be P(q∧A1),
see footnote 20. But this is neither the probability of interest nor does it fit what is
at stake in the debate between Lewis and Reichenbach.
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et cetera, then we have to know for sure the probability of the grounding
proposition in order to be able to calculate the probability of q.

This impression, intuitive as it may seem, is however incorrect, and we
have already seen why. The chain q ←− A1 ←− A2 ←− A3 leads to:

P(q) = β +β (α −β )+β (α −β )2 +(α −β )3P(A3) ,

see (3.14). Going infinitely far back into Barbara’s ancestry, we obtain (3.16):

P(q) = β +β (α −β )+β (α −β )2 + . . . .

This does not have a grounding proposition p. A primordial mother of Bar-
bara makes no contribution, yet we are able to calculate the probability that
Barbara herself has T , and this probability, notwithstanding Lewis’s opinion,
is not zero.

Let An be the proposition: ‘Barbara’s ancestor in generation n has T ’. Let
the probability that a bacterium has T if her mother has T be 0.99, and the
probability that a bacterium has T if her mother lacks it be 0.02. So α =
P(An|An+1) = 0.99, β = P(An|¬An+1) = 0.02, and hence γ = α −β = 0.97.
Now (3.16) becomes:

P(q) =
β

1− γ
=

β
1−α +β

,

in agreement with (3.17). With the numbers chosen for α and β , we can now
calculate the probability that Barbara has T : it is 2

3 .
The foregoing example made use of uniform conditional probabilities. As

an example of a nonuniform probabilistic regress, suppose that an effect of
the increasing pollution of the nutrient, as a result of the growing mass of
bacteria in it, is that the probability of a bacterium having T increases as
time goes on, quite independently of whether the mother bacterium has T .
For example, if αn = P(An|An+1) = a+bn+1 and βn = P(An|¬An+1) = bn+1,
where a and b are positive numbers such that a+b < 1, then αn and βn are
different from generation to generation, although γn = a is constant. Note
that, since b is less than one, the factor bn+1 increases as n decreases, so
in Barbara’s remote ancestry there was little pollution, but it increases from
generation to generation until Barbara herself appears on the scene. Eq.(3.20)
once more reduces to a finite geometric series that can be summed:

P(q) = b
[
1+ab+(ab)2 + . . .(ab)m]+am+1P(Am+1)

= b
1− (ab)m+1

1−ab
+am+1P(Am+1) .
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In the case of an infinite number of generations, since (ab)m+1 and am+1 both
vanish in the limit of infinite m, we find

P(q) =
b

1−ab
. (3.29)

For example, if a = 1
3 and b = 3

5 , we find from (3.29) that P(q) = 3
4 .

One might object that our argument so far is still not very realistic, to put
it mildly. For a start, the assumption that conditional probabilities are known
as precise numbers is a travesty of what is attainable in scientific practice.
In real experiments the conditional probabilities are imprecise, merely being
known to lie within some specified interval, and as a result, the unconditional
probability of the target, too, is subject to measurement error.

Fortunately, when the conditional probabilities are uniform, as for exam-
ple in the case of Barbara, then it is relatively easy to determine the interval
within which the target probability must lie. For suppose that P(An|An+1) is
in the interval [αm,αM], and P(An|¬An+1) is in the interval [βm,βM]. It can
be shown that expression (3.17) for P(q) is an increasing function of both α
and of β ;32 and this means that the uncertainty in P(q) is given by

βm

1−αm +βm
< P(q)<

βM

1−αM +βM
,

on condition that αM −βm < 1.
In the more general case where the conditional probabilities are not uni-

form, the calculation of the uncertainty in the value of P(q) is a little more
intricate. However, since the condition of probabilistic support is in force, all
the terms in Eq.(3.23) are positive, and it can be done without too much ef-
fort. One has to minimize and maximize each term, within the experimental
error bounds, in order to obtain lower and upper bounds on P(q).

Even so, one might still feel the urge to protest that we are not dealing with
real life situations. No bacterium has an infinite number of ancestor bacteria,
if only because of the fact of evolution from more primitive algal slime,

32 The partial derivatives of β
1−α+β with respect to α and β are both positive:

∂
∂α

β
1−α +β

=
β

(1−α +β )2 > 0

∂
∂β

β
1−α +β

=
1−α

(1−α +β )2 > 0 .
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which had grown out of earlier life forms, which sprang from inanimate
matter, which originated in a supernova explosion, and so on.

This is of course true, and it makes short shrift of any remaining thought
about a beginning in the form of a first bacterium.33 For our approach, how-
ever, the issue is moot. The reason is that the further away a node in the
chain is from the target, the smaller its influence on the target becomes. Ap-
plied to Barbara: long before we reach the stage where her ancestor bacteria
evolve from more primeval life forms, they have become totally irrelevant
to the question whether Barbara has T . This phenomenon we call ‘fading
foundations’, and it is explained in the next chapter.

33 Sanford 1975, 1984; Rescher 2010, 56.
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