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Abstract. Given the explosive growth in the size and the complexity of
the Data Web, there is now more than ever, an increasing need to develop
methods and tools in order to facilitate the understanding and explo-
ration of RDF/S Knowledge Bases (KBs). To this direction, summariza-
tion approaches try to produce an abridged version of the original data
source, highlighting the most representative concepts. Central questions
to summarization are: how to identify the most important nodes and then
how to link them in order to produce a valid sub-schema graph. In this
paper, we try to answer the first question by revisiting six well-known
measures from graph theory and adapting them for RDF/S KBs. Then,
we proceed further to model the problem of linking those nodes as a graph
Steiner-Tree problem (GSTP) employing approximations and heuristics
to speed up the execution of the respective algorithms. The performed
experiments show the added value of our approach since (a) our adapta-
tions outperform current state of the art measures for selecting the most
important nodes and (b) the constructed summary has a better quality
in terms of the additional nodes introduced to the generated summary.

Keywords: Semantic summaries · Schema summary · RDF/S Knowl-
edge Bases · Graph theory

1 Introduction

The recent explosion of the Data Web and the associated Linked Open Data
(LOD) initiative have led to an enormous amount of widely available RDF
datasets. These datasets often have extremely complex schemas which are dif-
ficult to comprehend, limiting the exploration and the exploitation potential of
the information they contain. In addition, a user, in order to formulate queries,
has to examine carefully the entire schema in order to identify the interesting
elements of the schema and the data. As a result, there is now, more than ever,
an increasing need to develop methods and tools in order to facilitate the quick
understanding and exploration of these data sources [11].
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To this direction several works try to provide overviews on the ontologies
[15,20,25] maintaining however the most important ontology elements. Such an
overview can also be provided by means of an ontology summary. Ontology
summarization [29] is defined as the process of distilling knowledge from an
ontology in order to produce an abridged version. While summaries are useful,
creating a good summary is a non-trivial task. A summary should be concise, yet
it needs to convey enough information to enable a decent understanding of the
original schema. Moreover, the summarization should be coherent and provide
an extensive coverage of the entire ontology.

In this paper, we focus on RDF/S Knowledge Bases (KBs) and explore effi-
cient and effective methods to automatically create high-quality summaries. The
goal is to construct better summaries in terms of selecting the most important
part of the schema as end-users perceive importance. We view an RDF/S KB as
two distinct and interconnected graphs, i.e. the schema and the instance graph.
As such, a summary constitutes a valid sub-schema graph containing the most
important nodes, summarizing the instances as well. Central questions to the
process of summarization is how to identify the most important nodes and then
how to link those nodes to produce a valid sub-schema graph. For answering
the first question various importance measures have been proposed trying to
provide real-valued measures for ranking the nodes of a graph. In this paper, we
adapt, for RDF/S KBs, six well-known importance measures from graph theory,
covering a wide range of alternatives for identifying importance. Then we try to
answer the second question by modelling the problem of selecting a valid sub-
schema graph as a Steiner-Tree problem which we resolve using approximations
with heuristics. More specifically our contributions are the following:

– We explore the Degree, the Betweeness, the Bridging Centrality, the Harmonic
Centrality, the Radiality and the Ego Centrality measures adapting them for
RDF/S KBs to consider instance information as well. Our experiments show
that the adapted versions of these importance measures greatly outperform
other proposed measures in the domain.

– Besides identifying the most important nodes, we try next to identify the
proper paths connecting those nodes. We achieve this by modelling the prob-
lem as a graph Steiner-Tree Problem trying to minimize the total number of
the additional nodes introduced when constructing the summary sub-graph.
Since the problem is NP-complete and the exact algorithms proposed require
significant execution time, we proceed further to explore three approximations,
the SDIST, the CHINS and the HEUM trying to optimize either the insertion
of a single component or the connection of the components using their shortest
paths. On top of these approximations we implement an improvement proce-
dure using heuristics the I-MST, ensuring that all leaves are terminal nodes.

– Finally, we perform a detailed two-stage experimental evaluation using two
versions of the DBpedia. In the first stage we compare the applicability of
the adapted measures for identifying the nodes’ importance comparing our
adaptations with the most frequent nodes queried in the corresponding query
logs. We identify that overall our adaptation of Betweeness outperforms all
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other important measures. In the second stage, we evaluate the quality the of
the selected sub-graphs in terms of additional nodes introduced showing that
CHINS performs better without too much overhead in the execution time.

To the best of our knowledge, this is the first time that these six diverse
importance measures are adapted and compared for RDF/S summarization pur-
poses. In addition although other recent works focus on using the maximum
cost spanning tree [24,25] for linking the selected nodes, this is the first time
the problem of summarization is formulated as a Steiner-Tree problem using
approximations for the fast identification of the corresponding summaries with
many benefits as we shall show in the sequel.

The rest of the paper is organized as follows: Sect. 2 introduces the formal
framework of our solution and Sect. 3 describes the various measures for esti-
mating importance. Then in Sect. 4 we present the algorithms for selecting the
proper subgraphs, whereas Sect. 5 presents our evaluation. Section 6 presents
related work and finally Sect. 7 concludes this paper and presents directions for
future work.

2 Preliminaries

In this paper, we focus on RDF/S KBs, as RDF is among the widely-used stan-
dards for publishing and representing data on the Web. Representation of RDF
data is based on three disjoint and infinite sets of resources, namely: URIs (U),
literals (L) and blank nodes (B). We impose typing on resources, so we consider
3 disjoint sets of resources: classes (C ⊆ U ∪ B), properties (P ⊆ U), and indi-
viduals (I ⊆ U ∪ B). The set C includes all classes, including RDFS classes and
XML datatypes (e.g., xsd:string, xsd:integer). The set P includes all properties,
except rdf:type, which connects individuals with the classes they are instantiated
under. The set I includes all individuals, but not literals. In addition, we should
note that our approach adopts the unique name assumption, i.e. that resources
that are identified by different URIs are different.

In this work, we separate between the schema and instances of an RDF/S
KB, represented in separate graphs (GS , GI , respectively). The schema graph
contains all classes and the properties they are associated with; note that mul-
tiple domains/ranges per property are allowed, by having the property URI be
a label on the edge (via a labelling function λ) rather than the edge itself. The
instance graph contains all individuals, and the instantiations of schema prop-
erties; the labelling function λ applies here as well for the same reasons. Finally,
the two graphs are related via the τc function, which determines which class(es)
each individual is instantiated under. Formally:

Definition 1 (RDF/S KB). An RDF/S KB is a tuple V = 〈GS , GI , λ, τc〉,
where:

– GS is a labelled directed graph GS = (VS , ES) such that VS , ES are the nodes
and edges of GS, respectively, and VS ⊆ C ∪ L.
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– GI is a labelled directed graph GI = (VI , EI) such that VI , EI are the nodes
and edges of GI , respectively, and VI ⊆ I ∪ L.

– A labelling function λ : ES ∪ EI �→ 2P determines the property URI that each
edge corresponds to (properties with multiple domains/ranges may appear in
more than one edge).

– A function τc : I �→ 2C associating each individual with the classes that it is
instantiated under.

For simplicity, we forego extra requirements related to RDFS inference (sub-
sumption, instantiation) and validity (e.g., that the source and target of property
instances should be instantiated under the property’s domain/range, respec-
tively), because these are not relevant for our results below and would signifi-
cantly complicate our definitions.

In the following, we will write p(v1, v2) to denote an edge e in GS (where
v1, v2 ∈ VS) or GI (where v1, v2 ∈ VI) from node v1 to node v2 such that
λ(e) = p. In addition, a path from a schema node vs to vi, denoted by path(vs, vi),
is the finite sequence of edges, which connect a sequence of nodes, starting
from the node vs and ending in the node vi. The length of a path, denoted
by dpath(vs,vi), is the number of the edges that exist in that path whereas
d(vs, vi) is the number of the edges that exist in the shortest path linking vs

and vi. Finally, having a schema/instance graph GS/GI , the closure of GS/GI ,
denoted by Cl(GS)/Cl(GI), contains all triples that can be inferred from GS/GI

using inference. Since in our algorithms we use the closure of the correspond-
ing schema/instance graphs, from now on when we use GS/GI we will mean
Cl(GS)/Cl(GI) for reasons of simplicity unless stated otherwise. This is to
ensure that the result will be the same, independent of the number of infer-
ences applied in the input.

Now as an example, consider the DBpedia 3.8 shown in Fig. 1(a). Obviously, it
is really difficult to examine all the nodes in order to understand the schema. How-
ever, focusing only on the schema summary, shown in Fig. 1(b), allows the user to
get a quick overview on the contents of the ontology, identifying and linking the
most important nodes. We have to note, that our approach handles OWL ontolo-
gies as well, considering however only the RDF/S fragment of these ontologies.

Fig. 1. The DBpedia 3.8 schema graph (a) and a corresponding schema summary (b).
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3 Importance Measures

Schema summarization aims to highlight the most representative concepts of a
schema, preserving important information and reducing the size and the com-
plexity of the schema [17]. Despite the significance of the problem, there is still
no universally accepted measurement on the importance of nodes in an RDF/S
graph. In this section, we describe six alternative measures that have been pro-
posed for capturing importance in directed graphs. Then we will show how we
adapt those measures to consider instance information as well for summarizing
RDF/S KBs. We selected the Betweeness, the Bridging Centrality, the Degree,
the Harmonic Centrality, the Radiality and the Ego Centrality as they constitute
the state of the art geometric measures for generic graphs [2]. We do not com-
pare with spectral measures (HITS, PageRank etc.) because they are based on
external factors and spectral properties. The complexities of all aforementioned
measures is shown in Table 1.

Table 1. The complexities of the examined importance measures.

Measure Complexity

Degree (DE) O(VS + ES)

Betweeness (BE) O(VS · (VS · ES))

Bridging Centrality (BC) O(VS · (VS · ES))

Harmonic Centrality (HC) O(VS · (VS + ES))

Radiality (RA) O(VS · (VS + ES))

Ego Centrality (EC) O(VS + ES)

– The simplest importance measure for a graph is the Degree, that is defined as
the number of edges incident to a node.

Definition 2 (Degree). Let GS = (VS , ES) be an RDF/S schema graph with
VS nodes and ES edges. The Degree of a node v ∈ VS is defined as follows:

DE(v) = deg(v) (1)

where deg(v) is the number of edges incident to the node.

– The Betweenness measure is equal to the number of the shortest paths from all
nodes to all others that pass through that node. Calculating the betweenness
for all nodes in a graph requires the computation of the shortest paths between
all nodes.

Definition 3 (Betweenness). Let GS = (VS , ES) be an RDF/S schema graph.
The Betweenness of a node v ∈ VS is defined as follows:

BE(v) =
∑

s �=v �=t

σst(v)
σst

(2)
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where σst is the total number of shortest paths from node s to node t and σst(v)
is the number of those paths that pass through v.

– The Bridging Centrality tries to identify the information flow and the topo-
logical locality of a node in a network. It is widely used for clustering or in
order to identify the most critical points interrupting the information flow for
network protection and robustness improvement purposes. A node with high
Bridging Centrality is a node connecting densely connected components in a
graph. The bridging centrality of a node is the product of the betweenness
centrality and the bridging coefficient, which measures the global and local
features of a node respectively.

Definition 4 (Bridging Centrality). Let GS = (VS , ES) be an RDF/S
schema graph. The bridging centrality of a node v ∈ VS is defined as follows:

BC(v) = BC(v) · BE(v) (3)

where BC(v) is the bridging coefficient of a node which determines how well
the node is located between high degree nodes and BE(v) is the betweenness
centrality. The bridging coefficient of a node v is defined:

BC(v) =
DE(v)−1

∑
i∈N(v)· 1

DE(i)

(4)

where DE(v) is the degree of node v, and N(v) is the set of it’s neighbors.

– The Harmonic Centrality was initially defined for undirected graphs by Rochat
[19] in 2009 and later for directed graphs by Boldi and Vigna [2]. It is a modi-
fication of the Closeness [2], replacing the average distance with the harmonic
mean of all distances, requiring again the computation of the shortest paths
between all nodes.

Definition 5 (Harmonic Centrality). Let GS = (VS , ES) be an RDF/S
schema graph. The Harmonic Centrality of a node v ∈ VS is defined as follows:

HC(v) =
1∑

u�=v d(u, v)
(5)

– The Radiality was first proposed by Valente and Foreman [26], to provide
information on how close a node is to all other nodes in a graph (i.e. the
integration measure of a node to a graph). In order to compute the diameter
of a graph we need to compute the shortest paths between all nodes.

Definition 6 (Radiality). Let GS = (VS , ES) be an RDF/S schema graph.
The Radiality of a node v ∈ VS defined as:

RA(v) =
1∑

u�=v(ΔG − (1/d(u, v))
(6)

where ΔGS
is the Diameter of graph Gs.
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– The Ego Centrality (EC) was first introduced in the iManageCancer1 project.
For a node v, EC is the induced subgraph of G, which contains v, its neighbors,
and all the edges between them, trying to identify how important a node is to
his neighborhood.

Definition 7 (Ego Centrality). Let GS = (VS , ES) be an RDF/S schema
graph. The Ego Centrality of a node v ∈ GS is defined as follows:

EC(v) =
i=nin∑

i=1

Wi ∗ e.egoi +
i=nout∑

i=1

Wi ∗ e.egoi (7)

where:

Wi =
i=nin∑

i=1

1/vout
i +

i=nout∑

i=1

1/vin
i (8)

and e.ego = 1/vout
i , vi the adjacent node of a node v using the incoming edge e

and e.ego = 1/vin
i , vi the adjacent node of a node v using the outgoing edge e.

3.1 Adapted Importance Measures

In order to take into consideration the instances of each class, we adapt the
aforementioned importance measures. To achieve that we first normalize each
importance measure IMi on a scale of 0 to 1:

normal(IMi(v)) =
IMi(v) − min(IMi(g))

max(IMi(g)) − min(IMi(g))
(9)

Where i one of the DE, BE, BC, HC, RA, EC. IMi(v) is the importance
value of a node v in the schema graph g, min(IMi(g)) is the minimum and
max(IMi(g)) is the maximum importance value in the graph. Similarly, we nor-
malize the number of instances (InstV) that belong to a schema node. As such,
the adapted importance measure (AIM) of each node is the sum of the normalized
values of the importance measures and the instances.

AIMi(v) = normal(IMi(v)) + normal(InstV (v)) (10)

4 Construction of the RDF/S Summary Schema Graph

Using the aforementioned AIM we select the top-k important nodes of a directed
schema graph (also known as terminals in graph theory). Then we to focus on
the paths that link those nodes, trying to produce a valid sub-schema graph. We
have to note that in the stage of constructing the final RDF/S summary schema
graph we are not interested in the direction of the edges since we only want to
get a connected schema sub-graph.

1 http://imanagecancer.eu/.

http://imanagecancer.eu/
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The latest approaches in the area [25] identify a maximum cost spanning tree
(MST) in the graph and then link the most important nodes using paths from
the selected maximum-cost spanning tree. The main idea there is to select the
paths that maximize the total weight of the selected sub-graph. However, the
main problems with this approach is that although the MST identifies the paths
with the maximum weight in the whole graph, the paths selected out of the MST
might not maximize the weight of the selected summary (remember that MST
connects all nodes in the schema graph whereas summaries only select the most
important nodes to be connected using paths from the MST). A second problem
there is that many additional nodes are introduced in the result, since there is
only one path to be selected between two nodes and in this path many other not
important nodes might appear as well.

A different idea that we explore in this paper is to model the problem
of linking the most important nodes as a variation of the well-known graph
Steiner-Tree problem (GSTP) exploiting the optimal solutions there proposed by
Hakimi [6] and Levin [12] independently. The problem is an NP-hard [8] problem
and remains NP-complete if all edge weights are equal.

Definition 8 (The Graph Steiner-Tree problem (GSTP)). Given an
undirected graph G = (V,E), with edge weights w : E → R

+ and a node set
of terminals S ⊆ V , find a minimum-weight tree T ∈ G such that S ⊆ Vt and
Et ⊆ E.

In our case, we consider as G the GS ignoring as well the direction in the
edges. As such the objective now is not to increase the total weight of the sum-
mary graph but to introduce as much as possible less number of additional nodes.
This is due to the fact that introducing a lot of additional nodes shifts the focus
of the summary and decreases summary’s quality.

4.1 Algorithms, Approximation and Heuristics

There had been various exact algorithms for the GSTP. Hakimi [6] proposed the
first brute force algorithm that enumerates all minimum spanning trees of sub-
networks of G included by super-sets of terminals that runs in O(2V −t ·V 2+V 3).
The first dynamic programming algorithms were proposed independently by
Dreyfus & Wagner [4] and by Levin [12]. The former runs in O(3t ·V +2t ·V 2+V 3)
whereas the latter in O(3t ·V +2t ·V 2+ t2 ·V ) and they are based on the optimal
decomposition property by creating two node sets, removing one node at each
step and solving the GSTP by connecting each set. Levin’s method uses a recur-
sive optimization approach that pre-computes the possible sub-trees. Since all
aforementioned algorithms have an exponential running time, various approxi-
mations such as [16,18,27] have been proposed in order to find good solutions for
large networks. A central theme in these approximations, is the use of some prin-
ciples known from the two classic algorithms for solving the minimum spanning
tree problem, Prim’s and Kruskal’s [27]. We will use the following top-three well-
known and good performing methods SDISTG, CHINS and HEUM [27]. These
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approximations have a worst case bound of 2, i.e., ZT /Zopt ≤ 2 · (1 − l/|Q|),
where ZT and Zopt denote the objective function values of a feasible solution
and an optimal solution respectively, Q the set of terminals and l a constant [1].

SDISTG (Shortest distance graph)

1. Construct a complete graph G′ for the node set Q (set of terminal nodes) with
each edge having the weight of a shortest path between the corresponding
nodes in G.

2. Construct a minimum spanning tree T ′ of G′.
3. Replace each edge of the tree T ′ by its corresponding shortest path in G.

CHINS (Cheapest insertion)

1. Start with a partial solution T = (w, 0) consisting of a single terminal node
w.

2. While T does not contain all terminal nodes do
find the nearest nodes u∗ ∈ Vt and p∗ being a terminal node not in Vt.

HEUM (Heuristic measure)

1. Start with a partial solution T = (Q, 0) consisting of Q singleton components
(terminal nodes).

2. While T is not connected do
choose a node u using a heuristic function F and unite the two components
of T which are nearest to u by combining them with u via shortest paths (the
nodes and edges of these paths are added to T ).
Up to now the most promising way is to choose F according to:
mini≤t≤σ,

{
1
t · ∑t

i=0 d(u, Ti)
}

where T0, . . . , Tσ are the components of T such
that d(u, Ti) ≤ d(u, Ti)∀i, j ∈ σ, i < j.

Besides these approximations, many heuristics can be employed to improve
even more the corresponding algorithms. The most promising ones are the
I-MST+P and the TRAFO [27]. I-MST+P is a pruning routine that ensures that
all leaves are terminal nodes whereas TRAFO transforms a feasible solution to
another one trying to overcome the deficiency of bad local optima by allowing
the temporary deterioration of the actual solutions. In this paper we use only the
I-MST+P since TRAFO requires considerable more time to run and the improve-
ments are insignificant - due to the sparsity of the examined ontologies.

I-MST+P (Improvement procedure with MST+P)

1. Let T = (Vt, Et) be a feasible solution of the GSTP. The subgraph of G
induced by Vt will be defined as Gt.

2. Construct a minimum spanning tree T = (V ′
t , E′

t) of Gt.
3. While there exists a leaf of T ′ being a terminal do

delete that leaf and its incident edge.
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Table 2. Worst-case complexities for linking the most important nodes in a graph.

Algorithm Weighted graph Un-weighted graph

MST O(E · logV ) O(|V + E|)
SDISTG O(Q · |V logV |) O(Q · |V + E|)
CHINS O(Q · |V logV |) O(Q · |V + E|)
HEUM O(V · |V logV |) O(V · |V + E|)

Complexities. Using a Breadth-first search requires O(V + E) time (where
E is O(V )) to find shortest paths from a source vertex v to all other vertices
in the graph. All-pairs shortest paths for unweighted undirected graphs can be
computed in O(V · (V + E)) time by running the BFS algorithm for each node
of the graph. The complexity of SDISTG, CHINS and HEUM differs, due to
the usage of different heuristics. Table 2 provides the worst case complexities of
those algorithms for weighted/un-weighted graphs.

5 Evaluation

To evaluate our approach, we used two versions of the DBpedia2. DBpedia 3.8 is
consisted of 359 classes, 1323 properties and more that 2.3M instances, whereas
DBpedia 3.9 is consisted of 552 classes, 1805 properties and more than 3.3M
instances. Those two versions offer two interesting use-cases for exploration.

To identify the most important nodes of those two versions we do not rely on
a limited amount of domain experts with subjective opinions as past approaches
do [20,23,25]. Instead, we exploit the query logs from the corresponding DBpedia
endpoints trying to identify the schema nodes that are more frequently queried.
For DBpedia 3.8 we were able to get access to more than 50K queries whereas
for 3.9 we were able to get access to more than 110K queries.

For each examined version, we considered the corresponding query log trying
to identify the most important classes. We assess as the most important, the
ones that have higher frequency of appearance in the queries. A class appears
within a query either directly or indirectly. Directly when the said class appears
within a triple pattern of the query and undirectly when (a) the said class is the
type of an instance or the domain/range of a property that appear in a triple
pattern of the query.

In addition, we compare our approach with relevance, another measure
recently published, combining both syntactic and semantic information, shown
to outperform past approaches in the area [23,25].

5.1 Spearman’s Rank Correlation Coefficient

Initially we tried to understand the statistical dependence between the ranking of
all nodes using the aforementioned measures. To do this we used the Spearman’s
2 http://wiki.dbpedia.org/.

http://wiki.dbpedia.org/
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Fig. 2. (a) Spearman’s rank correlation for the adapted (yellow) and the non-adapted
(blue) importance measures with the frequency ranking and (b) the percentage of
additional nodes introduced (Color figure online)

rank correlation coefficient [21], a nonparametric measure of rank correlation.
It assesses how well the relationship (measures the strength and direction of
association) between two variables can be described using a monotonic function.

Spearman correlation indicates the direction of the association between two
variables X,Y . It can vary between −1 and 1, where 1 is total positive corre-
lation, 0 is no correlation, and −1 is total negative correlation. If Y tends to
decrease when X increases, the Spearman correlation coefficient is negative. A
Spearman correlation of zero indicates that there is no tendency for Y to either
increase or decrease when X increases. When X and Y are perfectly monotoni-
cally related, the Spearman correlation coefficient becomes 1. The results of our
experiments are shown in Fig. 2(a).

As shown, our adapted importance measures show a higher dependence to
the frequency ranking than the pure structural ones wit. In addition we can
see that measures like the AIMBE , the AIMBC and the AIMDE show a really
high correlation with the frequency ranking. Finally, we can see that all adapted
measures - except Radiality (AIMRA)- show a better correlation than Relevance.

5.2 The Similarity Measure

Next, we would like to evaluate the measures identified in Sect. 3 for their quality
with respect to identifying the nodes’ importance. Measures like precision, recall
and F-measure, used by the previous works [15,17,20] are limited in exhibit-
ing the added value of a summarization system because of the “disagreement
due to synonymy” [3] meaning that they fail to identify closeness with the ideal
result when the results are not exactly the same with the reference ones. On
the other hand, content-based metrics compute the similarity between two sum-
maries in a more reliable way [29]. To this direction, we use the similarity mea-
sure, first defined in [23], denoted by Sim(GS , GR), in order to define the level of
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agreement between an automatically produced graph summary GS = (VS , ES)
and a reference graph summary GR = (VR, ER):

Sim(GS , GR) =
|VS ∩ VR| + a ·

p∑
i=k

1
dp(ci,c

′
i
)
+ b ·

n∑
i=m

1
dp(ci,c

′
i
)

|VR|
where ck, ..., cp are the classes in VR that are sub-classes of the classes c′

k, ..., c′
p

of VS and that cm, ..., cn are the classes in VR that are superclasses of the classes
c′
m, ..., c′

n of VS . In the above definition a and b are constants assessing the exis-
tence of sub-classes and super-classes of GS in GR with a different percentage.
In [25] the ideal weights for RDF/S KBs have been identified to be a = 0.6
and b = 0.3 which we use in this paper as well, giving more weight to the super-
classes. The idea behind that is that the super-classes, since they generalize their
sub-classes, are assessed to have a higher weight than the sub-classes, which limit
the information that can be retrieved. Consequently, the effectiveness of a sum-
marization system is calculated by the average number of the similarity values
between the summaries produced by the system and the set of the correspond-
ing experts’ summaries. The results of our experiments are shown in Fig. 3 and
present the average similarity values for generating summaries from 1% to 50%
of the corresponding schema graph size. As shown again our adapted measures
(in yellow) outperform the pure structural ones (in blue) in all cases. In addition,
all measures but AIMBA outperform Relevance showing again the high value of
our adaptations. When comparing between the ontology versions we can observe
that although AIMBE is the clear winner in all cases, the second best in DBpe-
dia 3.8 is the AIMBC whereas in DBpedia 3.9 is the AIMDE . To interpret these
results we shall consider that 193 more classes were added in DBPedia 3.9 intro-
ducing only a small number of new edges. This results in a reduction of 37% of
the density and an increase of the diameter from 9 to 13. As such, only a few
number of nodes have more than one out-going edge and the degree performs
better in this case as it captures more effectively the importance of more sparse
graphs.

5.3 Additional Nodes Introduced

Next we would like to identify the overhead imposed by the algorithms for linking
the most important nodes in terms of the additional nodes that are introduced.
The average number of additional nodes introduced per algorithm is shown in
Fig. 2(b). We can observe that MST used by our previous work introduces on
average 8.5% of additional nodes, whereas CHINS only 4.7% additional nodes.
For example, for DBpedia 3.9 this corresponds to 19 additional nodes using MST
over CHINS when requesting a summary of 10% of the nodes. This is reasonable,
since the Steiner-Tree approximations have the objective of minimizing the addi-
tional nodes introduced in the selected subgraph confirmed by our experiments.
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Fig. 3. Comparing the average similarity of the adapted (in yellow) and the non-
adapted (in blue) importance measures in (a) DBpedia 3.8 and (b) DBpedia 3.9 for a
summary of 1–50%. (Color figure online)

5.4 Execution Time

Finally, to test the efficiency of our system, we measured the average time of
50 executions in order to produce the corresponding summaries of the two KBs.
The experiments run on a Intel(R) Xeon(R) CPU E5-2630 running at 2.30 GHz
with 64 GB memory running Ubuntu 12.04 LTS.

The mean execution times for identifying the most important nodes and con-
structing the corresponding summaries are shown in Fig. 4. As we can observe,
the execution times of the various measures can be divided into three categories.
The measures that need to compute the shortest paths of all pairs, the measures
that need to iterate only the nodes and the edges of the graph and the mea-
sures that need to execute queries on external databases or combine complex
measures. The Betweenness, the Bridging Centrality, the Harmonic Centrality
and the Radiality belong to the first category since they assign weights by cal-
culating the shortest paths between all pairs of nodes. As such they have similar
execution times. The Betweenness differentiates from the rest since the set of all
shortest paths should be computed for each pair of nodes. The Bridging Cen-
trality uses the Betweenness and as such it takes almost the same time. In the
second category we find the Degree and the Ego Centrality. The Degree needs
only to iterate over all edges of the graph and “submit” the weight to each node.
The Ego Centrality needs one more iteration over all nodes and edges of the
graph. Relevance is not included in these graphs since it requires significantly
more time (two orders of magnitude larger) using an external triple store to be
able to handle mass amounts of data /while the aforementioned algorithms load
everything in memory.

For linking the most important nodes, the complexity the SDISTG and
CHINS approximation algorithms show that there is a linear function relation-
ship between their execution time and the input data size (the number of the
nodes and the edges). HEUM is the only one that has a quadratic time, and this
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Fig. 4. The average execution times of the importance measures (msec) (a) and the
algorithms for linking those nodes (msec) (b)

is due to the fact that it has to construct the shortest paths of all pairs. As such
SDISTG and CHINS have a better execution time as the number of terminal
nodes is small and HEUM the worst execution time, which grows linearly to the
number of nodes. MST is slightly faster than other algorithms because it depends
on the size of graph (nodes and edges), in contrast to CHINS and SDISTG that
are highly dependent on the number of the terminals and the shortest paths
between them.

6 Related Work

The latest years summarization approaches for linked data are constantly gain-
ing ground. For example, a wide variety of research works [5,9,10,14] focus on
extracting statistics and producing visual summaries of linked datasets, try to
create mainly instance summaries, exploiting the instances’ semantic associa-
tions [7,13,22] or focus on peer-to-peer systems [15]. However, our system differs
from the above in terms of both goals and techniques.

More closely related works are Peroni et al. [20] and Wu et al. [28]. The
former [20] try to automatically identify the key concepts in an ontology, combin-
ing cognitive principles, lexical and topological measurements such as the density
and the coverage, whereas in the latter the authors [28] use similar algorithms
to identify the most important concepts and relations in an iterative manner.
However, both of these works focus only on returning the most important nodes
and not on returning an entire graph summary. Zhang et al. [29] uses measures
such as the degree-centrality, the betweenness and the eigenvector centrality to
identify not the most important nodes but the most important RDF sentences.
In Queiroz-Sousa et al. [17] the authors try to combine user preferences with the
degree centrality and the closeness to calculate the importance of a node and
then they use an algorithm to find paths that include the most important nodes
in the final graph. However the corresponding algorithm prioritizes direct neigh-
bors ignoring that the selection of other paths that could maximize the total
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importance of the selected summary. Finally Troulinou et al. [23,25] employee
relevance for identifying the most important nodes and then they try to connect
those nodes by generating and pruning appropriately the maximum cost span-
ning tree. However, many additional nodes might be introduced and the selected
summary does not guarantee to maximize the total importance of the selected
sub-graph.

7 Discussion and Conclusion

In this paper, we try to provide answers to the two main questions in constructing
RDF/S summaries: how to identify the most important nodes and how to link
the selected nodes to create the final summary. To this direction, we adapt
six diverse measures for identifying node’s importance and we implement three
graph Steiner-Tree approximations in order to link those nodes.

To evaluate our approach we do not rely on subjective reference summaries
generated by a limited amount of domain experts but instead we exploit the
query logs from the DBpedia endpoints. The performed evaluation shows that
the adapted measures perform significant better that the pure structural ones
for RDF/S KBs. In addition all but the adapted version of Radiality outperform
past approaches in the area. The adaptation of Betweeness is the winner in
all cases. In addition, we show that the Steiner-Tree approximation algorithms
introduce less additional nodes to the result schema graph. CHINS seems to be
the best choice in terms of the quality of the generated summary offering an
optimal trade-off between quality and execution time.

As future work, an interesting topic would be to extend our evaluation to
spectral properties as well or to focus on how to combine the various measures
in order to achieve the best results according to the specific characteristics of the
input ontologies. Finally, another interesting topic would be to extend our app-
roach to handle more constructs from OWL ontologies such as class restrictions,
disjointness and equivalences.
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