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Abstract. The use of gestures as a way to interact with computer systems has
shown promise as a natural way to interact and manipulate digital information.
However, users performing mid-air gestures for even moderate periods of time
experience arm fatigue and discomfort, earning its name of the gorilla arm
syndrome. Based on the natural use of hands during communication, a new
gesture vocabulary was created that supports the arms while the user performs
the gestures. A repeated measures within subject design was conducted where
participants interacted with a custom video game using 3 types of input for 30 min
each, (1) keyboard, (2) mid-air gestures and (3) supported gestures. Three meas‐
ures of exertion were collected, (1) time, (2) energy expenditure, and (3) perceived
exertion. The newly designed supported gestures required significantly less phys‐
ical and perceived effort than the mid-air gestures and required similar exertion
as the keyboard condition.

Keywords: Gorilla arm · Mid-air gestures · Fatigue · Endurance · Gesture
interaction · Natural user interface

1 Introduction

The idea of using hand and arm gestures to interact with computer systems is not a new
idea. The “Put-That-There” study in 1980 [5] defined and used hand gestures for a
graphical user interface. Hollywood further popularized the idea in 2002 with the gesture
based interfaces that Tom Cruise interacted with in the “Minority Report” movie and
more recently, the Tony Stark character in the “Iron Man” movie series. Even though
the “Minority Report” interface was based on research by Underkoffler [30] and has
captured the imaginations of both the public and the HCI community, the use of gestures
as the primary mode of interaction for an interface remain more of a novelty (e.g.,
Microsoft Kinect games). One of the primary reasons for this is the issue commonly
called the gorilla arm syndrome [7].
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The gorilla arm syndrome originally arose with the advent of touchscreens used in
a vertical orientation, which forces the user to extend their arms without support. When
this is done for any task longer than a few minutes (e.g., with an ATM), it causes arm
fatigue and a feeling of heaviness in the arms. Mid-air gestures, just as the name suggests,
suffers from the same issue of an unsupported arm position. The common position for
both vertical touchscreen use and mid-air gesture input is with the arm/s extended in
front of the user around shoulder height (Fig. 1A). Hincapie-Ramos, et al. [20] found
this position to be the most fatiguing physical position out of the 4 they investigated.
One reason for the necessity of this arm position is due to the technology used to detect
the user’s arm and hand position.

1A. 1B.

Fig. 1. Posture 1A. is a common arm position with high fatigue for vertical touchscreen and mid-
air gestures. Posture 1B. is the arm position with low fatigue for gestures during face-to-face
communications.

The challenge of capturing the user’s arm and hand position has been met with a
number of technology approaches. Optical solutions with external cameras that track
the user’s motion can include two basic types, a marker based system and markerless
motion capture. The marker based system uses input from multiple cameras to triangu‐
late the 3D position of the user wearing special markers while the markerless motion
capture uses one or more cameras and computer vision algorithms to identify the user’s
3D position. For issues of practicality, the markerless motion capture represents the
optical motion capture of choice for general use. The Microsoft Kinect and the Leap
Motion sensor are examples of markerless motion capture systems that are both afford‐
able and accessible to consumers, researchers, and developers. However, these type of
optical sensors must have an unobscured view of the user’s hands, which often forces
the user’s hands into that high fatigue area in front of the user mentioned above and
away from many natural arm supports like the arm rest of a chair. In addition, these
sensors have shown to be limited in their gesture recognition accuracy and reliability
(e.g., [8, 18]).

Another approach that does not use any optical devices like cameras is a system
that uses inertial measurement units (IMUs). The IMU approach consists of several
sensors placed on the user or in the clothing the user wears. Each IMU consists of a
gyroscope, magnetometer, and accelerometer in order to wirelessly transmit the
motion data of the user to a computer, where it is translated to a biomechanical model
of the user. IMU gloves and suits have typically been used by the movie and special
effects industry but recent crowdsourcing efforts like the Perception Neuron IMU
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suit have provided more affordable IMU based motion capture solutions. IMU solu‐
tions do require the user to wear the sensors in the form of gloves or straps but unlike
the optical solutions, it does not provide constraints on where the user’s hands must
be to perform the gestures. As long as the sensors are within Wi-Fi range of the
router, there are no constraints on the position, orientation, or worry of obscuring the
hands from an external camera source.

Without these line-of-sight constraints that are required by optical motion capture
systems, we have created a new approach that is based on the natural and non-verbal
ways people use their hands to communicate to one another. The use of IMU technology
for motion capture has allowed us to create gestures that mimic how people naturally
use their hands, which avoids the highly fatiguing arm positions that cause gorilla arms.
This paper will describe these new gestures, an experiment comparing the fatigue levels
across keyboard, mid-air, and our newly formed hand gestures, and discuss the impli‐
cations of this work.

2 Background

The name of mid-air gestures itself alludes to the fatigue problem associated with these
types of gestures. Suspending the arms in mid-air without support will always pose a
physical challenge for the user over prolonged periods of interaction. Fatigue levels are
determined as the amount of time a person can maintain an isometric (static) muscle
contraction [9]. This can be measured by the heart’s response to increase blood flow to
transport oxygen to the muscle fibers (cells). An isometric muscle contraction causes an
impairment of blood flow due to the increase in intramuscular pressure. Complete
vascular occlusion occurs at 70% of a person’s maximal voluntary contraction (MVC).
At approximately 50% of MVC, a user has approximately 1 min until fatigue. Muscle
fatigue is caused by a reduction in the amount of oxygen transported to the muscle fibers.
Oxygen is needed for aerobic energy metabolism which can be maintained for hours.
When there is not enough oxygen to support the energy needs of the muscle, energy is
provided by partial or complete conversion to the glycolysis process (anaerobic metab‐
olism), in which the muscle fiber consumes glucose for energy. As the muscle cells
consume the limited stored glucose to maintain the current position, the user begins to
feel the effects of muscle fatigue. This fatigue increases until the glucose is consumed
and the user can no longer maintain the arm position. At the same time, an increase in
heart rate and blood pressure is needed to maintain blood flow. As a result, oxygen
consumption (VO2), an estimate of a person’s energy requirement to perform muscular
work, will increase above the resting value. At rest, a 70 kg person will have a VO2 of
approximately 3.5 ml of O2 per kilogram of body weight per minute (mL∙kg−1∙min−1).
As the level of fatigue increases, VO2 will also increase.

As mentioned before, the arm position that produces a high level of fatigue is often
the one required by many gesture based systems (Fig. 1A) [20], particularly with one of
the most common gestures of pointing [8]. The least fatiguing arm position is shown in
Fig. 1B, which has the user’s arm bent at the elbow with their hands extended to the
front. This is also the same basic position of the arms and hands when people use hand
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gestures to complement their speech during communication exchanges [21]. The use of
hand gestures during speech is so natural and ubiquitous that people gesticulate as much
whether the person they are talking to can see them or not [10].

Hand gestures by the speaker improves their ability to learn new concepts or improve
their ability to teach a concept to someone else [26]. It is therefore not a surprise that
the speakers of some of the most widely viewed TED talks use more than 600 hand
gestures in a single 18-minute presentation [14]. Professional speakers and professors
that must speak to audiences for 1–3 h at a time are performing large quantities of
unsupported hand gestures. How are they doing this without extreme fatigue in their
arms and shoulders after performing gestures for hours? The answer is that these
speakers are conducting most of their hand gestures in the comfortable zone shown in
Fig. 1B. They are also periodically relaxing their arms by extending them straight down,
in a pocket, or taking advantage of a supporting structure like a podium. This periodic
relaxation of the arms allows improved blood flow and therefore oxygen to the previ‐
ously contracted muscles, which avoids switching to a glycolysis process that causes
extreme arm fatigue (i.e., gorilla arms).

We have adopted this natural use of hand gestures to construct a limited gesture
vocabulary for users. Our specific use case is a knowledge worker sitting at a desk and
interacting with large amounts of visual images but could apply to other domains. We
are applying 2 strategies to avoid the fatigue brought about from the gorilla arm
syndrome by (1) placing the arms in the least fatiguing position with them bent at the
elbow (Fig. 1B.) and (2) using support in the form of the user’s lap or on the arm rest
of the chair (Fig. 2). Other researchers have proposed resting the user’s elbows on a
surface (e.g., [8, 15, 17, 28]) but none have conducted a systematic examination on the
physical and perceived fatigue caused by mid-air and supported gestures over even
moderate durations of time.

Fig. 2. Supported and mid-air gestures.

Most prior research also uses a table top to support the user’s arms (e.g., [8, 17]).
Similar to the ergonomic recommendations for proper keyboard positioning that has
found for every 1 cm increase in keyboard height, neck and shoulder discomfort
increases 18% [4, 22], we have avoided making the user place their arms at or above
table level. Our supported gesture position would be difficult for most optical motion
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capture systems due to the handsplaced below the surface of the table but is easily
supported with wireless IMU glove technology. We have therefore selected the tech‐
nology that will support our use case instead of allowing the technology to dictate the
actions and postures of our users.

2.1 Supported Gesture Vocabulary

We scoped the gesture requirements to encompass 2 basic usability engineering prin‐
ciples [24, 25]: (1) the gestures should minimize user cognitive load of memorizing how
to perform them and (2) the gestures should clearly correspond to the user’s natural
behaviors. The use case involves a knowledge worker manipulating digital images
within a large image collection. We have designed a supported gesture vocabulary that
contains 10 gestures for the final prototype. As discussed below, the gestures are general
enough to apply to a number of different tasks or domains. To examine the viability of
prolonged use of these gestures before fully developing the prototype, we have devel‐
oped a game that uses 3 of the gestures. The gestures include (1) swipe left, (2) swipe
right, and (3) stop.

Rather than relying on machine learning algorithms to detect gestures, we propose
a novel gesture recognition framework that relies on the vectors between 2 sensors.
Researchers have obtained good results in mid-air gesture recognition using machine
learning algorithms. However, this requires a large amount of training data and manual
annotation of the data as ground truth in order to train accurate gesture recognition
models [2, 23]. This type of approach usually considers static hand gestures but not the
gestures involving hand movements (e.g., [19, 29]). Our approach computes angular
velocities between vectors to recognize both static and dynamic gestures and avoids
some of the drawbacks of the machine learning algorithm approach.

The typical motion capture skeletal hand model consists of 16 joints in each hand,
3 on each finger and 1 at the wrist. Based on the motion of these joints during natural
swipe and stop hand gestures, we used the positions of 4 hand joints and 2 arm joints.
Vectors are formed using the positions of joints on the hands and arms. Among the joints
with sensors, we identified 3 relevant vectors in each hand and 2 relevant vectors in each
arm (Fig. 3). By monitoring the angular velocity of the pre-identified vectors, we can
accurately recognize the following gestures.

Fig. 3. IMU sensors are placed at the joints of the hand and arm to capture position values in
real-time.

Supported Gesture 1 & 2 – Swipe Left & Right. A supported swiping motion of the
hand to the left by the right hand or to the right with the left hand indicates movement
of the target in that direction. This motion is primarily accomplished at the wrist so the
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arms can easily be supported by the arm rest of a chair or the participant’s lap. We define
the start state of a swipe gesture if the palms of each hand are facing each other. Then
if the angular velocity of the vector from the wrist to the middle finger exceeds our
defined threshold, it is considered a swipe gesture in that direction.

Supported Gesture 3 – Stop. A supported stop gesture provides a stop command to
the target object. This common gesture is characterized by facing the palm of the hand
outward with the fingers pointing up. Again, this gesture is easily accomplished while
the arms are at rest. Recognition of the stop gesture uses the angles between the finger
and wrist sensors to activate the command. For this experiment, the target continues its
current motion or trajectory until the stop gesture is removed.

2.2 Mid-Air Gesture Vocabulary

Mid-air gestures typically involve the use of the entire arm for the reasons indicated
earlier. The same 3 gestures were created as mid-air gestures using the vector velocity
and angle approach to conduct (1) swipe left, (2) swipe right, and (3) stop actions.

Mid-Air Gesture 1 & 2 – Swipe Left & Right. Amid-air swiping gesture to the left
by the right hand and to the right with the left hand was created. This gesture uses the
shoulder, arm, and hand vector to define the starting position with the arms extended in
front of the participant at shoulder level. The vector velocity of the hand and arm is then
monitored to detect the swiping motion done by bending the arm at the elbow to the left
or right.

Mid-Air Gesture 3 – Stop. Amid-air stop gesture is defined in the same manner as the
supported stop gesture but with the arm extended in front of the user.

2.3 Objective

The objective of this study is two-fold. The first objective is to create hand gestures that
leverage how we naturally position, relax, and support our hands and arms to reduce the
level of exertion and fatigue. The second objective is to investigate the level of fatigue
these supported gestures produce compared to 2 well known points along the HCI
continuum, traditional mid-air gestures and normal keyboard use. The hypothesis is that
supported gestures will produce fatigue levels closer to that of keyboard interactions
and significantly lower fatigue levels compared to mid-air gestures.

3 Experimental Setup

We conducted a within subject repeated measures experiment across three types of
interaction with a video game to examine both the physical and perceived fatigue levels
of each. The three conditions were (1) keyboard, (2) supported gestures, and (3) mid-
air gestures (Fig. 4).
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Fig. 4. Experimental setup with each condition demonstrated.

3.1 Participants

The study was conducted with 16 participants from a university population (10 male/6
female). Their age ranged from 20 to 28 with a mean age of 23. The experiment took
2 h to complete per participant.

3.2 Gamification

Games can be used as a prototype to predict human behavior in an interactive system
while the system is not fully developed. Our gamified prototypepresented users with a
task that would engage and motivate them over the extended time periods they were
interacting with the system. Concerning the degree of functionality in the field of ergo‐
nomics and the interactivity [27] associated with authentic product utilization, using a
game for the gorilla arm study has the advantages of reducing the users’ boredom while
increasing their interests in continuously performing the gestures.

Deterding et al. [12, 13] defined the term Gamification which is “the use of game
design elements in non-game contexts”. The game for the gorilla arm study should
satisfy the requirements of (1) motivating users to perform predefined gestures, rather
than making them feel they are passively forced to move hands and arms, and (2) being
able to easily control how frequent the users should move arms and hands so that it
mimics different communication or interaction situations.

We designed a video game called “Happy Ball” and implemented it using the Unity
game engine and a high-accuracy motion capturing device (Fig. 5). The goal of the game
is to keep the ball happy by avoiding the obstacles and collecting as many presents as
possible. The ball can be moved across 3 lanes and is automatically propelled forward
at a fixed rate (similar to Temple Run type games). The player controls the left and right
movement of the ball to avoid stone obstacles and a stop command to stop bouncing to
avoid ice blocks placed above the ball. While the stop command is active, the ball
decelerates until it stops moving forward. When the stop command ends, the ball
resumes the bouncing motion and accelerates back to the original forward speed. The
stop command overrides the controls of left and right movements. For example, when
the left hand is performing the stop action, the swiping motion of the right hand will not
be able to move the ball to the left lane. After 10 hits to the ball by the obstacles, the
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game is over and it automatically restarts after 3 s. During the game, the happiness level
(life status) of the ball is represented with a cartoonish facial expression, appearing on
the surface of the ball as a texture. There are a total of 10 expressions: elated, joyful,
happy, satisfied, neutral, unhappy, depressed, sad, helpless, and crying, each in order
corresponding to the number of hits by obstacles in its decreasing order.

Fig. 5. Screen capture of the “Happy Ball” game. The player controls the ball at the bottom right
to collect the presents and avoid the stone and ice obstacles.

3.3 Apparatus

Motion Capture. The participant’s gestures were tracked using an IMU based motion
capture suit. The configurable motion capture suit from Perception Neuron (https://
neuronmocap.com) was used. Only 2 gloves and the torso strap was used because no
movement information was needed for the lower body. The total number of sensors was
23 (9/glove, 1/arm, 3 for torso). Each sensor contains a gyroscope, accelerometer, and
magnetometer and wirelessly transmits the motion data to the Axis Neuron Software.

Oxygen Consumption. Oxygen consumption (VO2) was measured continuously using
a TrueOne 2400 metabolic system (ParvoMedics). The TrueOne 2400 is a computerized
metabolic system using a gas mixing chamber to analyze the oxygen consumed and
carbon dioxide produced. Open-circuit spirometry has been found to provide both reli‐
able [11] and accurate [3] data for the measurement of VO2. The flow meter and gas
analyzers were calibrated prior to each test with a 3L syringe and gases of known
concentrations. The participant was fitted with a rubber mask (Hans Rudolph) that covers
the nose and mouth, which is connected to the TrueOne 2400 system (Fig. 4).

Perceived Exertion. Subjective physical exertion was measured using the Borg CR10
scale, which is commonly used based on its reliability and validity [6, 20]. This scale
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consists of a 12-point scale (0, 0.5, 1–10) with descriptions along 9 of the points ranging
from “Nothing at all” to “Impossible”. Participants are asked to rate their current level
of exertion based on the scale.

3.4 Procedure

A Latin square design was used to counter-balance the order each participant would
engage with the 3 conditions. The participant would place the motion capture suit on
and go through a 2-minute calibration process. The participant’s weight and height were
recorded and entered into the TrueOne 2400 software. The participant was then meas‐
ured for an appropriately sized mask and the mask was placed on the participant, making
sure it was an air tight fit. The participant played the Happy Ball game for up to 30 min
for each condition while VO2 was being recorded. The gesture commands are described
above for the supported and mid-air gestures. Participants would use the “A” and “D”
keys to move left and right and the space bar to stop in the keyboard condition. If the
participant experienced excessive fatigue in any condition, they would signal to the
experimenter that they would like to stop the current game play. At the conclusion of
each condition, they were asked to rate their physical exertion level using the Borg CR10
scale. There was a 5-minute period of inactivity between each condition in order to allow
their VO2 levels to reach their baseline levels again.

4 Results

4.1 Time

The participants had the opportunity to spend up to 30 min engaged with the game for
each interaction condition. 27% of participants completed the full 30-minute trial for the
mid-air gestures compared to 100% for supported gestures and keyboard. Figure 6
displays the mean time spent across each condition. A paired samples t-test was
conducted to compare the time spent in the supported gesture condition and the mid-air

Fig. 6. Mean time spent out of a possible 30 min for each condition. Error bars represent standard
deviation.
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gesture condition. There was a significant difference in time between the supported
gesture conditions (M = 30.0, SD = 0.0) and the mid-air gestures (M = 11.85,
SD = 11.13); t(15) = −6.52, p < 0.00 (supported and keyboard results are the same).
These results provide strong evidence that confirms the impracticality of mid-air
gestures over time given participants could only endure approximately 12 min of this
type of activity. On the other hand, participants had no difficulty completing the entire
30-minute time period for both the supported gestures and the keyboard conditions.

4.2 VO2

To test differences of VO2 levels across the 3 conditions, a generalized estimating equa‐
tions (GEE) with an unstructured correlation matrix was used. GEE is an extension of
the general linear model to longitudinal data analysis using quasi-likelihood estimation
[1]. VO2 was measured in milliliters per kilogram of body weight per minute (VO2 mL/

kg−1/min−1). This model compares the overall VO2 across the conditions. The results
indicate a significant difference among the conditions (Wald chi-square = 77.19,
p < 0.00, N = 47). Parameter estimates are found in Table 1.

Table 1. Parameter estimates from the GEE model for VO2 mL/kg−1/min−1 across the interaction
conditions.

Models 𝛽 SE Wald chi-square p-value
Intercept 4.77 0.20 592.38 0.00
Keyboard & Mid-air −1.28 0.15 72.19 0.00
Supported & Mid-air −1.07 0.12 74.47 0.00

Post-hoc pairwise comparisons of the estimated marginal means were conducted to
examine the specific differences. There was a significant difference between supported
gestures (M = 3.69, SE = 0.12) and mid-air gestures (M = 4.76, SE = 0.20) (Table 2).
There was also a significant VO2 difference between the supported gestures and the
keyboard (M = 3.48, SE = 0.14, p < 0.00, Table 2) conditions. Lastly, there was a
significant difference between the keyboard and the mid-air gesture condition (Table 2).
The overall means are displayed in Fig. 7.

Table 2. Multiple comparisons and mean differences in VO2 mL/kg−1/min−1 by interaction types.

Comparison Mean difference SE p-value
Supported vs. Mid-air −1.08 0.12 0.00
Supported vs Keyboard 0.20 0.07 0.00
Mid-air & Keyboard 1.28 0.15 0.00
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Fig. 7. The mean VO2 in milliliters per kilogram of body weight per minute is presented across
each condition. Error bars represent standard error of the mean.

Figure 8 shows the mean VO2 levels across time for each condition. The dotted
vertical lines integrate the mean duration performed for each condition reported in the
previous section. Even though there was a significant difference between the supported
gestures and keyboard activity, these results show how close in physical exertion levels
supported gestures are to regular keyboard activity. The level of physical effort for the
mid-air gestures, however was comparatively higher to both and produced a 23%
increase in oxygen consumption compared to the supported gestures.

Fig. 8. Mean VO2 for each condition over the 30-minute trial length. The dotted vertical lines
represent the mean duration for each condition.

4.3 Perceived Exertion

The perceived physical exertion from each of the conditions was measured by the Borg
CR10 on its 12-point scale. A GEE model was also used to analyze the Borg scores
across the 3 conditions. The results indicate a significant difference among the conditions
(Wald chi-square = 71.58, p < 0.00, N = 47). Parameter estimates are found in Table 3.
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Pairwise comparisons of the estimated marginal means were conducted to examine the
specific differences. There was a significant difference between supported gestures
(M = 1.70, SE = .34) and mid-air gestures (M = 5.69, SE = 0.57) (Table 4). There were
also significant differences between supported gestures and keyboard use (M = 1.3,
SE = 0.34) as well as the keyboard and mid-air gestures (Table 4). The Borg CR10 label
for the mean supported gesture level was “very easy” while the mid-air gesture mean
level equates to the exertion level of “Hard” on the scale (Fig. 9). The keyboard mean
level falls within the “very, very easy” range (Fig. 9). The perceived exertion results
confirm the previous results in that participants estimated that the mid-air gestures
required more than 3 times the effort of supported gestures. Even though there was a
significant difference between the keyboard and supported hand gestures, both showed
very low levels of exertion.

Table 3. Parameter estimates from the GEE model for VO2 mL/kg/min across the interaction
conditions.

Models 𝛽 SE Wald chi-square p-value
Intercept 5.69 0.57 98.66 0.00
Keyboard & Mid-air −4.44 0.52 71.57 0.00
Supported & Mid-air −3.99 0.52 59.73 0.00

Table 4. Multiple comparisons and mean differences in VO2 mL/kg/min by interaction types.

Comparison Mean difference SE p-value
Supported vs. Mid-air −3.99 0.52 0.00
Supported vs Keyboard 0.46 0.21 0.03
Mid-air & Keyboard 4.44 0.52 0.00

Fig. 9. The mean subjective Borg ratings for physical exertion across conditions (0 = Nothing
at all, 10 = Impossible). Error bars represent standard error of the mean.
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5 Discussion

The results of this study provided evidence for the hypothesis that the supported gesture
interactions produced significantly less fatigue among the participants compared to mid-
air type of gestures. Additionally, the fatigue levels from using the supported gestures
were very similar to that of traditional keyboard interactions providing positive evidence
for sustained use of supported gesture interactions.

The gorilla arm phenomenon has greatly impeded the research and development
efforts of gesture based interactions with computer systems. Based on the results of this
study, researchers and the technology industry have had good reason to largely ignore
the gesture based modality. Only 25% of the participants in this study were able to
complete a single 30-minute session using the mid-air gestures, which is only a fraction
of the time knowledge workers typically spend in one sitting. The actual physical effort
as measured by VO2 and the perceived exertion level of using mid-air gestures also
supports the significant discomfort and fatigue felt by participants.

Any potential modality alternative to the existing status quo of keyboards, mice, and
game controllers must be reliable, accurate, and viable for extended periods of use. Mid-
air gestures as depicted by the movie industry and made possible by affordable optical
motion capture technology such as the Microsoft Kinect and Leap Motion force the user
into these mid-air type of gestures. The growing advancements in augmented and virtual
reality are renewing interest and some work with gestures as an input modality.
However, most of the current efforts ignore the gorilla arm mistakes of the past and
appear to be on a path to repeat them. For example, the Leap Motion can be adapted to
be used with head mounted displays (HMD) but must be placed on the HMD. With the
limited angle of its optical sensors, the user’s hands must be raised high enough to be
recognized, which brings the user into the high fatigue posture shown in Fig. 1A. Micro‐
soft’s augmented reality technology, the HoloLens suffers from the same issue of forcing
the user’s hands in front of its HMD.

The optical solution for the limited sensing area of a single camera for motion capture
has traditionally been a system with several cameras configured around the user. This
approach is expensive in terms of both equipment and the dedicated space for this type
of setup. These requirements do not allow multi-camera systems to scale well to multiple
knowledge workers in a traditional office space. These type of systems also still require
an unobscured view of the user’s arms and hands, which is fine for mid-air postures
(Fig. 1A) but not for supported postures (Fig. 1B) if the user is seated at a desk or table.

The use of IMU based motion capture technology breaks the line-of-sight chains that
constrains the optical systems to mid-air type gestures. With IMU motion capture, the
user’s hands can comfortably rest in supported and natural positions while enjoying a
relatively high degree of precision and accuracy for both hand and finger movements.

If supported gestures are to be a viable alternative to keyboard, mouse, and game
controller use, users physically must be able perform them for long periods of time
without discomfort and fatigue. This study directly compared the level of effort of
keyboard use to supported gestures. All the participants from both the keyboard and
supported gestures were able to complete the entire 30-minute interaction trial. The
results from the participants’ physical exertion levels as measured by VO2 were very
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similar. Finally, the participants reported extremely low amounts of perceived exertion
for both the keyboard (“very, very easy”) and supported gestures (“very easy”), even
though they were significantly different. These results suggest that the supported
gestures were successful in avoiding the gorilla arm effects that traditional gesture based
interactions experience. Overall, the physical effort required to perform supported
gestures appears to be very similar to that of using the keyboard.

6 Conclusion and Future Work

The traditional way of implementing gesture based interactions is fundamentally flawed
by forcing users to perform arm and hand gestures in mid-air without support or appre‐
ciation of natural resting positions. In this paper, we have traced one potential cause of
mid-air gestures to the constraints that come with the use of optical motion capture
systems. We avoided this constraint by implementing a novel vector based gesture
recognition approach using an IMU motion capture system. The newly designed
supported gestures were found to require similar levels of physical and perceived exer‐
tion as keyboard use and avoided the gorilla arm effects experienced by participants
during their mid-air gesture interactions. Some of the limitations of this study include a
very limited gesture vocabulary and data collection over only a 30-minute duration.
Given the promising results shown with supported gestures, our future efforts will be to
continue developing the supported gesture vocabulary and examine their integration
with other input modalities.
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