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Abstract. The major components of the brain’s declarative or explicit
memory are semantic memory and episodic memory. Whereas semantic
memory stores general factual knowledge, episodic memory stores events
together with their temporal and spatial contexts. We present mathemat-
ical models for declarative memories where we consider semantic memory
to be represented by triples and episodes to be represented as quadruples
i.e., triples in time. E.g., (Jack, receivedDiagnosis, Diabetes, Jan1) states
that Jack was diagnosed with diabetes on January 1. Both from a cogni-
tive and a technical perspective, an interesting research question is how
declarative data can efficiently be stored and semantically be decoded.
We propose that a suitable data representation for episodic event data
is a 4-way tensor with dimensions subject, predicate, object, and time.
We demonstrate that the 4-way tensor can be decomposed, e.g., using
a 4-way Tucker model, which permits semantic decoding of an event, as
well as efficient storage. We also propose that semantic memory can be
derived from the episodic model by a marginalization of the time dimen-
sion, which can be performed efficiently. We argue that the storage of
episodic memory typically requires models with a high rank, whereas
semantic memory can be modelled with a comparably lower rank. We
analyse experimentally the relationship between episodic and semantic
memory models and discuss potential relationships to the corresponding
brain’s cognitive memories.

1 Introduction

The main components of the brain’s declarative or explicit memory are seman-
tic memory and episodic memory. Both are considered long-term memories and
store information potentially over the life-time of an individual [1,4,9,34]. The
semantic memory stores general factual knowledge, i.e., information we know,
independent of the context where this knowledge was acquired. Episodic mem-
ory concerns information we remember and includes the spatiotemporal context
of events [38]. There is evidence that these main cognitive categories are par-
tially dissociated from one another in the brain, as expressed in their differential
sensitivity to brain damage [10]. However, there is also evidence indicating that
the different memory functions are not mutually independent and support one
another [13].
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In this paper we discuss technical models for semantic and episodic memories
and compare them with their biological counterparts. In particular, we consider
that a technical realization of a semantic memory is a knowledge graph (KG)
which is a triple-oriented knowledge representation. Popular technical large-
scale KGs are DBpedia [2], YAGO [35], Freebase [5], NELL [7], and the Google
KG [32]. There exist reliable KGs with more than a hundred billion triples that
support search, text understanding and question answering [32].

In our approach we model episodes as events in time that can be represented
by quadruples. Thus whereas the triple (Jack, hasDiagnosis, Diabetes) might
reflect that Jack has diabetes, the quadruple (Jack, receivedDiagnosis, Diabetes,
Jan1) would represent the diagnostic event.

We propose that biologically plausible representations of both semantic and
episodic memories can be achieved by a decomposition of the adjacency tensors
describing the memories. The decomposition leads to a highly compressed form of
the memories and exhibits a form of memory generalization or inductive learning,
in form of a generalization to new triples and quadruples [26]. If each entity and
each predicate has a unique latent representation, information is shared across
all memory functions.

We propose that semantic memory is a long-term storage for episodic mem-
ory where the exact timing information is lost, and that both memories rely on
the same latent representations. In particular we propose that semantic memory
can be derived from episodic memory by marginalizing the time dimension, an
operation which can be performed elegantly when nonnegative tensor decom-
positions are used as memory models. Whereas the storage of episodic memory
typically requires decomposition models with a high rank, semantic memory can
be stored with a comparably lower rank.

The paper is organized as follows. In the next section we introduce the unique
representation hypothesis which postulates latent representations of generalized
entities that are shared between memory functions. Section 3 covers latent rep-
resentation models for semantic and episodic memory and Sect. 4 describes the
tensor models. In Sect. 5, we discuss relationships between episodic and semantic
memories and discuss memory querying. Section 6 discusses the biological rele-
vance of the proposed model and Sect. 7 presents experimental results. Section 8
contains our conclusions.

2 Unique-Representation Hypothesis

A technical realization of a semantic memory is a knowledge graph (KG) which
is a triple-oriented knowledge representation. Here we consider a slight exten-
sion to the subject-predicate-object triple form by adding the value in the form
(es, ep, eo; Value) where Value is a function of es, ep, eo and, e.g., can be a
Boolean variable (True for 1, False for 0 ) or a real number. Thus (Jack, likes,
Mary; True) states that Jack (the subject or head entity) likes Mary (the object
or tail entity). Note that es and eo represent the entities for subject index s
and object index o. To simplify notation we also consider ep to be a generalized
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Fig. 1. A graphical view of the unique-representation hypothesis. The model can oper-
ate bottom-up and top-down. In the first case, index node ei activates the representa-
tion layer via its latent representation, implemented as weight vector. In the figure, e1
is activated, all other index nodes are inactive and the representation layer is activated
with the pattern h = ae1 . In top-down operation, a representation layer can also acti-
vate index nodes. The activation of node ei is then equal to the inner product a�

eih.
We consider here formalized nodes which might actually be implemented as ensembles
of distributed neurons or as stable activation patterns of distributed neurons. Here and
in the following we assume that the matrix A stores the latent representations of all
generalized entities. The context makes it clear if we refer to the latent representations
of entities, predicates, or time indices.

entity associated with predicate type with index p. For the episodic memory we
introduce et, which is a generalized entity for time t.

The unique-representation hypothesis assumed in this paper is that each
entity or concept ei, each predicate ep and each time step et has a unique latent
representation —ai, ap, or at, respectively— in form of a set of real numbers,
represented as a vector or a matrix. The assumption is that the representations
are shared among all memory functions, which permits information exchange
and inference between the different memories. For simplicity of discussion, we
assume that the latent representations form vectors and that the dimensional-
ities of these latent representations for entities and predicates are r̃ such that
ai ∈ R

r̃, ap ∈ R
r̃, and for time is r̃T such that at ∈ R

r̃T . Figure 1 shows a simple
network realization.

3 Semantic and Episodic Knowledge Graph Models

3.1 Semantic Knowledge Graph

We now consider an efficient representation of a KG. First, we introduce the
three-way semantic adjacency tensor X where the tensor element xs,p,o is the
associated Value of the triple (es, ep, eo). Here s = 1, . . . , S, p = 1, . . . , P , and o =
1, . . . , O. One can also define a companion tensor Θ with the same dimensionality
as X and with entries θs,p,o. It contains the natural parameters of the model and
the connection to X for Boolean variables is

P (xs,p,o|θs,p,o) = sig(θs,p,o) (1)
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where sig(arg) = 1/(1+exp(−arg)) is the logistic function (Bernoulli likelihood),
which we use in this paper. If xs,p,o is a real number then we can use a Gaussian
distribution with P (xs,p,o|θs,p,o) ∼ N (θs,p,o, σ

2).
As mentioned, the key concept in embedding learning is that each entity

and predicate e has an r̃-dimensional latent vector representation a ∈ R
r̃. In

particular, the embedding approaches used for modeling a semantic KGs assume
that

θsems,p,o = f sem(aes
,aep

,aeo
). (2)

Here, the function f sem(·) predicts the value of the natural parameter θsems,p,o. In
the case of a KG with a Bernoulli likelihood, sig(θsems,p,o) represents the confidence
that the triple (es, ep, eo) is true and we call the function an indicator mapping
function. We discuss examples in the next section.

Latent representation approaches have been used very successfully to model
large KGs. It has been shown experimentally that models using latent factors
perform well in these high-dimensional and highly sparse domains. Since an
entity has a unique representation, independent of its role as a subject or an
object, the model permits the propagation of information across the KG. For
example if a writer was born in Munich, the model can infer that the writer is
also born in Germany and probably writes in the German language [24,25]. For
a recent review, please consult [26].

Due to the approximation, sig(θsemJack,marriedTo,e) might be smaller than one for
the true spouse. The approximation also permits inductive inference: We might
get a large sig(θsemJack,marriedTo,e) also for persons e that are likely to be married to
Jack and sig(θsems,p,o) can, in general, be interpreted as a confidence value for the
triple (es, ep, eo). More complex queries on semantic models involving existential
quantifiers are discussed in [19].

3.2 An Event Model for Episodic Memory

Whereas a semantic KG model reflects the state of the world, e.g., of a clinic
and its patients, observations and actions describe discrete events, which, in
our approach, are represented by an episodic event tensor. In a clinical setting,
events might be a prescription of a medication to lower the cholesterol level,
the decision to measure the cholesterol level and the measurement result of the
cholesterol level; thus events can be, e.g., actions, decisions and measurements.

The episodic event tensor is a four-way tensor Z where the tensor element
zs,p,o,t is the associated Value of the quadruple (es, ep, eo, et). The indicator
mapping function then is

θepis,p,o,t = fepi(aes
,aep

,aeo
,aet

),

where we have added a representation for the time of an event by introducing
the generalized entity et with latent representation aet

∈ R
r̃T . This latent repre-

sentation compresses all events that happen at time t. As discussed, an example
from a clinical setting could be (Jack, receivedDiagnosis, Diabetes, Jan1) which
states that Jack was diagnosed with diabetes on January 1.
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4 Tensor Decompositions

4.1 Tensor Decompositions

There are different options for modelling the indicator mapping functions fepi(·)
and f sem(·). In this paper we will only consider multilinear models derived from
tensor decompositions. Tensor decompositions have shown excellent performance
in modelling KGs [26].

Specifically, we consider a 4-way Tucker model for episodic memory in the
form

f
epi

(aes , aep , aeo , aet ) =

r̃∑

r1=1

r̃∑

r2=1

r̃∑

r3=1

r̃T∑

r4=1

aes,r1 aep,r2 aeo,r3 aet,r4 g
epi

(r1, r2, r3, r4). (3)

Here, gepi(r1, r2, r3, r4) ∈ R are elements of the core tensor Gepi ∈ Rr̃×r̃×r̃×r̃T .

4.2 Inner Product Formulation of Tensor Decompositions

Note that we can rewrite Eq. 3 as

fepi(aes
,aep

,aeo
,aet

) = a�
eo
hobject

where

hobject =
r̃∑

r1=1

r̃∑

r2=1

r̃T∑

r4=1

aes,r1 aep,r2 aet,r4 g(r1, r2, :, r4).

Thus if we consider subject, predicate, and time as inputs, we can evaluate the
likelihood for different objects by an inner product between the latent represen-
tation of the object aeo

with a vector hobject derived from the latent representa-
tions of the subject, the predicate, the time and the core tensor. Similarly we can
calculate likely subjects, predicates, and time instances. We propose that this
formulation is biologically more plausible, since inner products are operations
that are easily performed by formalized neurons [31]. Also the representation is
suitable for a sampling approach in querying (see the next section).

5 Querying Memories

5.1 Probabilistic Querying

In many applications one is interested in retrieving triples with a high likeli-
hood, conditioned on some information, thus we are essentially faced with an
optimization problem. To answer a query of the form (Jack, receivedDiagnosis,
?, Jan1) we need to solve

arg max
eo

fepi(aJack,areceivedDiagnosis,aeo
,aJan1).

Of course one is often interested in a set of likely answers. In [37] it was shown
that likely triples can be generated by defining a Boltzmann distribution derived



Embedding Learning for Declarative Memories 207

from an energy function. By enforcing non-negativity of the factors and the core
tensor entries, the energy function for a Tucker model becomes E(s, p, o, t) =
− log fepi(aes

,aep
,aeo

,aet
) and the quadruple probability becomes

P (s, p, o, t) ∝
(

r̃∑

r1=1

r̃∑

r2=1

r̃∑

r3=1

r̃T∑

r4=1

aes,r1 aep,r2 aeo,r3 aet,r4 gepi(r1, r2, r3, r4),

)β

(4)
where β plays the role of an inverse temperature: A large β would put all prob-
ability mass to triples with high functional values whereas a small β would
assign probability mass also to triples with lower functional values. Note that
for querying, we obtain a probability distribution over s, p, o, t and we can
define marginal queries like P (s, p, o) and conditional queries like P (o|s, p, t). It
is straightforward to generate likely samples from these distributions (see Fig. 2).

Since the Tucker decomposition is an instance of a sum-product network [27],
conditionals and marginals can easily be computed: A conditioning means that
the index nodes are simply clamped to their respective values and marginal-
ization means that the index nodes of the marginalized variables are all active,
indicated by a vector of ones. Figure 2 shows some examples.

5.2 Semantic Memory Derived from Episodic Memory

Note that we can derive semantic queries from the episodic memory. As an
example, the probability for the statement (Jack, receivedDiagnosis, Diabetes,
Jan1) can be queried from the episodic memory directly, the probability for
the statement (Jack, receivedDiagnosis, Diabetes) can also be derived from the
episodic memory if we assume that semantic memory simply aggregates episodic
memory slices. In particular we get for a semantic memory (with β = 1),

P (s, p, o) ∝
r̃∑

r1=1

r̃∑

r2=1

r̃∑

r3=1

aes,r1 aep,r2 aeo,r3 gsem(r1, r2, r3), (5)

where

gsem(r1, r2, r3) =
∑

t

r̃T∑

r4=1

aet,r4 gepi(r1, r2, r3, r4). (6)

Technically, semantic memory can be derived from episodic memory by setting
all index nodes for time to active, as shown in Fig. 2D. Thus, if we accept that
the semantic memory is a long-term storage for episodic memory, we do not
need to model semantic memory separately, since it can be derived from episodic
memory !

As part of a consolidation process we propose that gsem(r1, r2, r3) is stored
explicitly. The main reason is that r̃T is typically quite large (see discussion in
Subsect. 6.2) and realizing the summation in Eq. 6 for each recall of semantic
memory could be quite expensive. With r̃ � r̃T , the semantic memory has
a small footprint and can be calculated efficiently. We also propose that the
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Fig. 2. The semantic decoding using a 4-dimensional Tucker tensor model for episodic
memory. A: To sample a subject s given time t, we marginalize predicate p and object
o. B: Here, o is marginalized and one samples a predicate p, given t, s. C: Sampling of
an object o, given t, s, p. D: By marginalizing the time dimension, we obtain a semantic
memory.

assumption that r̃ � r̃T is quite plausible from a biological view point, as
discussed in the following section.

Note that we implicitly assume that a fact that was encountered as an event
is true forever. In the example above we would conclude that a diagnosed dia-
betes would be valid for lifetime. This would also agree with the weak expres-
siveness of standards like the Resource Description Framework (RDF) which do
not model negations. Implementing negations and expressive constraints would
require stronger ontologies. Temporal RDF graphs are discussed in [14,15]. Some
diseases, such as infections, on the other hand, can be cured. There are a number
of ways of how this can be handled, for example by considering the relationships
between hasDisease and wasCuredFromDisease. The latter could be implemented
as an event hasDisease but with Value = −1.

6 Relationships to Human Memories

This section speculates about the relevance of the presented models to human
memory functions. In particular we present several concrete hypotheses.
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6.1 Unique-Representation Hypothesis for Entities and Predicates

The unique-representation hypothesis states that each generalized entity e is
represented by an index node and a unique (rather high-dimensional) latent
representation ae that is stored as weight patterns connecting the index nodes
with nodes in the representation layer (see Fig. 1). Note that the weight vectors
might be very sparse and in some models non-negative. The latent representa-
tions integrate all that is known about a generalized entity, they are the basis
for episodic memory and semantic memory, and they can be instrumented for
prediction and decision support in working memory. Among other advantages,
a unique representation would explain why background information about an
entity is seemingly effortlessly integrated into both sensor scene understanding
and decision support, at least for entities familiar to the individual.

We proposed formalized nodes which might actually be implemented as
ensembles of distributed neurons or as stable activation patterns of distributed
neurons. Neurons which very selectively respond to specific entities and concepts
have been found in the medial temporal lobe (MTL). In particular, researchers
have reported on a remarkable subset of MTL neurons that are selectively acti-
vated by strikingly different pictures of given individuals, landmarks or objects
and in some cases even by letter strings with their names [28]. For example, some
neurons have been shown to selectively respond to prominent actors like “Jen-
nifer Aniston” or “Halle Berry”. These are called concept cells by the authors.

In the consolidation theory of human memory it is assumed that, after some
period of time, semantic memory, and possibly also episodic memory, is consoli-
dated in cerebral cortex. Often neurons with similar receptive fields are clustered
in sensory cortices and form a topographic map [12]. Topological maps might also
be the organizational form of neurons representing entities. Thus, entities with
similar latent representations might be topographically close. A detailed atlas
of semantic categories has been established in extensive fMRI studies showing
topographically sorted local representations of semantic concepts [16].

6.2 Perception and Memory Formation

It is well established that new episodic memories are formed in the hippocam-
pus, which is part of the MTL. We propose that the hippocampus is the region
where index nodes for generalized entities are formed and that these index nodes
establish a presence in the cortex during memory consolidation. The nodes in
the representation layer might be in higher order sensory layers and in associa-
tion cortex. The hippocampal memory index theory [36] agrees with this model
and proposes that, in particular, time indices are established in the hippocam-
pus. These are linked to the representations formed as responses to an episodic
sensory input in the higher order sensory and association cortices. This model
would also support the idea that r̃T must be large since aet

would need to rep-
resent all processed sensory information. The semantic decoding of aet

by the
episodic memory then corresponds to the semantic understanding of a sensory
input, i.e., would be the essence of perception. Note that a recall of a past episode
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would simply mean that the corresponding node et is activated which then acti-
vates aet

in the representation layer. aet
can be semantically decoded, enabling

an individual to semantically describe the past episode, and could activate the
corresponding past sensory impressions, providing an individual with a sensory
impression of the past episode.

6.3 Tensor Memory Hypothesis

The hypothesis states that semantic memory and episodic memory are imple-
mented as functions applied to the latent representations involved in the gen-
eralized entities which include entities, predicates, and time. Thus neither the
knowledge graphs nor the tensors ever need to be stored explicitly!

6.4 Semantic Memory and Episodic Memory

In our interpretation, semantic memory is a long-term storage for episodic mem-
ory. This is biologically attractive since no involved transfer from episodic to
semantic memory is required. We propose that this is supported by cognitive
studies on brain memory functions: It has been argued that semantic mem-
ory is information we have encountered repeatedly, so often that the actual
learning episodes are blurred [8,12]. Similarly, it has been speculated that a
gradual transition from episodic to semantic memory can take place, in which
episodic memory reduces its sensitivity and association to particular events, so
that the information can be generalized as semantic memory. Thus some theo-
ries speculate that episodic memory may be the “gateway” to semantic mem-
ory [3,20,22,33,34,39]. [23] is a recent overview on the topic.

Our model supports inductive inference in form of a probabilistic material-
ization. As an example, consider that we know that Max lives in Munich. The
probabilistic materialization that happens in the factorization should already
predict that Max also lives in Bavaria and in Germany. Thus both facts and
inductively inferred facts about an entity are represented in its local environ-
ment. There is a certain danger in probabilistic materialization, since it might
lead to overgeneralizations, reaching from national prejudice to false memories.
In fact in many studies it has been shown that individuals produce false memo-
ries but are personally absolutely convinced of their truthfulness [21,29].

7 Experiments

The goal of our experiments was to investigate the quality of the tensor decom-
positions for the semantic and episodic memory. The 3-way and 4-way tensors
were factorized using a Tucker decomposition with unique latent representations
for entities (as subjects and objects), predicates and time. We considered three
model settings. The first setting was unconstraint using a binary cross-entropy
(Bernoulli cost function) with additional l2 norm penalty on all parameters. In
the second setting we constrained all parameters to be non-negative and used
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a mean squared error cost function and in the third setting we enforced non-
negativity as well and used an l1 norm penalty on all parameters to encourage
sparse solutions.

7.1 Data Set

Our experiments are based on the open Freebase KG, since it contains relatively
many predicate types.1 Triples in the Freebase KG have been extracted from
Wikipedia, WordNet, and many other web resources. In our experiments we
extracted a subset which includes 10k entities, 285 relation types, and in total
141k positive triples. Most other triples were treated as unknown and only a
small number of triples, generated by a corruption of observed positive triples,
is treated as negative. The protocol for sampling negative triples follows Bordes
et al. [6]: For each true triple (s, p, o) in the data set, we generated 5 negative
triples by replacing the object o with corrupted entities o′ drawn from the set of
objects.

To generate a data set for episodic memory, we assigned a time index to each
triple, in a way that all triples with the same subject obtained the same time
index. Overall we used 40 different time indices.2 Similar to the corruption of
semantic triples, the negative samples of episodic quadruples (s, p, o, t) are drawn
by corrupting the objects o to o′ or the temporal index t to t′, meaning that
(s, p, o′, t) services as a negative evidence of the episodic memory at instance t,
and (s, p, o, t′) is a true fact which cannot be correctly recalled at instance t′.
The cost function is composed of cross-entropy and additional L2 or L1 norm
and can be written for episodic quadruples as

L = −
∑

(s,p,o,t)∈T
log θepi

s,p,o,t −
∑

(s′,p′,o′,t′)∈C
log(1 − θepi

s′,p′,o′,t′) + λ||A||1or2,

where (s, p, o, t) are true quadruples in the data set, and (s′, p′, o′, t′) are the
corresponding corrupted quadruples.

7.2 Evaluation and Implementation

All the latent models were implemented using the open source libraries Ten-
sorFlow and Keras.3 The latent representations of all entities, predicates, time
1 This is crucial for investigating human’s semantic memory since the system of mem-

ory includes “words and verbal symbols, their meanings and the relations between
them” according to Tulving [38]. Large number of relation types contained in the
knowledge graph enrich the hidden structure and enhance the complexity of the
knowledge graph, and this will give a more realistic and accurate simulation of
human’s semantic memory.

2 This assignment resembles the active learning process of humans since, during the
early stage of learning, we observe the true effects related to a certain subject during
a fixed period of time, and store these facts in the form of episodic memory. In our
experiment, we highly abstract this learning procedure.

3 https://en.wikipedia.org/wiki/Comparison of deep learning software. The code for
the experiments is given in https://github.com/Yunpu/Episodic-Memory.

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://github.com/Yunpu/Episodic-Memory
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indices and the core tensor from the Tucker tensor decomposition are initial-
ized with Glorot uniform initialization [11]. All the models are optimized using
mini-batch adaptive gradient descent using the Adam update rule [18].

We split the data set, both semantic and episodic, into three subsets, where
70% were treated as the training set, 20% as the testing set, and the remaining
10% as the cross-validation set.

7.3 Experimental Results

Figure 3 shows area under precision recall (AUPRC) scores for the training and
the test sets for the three settings as a function of the rank of the model. We
report results for a semantic memory (“semantic”), for the episodic memory
(“episodic”) and for the semantic memory derived form the episodic memory
by marginalization or projection (“projection”). Note that episodic is evaluated
on the episodic data (“remember”) whereas semantic and projection is evalu-
ated on the semantic data (“know”). We see that the episodic experiment typi-
cally requires a higher rank to obtain good performance. The reason is that the
episodic tensor is even sparser than the semantic tensor and contains fewer clear
global patterns. The figures also show that we can obtain a semantic memory
by projecting the episodic memory, confirming that episodic memory is a “gate-
way” to semantic memory. In general, the unconstrained model gives better
scores. But note that for the non-negative models we performed the projection
as discussed in Fig. 2 by entering a vector of ones for the time indices, whereas
for the unconstrained setting, we first fully reconstructed the tensor entries and
then did the summation on the reconstructed entries over time dimension. The
latter procedure becomes infeasible for large episodic KGs.

Fig. 3. AUPRC scores of the training and testing data sets for different model settings
as a function of the rank.
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In Fig. 4 we plot recall score vs rank. In setting 3 with both non-negativity
and sparsity constraints (see the third panel of Fig. 4), the projection almost
overlaps with the curve of semantic memory for the train and test data set.
This observation explicitly indicates that the projected episodic memory func-
tion possesses the same memory capacity and quality as the semantic memory
function, and this is the central result of our experiment.

Sparsity is an important feature of biological brain functions. Biological
experiments indicate that the dentate gyrus (DG) and the CA3 subregion of
the hippocampus sustain active neurons, which are connected by sparse pro-
jections from DG to CA3 through mossy fibers [17]. CA3 is considered to be
crucial for establishing a memory trace during memory consolidation [30]. In the
first unconstrained setting we obtained a sparsity of 3%, in the second setting
with non-negativity constraints we obtained a sparsity of 30%, and in the third
setting with non-negativity constraints and l1 norm to encourage sparsity, we
obtained 58% sparsity.

Fig. 4. Recall scores of the training and testing data set for different model settings as
a function of the rank.

8 Conclusions

We have derived technical models for episodic memory and semantic mem-
ory based on a decomposition of the corresponding adjacency tensors. Whereas
semantic memory only depends on the latent representations of subject, predi-
cate and object, episodic memory also depends on the latent representation of
the time of an event. We also proposed that semantic memory can be directly
derived from episodic memory by marginalizing the time dimension.

As has been shown by several studies, the test set performances of tensor
decomposition approaches are state-of-the-art [26]. If we want to use the models
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for memory recall, we are, however, mostly interested in reproducing stored mem-
ories accurately. Currently our models do not perform sufficiently well here (the
training scores are around 0.9 instead of 1.0 on the training set). We attribute
this to the limited ranks r̃ and r̃T of the models. As discussed, aet

must encode
all processed sensory information from various modalities and must be extremely
high-dimensional to be able to do so, thus a large r̃T is necessary. On the other
hand, the rank for the latent representations for entities and predicates can be
somewhat smaller, since the semantic memory, being formed by an integration
process over the episodic memory model, requires a smaller rank for a good
approximation, as confirmed in the experiment. Another issue is that the train-
ing data also contains triples and quadruples that do not follow regular patterns.
It is correct to smooth over these triples and quadruples, since one cannot gen-
eralize from those, but one would want a truthful memory system to be able
to recall also events that do not follow any regular patterns. Finding suitable
solutions here is part of future work.
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