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Abstract. How can complex decisions, featuring multiple data sources and
conflicting constraints, be supported by computer interfaces? We take a human
factors approach to the problem by focusing on meeting users’ cognitive decision
making needs and addressing their perceptual challenges. An analysis of the histor-
ical trajectory of geospatial decision support reveals several issues and gaps. The
configurable data overlay systems ubiquitous in weather forecasting and military
command and control, that pass for decision support systems, require more and
more mental effort of users with increases in the number and complexity of data
sources. We lay out the design of a decision support system called ADVICE as a
module that augments geospatial data overlay systems that allows users to reason
about the impact of data. ADVICE possesses several task-centered features that
apply the science of cognitive decision making to its interface. ADVICE allows
users to build an integrated impact visualization that represents an appropriately
weighted geospatial objective function for the decision at hand. Additional features
provide the ability to compare the utility of different geospatial locations and
regions, and intelligently explore the impacts of constraints. The system is also
designed to meet the contextual control needs of users. That is, upfront user setup
done in time-relaxed planning is handsomely repaid in execution, when time-pres-
sured re-planning may be required. Although developed for geospatial decisions,
the concepts are widely applicable to other types of decisions with multiple
conflicting constraints.
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1 Introduction

Many work domains entail complex decision making tasks. In such tasks, users need to
assess and relate multiple data sources, each imposing different constraints, to achieve
a goal. The context in which these decisions need be made can also vary [1, 2]. For
example, decisions may need to be made very quickly, or there may be considerable
time available to make them. Here, we tackle the question of how such decisions should
be supported by computer interfaces and tools, and how the rich cognitive science of
decision making can be applied to ensure that decision support provided users in their
computing systems is useful and usable [3].
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We focus on supporting geospatial decision making. Geospatial decisions are those
whose output is the choice, or assessment, of a location, or locations, under various,
often competing, constraints. In naval command and control, for example, planners
engage in geospatial decision making to determine the likely locations of pirate activity
given merchant shipping, weather and previous episodes of piracy. They do this in order
to intelligently position surveillance and interdiction assets against the pirates [4]. Simi-
larly, military navigators perform geospatial decision making to define safe and secure
locations to position and route ships and submarines to achieve various mission objec-
tives. These routes must avoid terrain and other navigation hazards, on the one hand,
while allowing ships and submarines to remain undetected, on the other. In both civilian
and military weather forecasting, forecasters make geospatial decisions when they must
predict flash flooding, say, at discrete geospatial locations, from a variety of raw sensor,
and derived meteorological model, outputs [5].

2 Trends in Geospatial Decision Support: Data to Decision

The support available to users to perform complex geospatial decision making tasks has
improved dramatically over the last twenty years [6]. However, the advances have
focused more on improving the technical, underlying computational infrastructure than
in addressing the cognitive requirements for what are ultimately complex psychological
tasks. A synthesis of the historical trends in geospatial decision support that we are
observing in our capacity as scientific design consultants on various fielded systems is
offered in Fig. 1. This figure reveals subtle limits in the understanding of the cognitive
requirements of decision making by system engineers and interface developers.
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Fig. 1. The shrinking gulf of evaluation in geospatial decision making over time, and the march
towards a geospatial objective function.
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Figure 1 is an illustrative plot that shows how scientific and technical advances in the
means of geospatial decision support, in time (on the abscissa), are attempting to provide
decision support to reduce decision maker’s gulf of evaluation (on the ordinate). The gulf
of evaluation is the famous psychological construct in human computer interaction (HCI),
that refers to the gap between a user’s internal goals and what an external computer system
delivers to achieve them [7, 8]. Mapped to decision support systems, the gulf reflects the
mismatch between what a user needs and what the system provides the user to perceive,
interpret and evaluate relevant data to make a decision. In Fig. 1, the gulf is broken down
into three stages (labelled in white text), (i) getting the data (to perceive it), (ii) relating the
data sources together (to interpret it), and (iii) mapping the data to the decision (to evaluate
its impact on the decision). Illustrating these stages in an actual application domain both
illustrates the gulf, in context, and how research and development trends in geospatial deci-
sion support are attempting to bridge, or reduce, it.

Before the advent of networked, digital information systems populated with geo-
referenced data, users were challenged to simply obtain and relate decision-relevant
information. For example, civilian and military navigators had access to a mix of digital
and paper maps, received tasking in writing and tasking updates verbally, obtained
printouts and notes of weather forecasts, and heard verbally relayed facts and constraints.
The users faced a significant gulf of evaluation in that they had to try and scan, read and
recall all the disparate sources of information to perceive it all. If the data was sparse,
or missing, they also had to mentally interpolate it. Then they had to try and geo-refer-
ence it to begin to relate it together, and try to determine how it constrained and impacted
their ship routing. All the while they had to try not to forget any of the data, or their
emerging interpretation of it. The task was burdensome and prone to errors. It required
skill and expertise to know how to prioritize information and when to judiciously deploy
rules of thumb and heuristics to make up for missing, incomplete or forgotten data.

Faced with these significant challenges, unsurprisingly, users resorted to the creation
of artifacts and associated processes to relate the data to the map and to externalize their
memory of it. Such workarounds are often observed in operational settings as users take
it on themselves to try and make up for perceived deficiencies in their computer-based,
or other support tools, and business processes [9, 10]. What is interesting and informative
for decision support design, is that these workarounds may become metaphors that are
then pursued by interface designers, and then become unhelpfully entrenched [11]. For
example, faced with paper maps and data printouts, military and civilian navigators used
grease pencil markup on transparent acetate overlays superimposed on maps to geo-
reference, remember and relate data sources. Modern digital information systems have
copied and maintained the acetate metaphor by showing geo-referenced data sources as
graphical overlays on geoplots. This is true for client-based, commercial Geographical
Information Systems (GIS) [12], dedicated commercial maritime navigation Electronic
Chart Display and Information System (ECDIS), and for web-based, freely available
and broadly used geospatial mapping and visualization applications such as Google
Earth [13]. Analogous to overlaying multiple acetates on a physical map, multiple
sources can potentially be related simultaneously by toggling on/off available data
sources. Further, most systems go further by providing sliders to set the opacity of each
overlay to make several overlays visible at once, even when data is occluded as a result.
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Comparable, configurable overlay systems are available to commercial and military
weather forecasters. For example, US Government forecasters in the National Weather
Service use a system called the Advanced Weather Interactive Processing System
(AWIPS) which allows a mix of raw and derived data and model predictions to be
overlaid on geospace [5]. Modern digital GIS and other systems can also perform math-
ematical interpolation on sparse data to yield continuous, interpolated data representa-
tions that can be provided to users as another overlay, as a heatmap or other 2D color
plot [12].

Digital geospatial data overlay systems do provide some decision support to their
users. By digitizing and co-locating the data in single system, and presenting it overlaid
on a map, users can perceive the data, relate it to geospace, and integrate it with other
sources. Therefore, such systems reduce the gulf of evaluation. But they do not eradicate
it. There still remains the challenge of mapping the data to a decision to determine its
impact (or utility [14]), its relative importance, and to evaluate alternatives to make an
informed decision. As shown in Fig. 1, one attempt that has been made to finally close
the gulf of evaluation is to generate model-based risk surfaces that attempt to model the
impact of several data sources on decision outcomes and then present the output as an
integrated visual goodness surface, say as a geospatial heatmap [4]. Jim Hansen and
colleagues at the Naval Research Laboratory in Monterey, CA, for example, have
generated automated piracy attack predictions that compute likelihood of piracy events
across a region given the clemency of the weather for small boat (possible pirate pred-
ator) actions and the expected merchant shipping density (prey) [4]. Such analysis
provides decision support to military planners because it relieves them of the need to
mentally perform the complex mathematical derivation of the impact and relative
weighting of these data sources. The risk predictions can be made available during mili-
tary planning as another overlay on their digital geospatial data overlay systems.

Model-based risk surfaces exist mainly in the form of laboratory prototypes, or are
in various stages of advanced development in a few target application domains. Their
scope is usually no more than two to three relevant data sources. However, as Fig. 1
shows, as they grow in scope and sophistication, they point to an implicit future of
decision support reduced to a choice on a geospatial objective function, where all sources
have been mapped and optimally weighed and integrated into a single view. Such a
system would finally bridge the decision maker’s gulf of evaluation as the decision
maker would be able to reason over all mapped and appropriately weighed data to pick
good locations.

3 User Challenges

There are a number of perceptual and cognitive issues raised by the use of (1) digital
geospatial data overlay systems to perform geospatial decision making, potentially
augmented with (2) model-based risk surfaces. Here, we enumerate the issues and use
them to motivate the design of HCI features and functions that address these issues in
the next section.



ADVICE: Decision Support for Complex Geospatial Decision Making 457

3.1 Digital Geospatial Data Overlay Systems

Relating multiple data sources. Geospatial overlay systems provide no good way
for users to relate multiple data sources together. Data overlays run into either percep-
tual or cognitive limitations, putting users in an awkward dilemma. If users attempt
to look at data simultaneously, for example by turning on multiple overlays, then the
clutter, occlusion and perceptual masking of data will result in slow and inaccurate
identification [15]. This is true even if the system is augmented with the ability for
users to control the opacity of each source, say with sliders. Such systems help miti-
gate data occlusions by employing transparency to blend layers together, affording
users the chance to understand and relate data across layers and to the map back-
ground. However, with a lower opacity, each layer will be reduced in contrast, exac-
erbating clutter and masking issues that will quickly prevent interpretation of more
than a couple of layers. Alternatively, if users view overlays sequentially, one at a
time, to attempt to overcome the clutter and masking effects, then they discover
another limitation of their cognitive architecture - their imperfect memory systems
[16]. They will likely suffer slow and inaccurate identification of data from flawed
recall and mental comparison of the different states of the display over time. These
problems will intensify as more and more data sources inevitably come online.

Metarepresentational Competence. Inherent in the skill-based problem solving
required to perform complex geospatial decision making is the need for flexible repre-
sentations that allow for creativity [17]. For this reason, and because of the variety and
fluidity of the geospatial tasks in modern work domains, designers have opted to provide
their expert users maps with configurable overlays because they would seem to provide
that necessary flexibility [5]. That users need to configure their own decision support
representations raises another subtle and often neglected issue. The approach is premised
on the assumption that users are actually capable of the configuration task — that is, that
they possess “metarepresentational competence” with the configurable, geospatial
overlay tools and displays they are provided [18]. Users are expected to select overlays
from the ever-expanding array of sources that the networked systems make available,
and then combine and blend them with opacity sliders, to relate them interactively to
meet their specific decision making needs. Users aren’t just expected to “finish the
design” [19], they are implicitly expected to meet all their decision making require-
ments. Recent studies have highlighted the downsides of such flexibility by throwing
into question the meta-representational competence of users with such systems. Expert
users and novices alike underestimate the deleterious effects that clutter has on their
visual performance from bringing up task-irrelevant overlays, and inadvertently slow
themselves down when performing meteorological forecasting tasks [20, 21].

Determining impact of data. As discussed in Sect. 2, above, there are several steps
involved in making a geospatial decision. The impact of data on a decision, or its utility
[14] needs to be determined and weighed. It is left up to the user to mentally determine
impact, using their expertise, and then hold it in memory as they continue to relate data
sources and their impacts together. Recently, we documented the extent of this problem in
a controlled human performance experiment [22]. We measured the quality and time to
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make geospatial decisions with different support tools in a virtual fishing task (akin to the
one relayed in Sect. 4, below, although much simpler). Participants caught 44% fewer fish
and were 37% slower making decisions when they had to perform the task with three data
overlays than with risk surfaces that mapped the data to decision impact (i.e., how sea
temperature affects likelihood of fish vs. raw sea temperature). The results expose the time
and mental effort required to interpret and relate data to decision quality from (only three)
data overlays.

Contextual control. The cognitive science of decision making has made dramatic
strides in the last two decades. There are now sophisticated conceptualizations of deci-
sion making processes and strategy, and how they are deployed flexibly in response to
contextual factors, such as time available to decide [14, 23, 24]. An overarching frame-
work that captures the gross influences of shifting context on cognition is Hollnagel’s
notion of contextual control modes [1, 2]. Data overlay systems may function acceptably
when there is time to relate each data source to each other and to decision quality. But
when data changes and users must determine whether and how to re-plan under time
pressure, the limits of simple data overlay systems will manifest. Data overlay systems
may not support user needs for certain contextual control modes.

3.2 Model-Based Risk Surfaces

Opaqueness. Second, model-based risk surfaces are opaque to users in that they don’t
show the basis of their predictions, and are thus subject to mistrust [25]. By presenting
an integrated risk prediction without its pedigree or basis evident, or accessible, expert
users may question its validity and then begin to mistrust and disuse it. In this regard,
the integrated predictions don’t meet the requirements of military and civilian decision
makers, who are taught and used to constantly validating assessments in underlying data
(e.g., [26]).

Brittleness. Model-based risk surfaces are attractive in that they create automatic
impact predictions for several data sources. The results can be integrated into a geospatial
heatmap and then provided to users as an overlay [4]. Such algorithmic approaches
suffer from a key drawback, however, in that they are brittle [27]. That is, they are
inevitably limited in what they take into account. Thus, if the context of a situation
changes with additional data that it is not, or cannot be, included in the model, then the
risk surface becomes less useful to decision makers who may not even realize anything
is amiss. For example, recent local law enforcement actions or military exercises might
affect the likelihood of piracy, but without access to these changes, they will not be
factored into the model’s computations.

Color scales. The outputs of risk models are often conveyed with continuous 2D color
surfaces or heatmaps [4]. Although not inherent to risk models themselves, these outputs
often use color scales that are not perceptually linear. That is, they possess misleading
perceptual discontinuities at hue boundaries (that are not reflected in changes in the
underlying risk predictions) and other artifacts [28].
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4 ADVICE Geospatial Decision Support System

We have taken a different approach to enable users to reason about the decision impacts
of multiple data sources. We have created a decision support prototype called ADVICE
(Active Decision Visualization of Impact Critical Elements) and explored its efficacy
for various geospatial tasks. ADVICE augments geospatial overlay systems with a user-
generated, flexible integrated risk surface, and tools to explore it. In this section, we
introduce and review ADVICE within a fictional scenario, where one must decide where
to send vessels to catch fish. The data sources depicted are derived from actual geospatial
data, but the specifics of how they relate to fishing is intended only as an illustration of
the capabilities of ADVICE for other task domains.

4.1 Overview: Process and Principles

ADVICE is a support system for geospatial decisions, that is, any decision where
locations, areas, or paths need to be compared. Here, we illustrate our current proto-
type supporting the search for promising locations to fish. ADVICE focuses on deci-
sions for which there are multiple sources of data that inform and constrain possible
actions (e.g. water depth, traffic, hazards). The data sources must generally be
geospatial in nature, present in a geospatial overlay system, and mapped to a common
coordinate space.

Figure 2 provides an overview of how ADVICE decision surfaces are generated.
ADVICE essentially implements a multi-attribute utility model [14] for geospatial deci-
sions. For a given decision, multiple data sources (Fig. 2, left) will constrain and change the
desirability of locations. In ADVICE, users specify requirements and desires for each data
source, either directly or imported from templates. Once these desires and requirements are

Current Data related to decision by ADVICE
systems .
Impact mapping
Data %mgﬁs”‘;opopé@? Weighting Decision surface

(How important?)
Bathymetry

Navigation Hazards Better

Historical Traffic

AlS Contacts
Excl. Econ. Zone I
Dumping Zones

Surface Temp.

Ocean Currents

Fig.2. ADVICE is a decision support module that augments data overlay systems (left) with impact
mapping (center) to create an integrated decision surface visualization (right). (Color figure online)
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specified, ADVICE automatically processes multiple data sources into the common space
of decision impacts (Fig. 2, middle), and weighs impacts into a unified decision surface
(Fig. 2, right). Impact and goodness are rendered in a perceptually linear color scale running
from bright green (good) to dark red (bad) [29].

4.2 Impact Mapper

The foundation of ADVICE is mapping data sources (Fig. 3., left) to decision impacts
with an interface. Impact mapping takes data, which may take a number of forms, and
transforms it into decision impact (utility) over space (Fig. 3., right). This transformation
is based on what data values are desirable for a decision. For example, data sources,
such as water depth (bathymetry) or surface temperature, exist as or can be interpolated
into data surfaces over space. Different values of this data have different desirability for
the decision, that are mapped between -1 and 1 for soft constraints, or to -co for values
that constitute violation of a hard requirement. If the fish we are seeking prefer surface
temperatures at or above 65°F, say, and will not be found for temperatures below 60°F,
locations with temperatures of 65°F or higher would be mapped to an impact of 1,
interpolating down to impacts of -1 just above 60°F, and -co for locations with a meas-
urement of 60°F or below. Similarly, to locate fish we would need to stay outside of
outsize of hazardous dumping zones and the exclusive economic zones of other coun-
tries. The data in this case are areas defined by polygons of multiple points of latitude
and longitude. Given that staying outside of these areas is a hard constraint, any point
in these polygons would receive a utility of -oo, eliminating those locations from consid-
eration, no matter how good other aspects of data may be. Data that exist as points
(hazards or positions of noise-generating ships that are to be avoided), can be re-repre-
sented as a data surface consisting of the minimum distance to any of those points from
each location in space. Decision impact are then calculated (must stay 500 yards away
from hazards, after 1 mile the benefits level off). Even secondary data such as uncertainty
about current measurements can be mapped in this way to impacts on a decision (lower
uncertainty is better).

Impact mapper

Data (depth ft)

Better

Worse

Fig. 3. ADVICE maps raw data values (left) onto their impacts for a decision (right).
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The final consideration in impact mapping is the relative weighting of the different
data sources (surface temperature may be considered more important than depth, say).
These weightings are normalized and used to weight relative impacts into the decision
surface. This weighing impacts the combination of soft constraints only. Impacts and
weightings that are themselves dynamic and change over time (e.g. forecasts weighted
less heavily as they age) could easily be incorporated into the general ADVICE frame-
work. More complex, multivariate relationships either between data sources, or external
factors can also be captured with additional effort in the impact mapping process. By
bringing decision impacts into the system, all the products and tools of ADVICE update
with any updates to dynamic data, even alerting based on changes to impacts rather than
raw data, something that would be very difficult for a human user to stay abreast of.

While this process may seem arduous, in practice we imagine users rarely needing
to set or even adjust these impacts. Most impacts will be constant across different deci-
sions. The preferred water depth might vary for different types of fish, which could be
captured in decision templates for each fish species, but one will always want to stay
out of fixed hazardous areas. Decision templates could specify most if not all the relevant
impacts, and be modified and resaved as needed. While complicated functions mapping
data onto impacts could be used, to date, we have found that the impacts for most data
sources can be easily summarized.

4.3 Decision Surface, Location Comparer and Constraint Resolver

Once impact mappings and weightings are defined for each data source, ADVICE
combines data sources into an overall decision surface showing ‘goodness’ of locations
over space for the decision of interest. This combination is done though a weighted
average of the impacts. The overall decision surface for our fishing scenario is shown
on the right of Fig. 4., using the continuous, perceptually linear color scale discussed in
Sect. 4.1. In the decision surface, and areas violating hard constraints are not colored,
and the background map shows through. Critically, the decision surface can be probed
to explore what is good or bad about locations and compare the raw data and impacts
across multiple locations. The left of Fig. 4 shows a comparison interface for the loca-
tions labeled A and B on the decision surface. For each location, a data summary statistic
over the area is provided, along with an indicator categorically color coding the utility
of each source. Circles mark the best utility for each data constraint (both locations are
marked in the case of ties). In this example, neither the depth at area A or area B is ideal
(lighter, yellow dot), but depth is better at B (circle). Looking at the data summary
statistics, Area B is farther from any navigation hazards, but they are both far enough
there is no difference for the decision of where to search for fish. Additionally, attributes
of the decision not related to data, such as the size of the proposed area, can be provided
for comparison. By allowing users to explore the decision surface, we hope to both
support more informed decisions and allow remediation of inherent risks (e.g. if the
areas are a little deeper than one would like, one can adapt procedures to compensate).
Further, we hope to support the creativity and skill-based problem solving of expert
users [17] and foster overall trust in the system.
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Location comparer

Better

Worse

Fig. 4. Overall decision surface (top) and location comparer (bottom) showing the pros and cons
of two decision locations. The yellow and green dots categorically show the goodness of each
data source. The dots corresponding to the better decision based on a source are circled. (Color
figure online)

Considering many constraints can quickly limit possibilities. To support better
understanding the relative impact of constraints, and intelligent problem solving in such
situations, we developed the Constraint Resolver interface. The Constraint Resolver
consists of two features. The first is an overlay view that shows only the number of hard
constraints violated, giving a quick picture into what areas might be possible to open up
by relaxing a small number of constraints. Second, we developed and implemented a
simple “restrictiveness” metric characterizing how much a data source limits decisions.
This metric is a measure of how much area is uniquely eliminated by a constraint. For
each constraint, restrictiveness is calculated as the proportion of area meeting all other
hard constraints, that a constraint eliminates. Once calculated, ranked constraints are
presented to the user for analysis and follow up. Similar metrics can be defined to capture
the influence of soft constraints (e.g. what proportion of an otherwise “good” area is
“bad” after considering this constraint?).

4.4 User Challenges Addressed

With ADVICE, we have attempted to address many of the issues with geospatial data
overlays and automated risk surfaces enumerated in Sect. 3. With ADVICE’s integrated
decision surface, users do not need to hold multiple constraints in memory, or struggle
to discriminate different data sources, as they do with data overlays. Nor do users need
to mentally interpret data, or re-interpret changed data. These processes are offloaded
to ADVICE. They are handled both by upfront mapping of the impact of data sources
and by the integrated decision surface updating with the underlying data that feed it. As
such, plan degradation is likely far easier with ADVICE, as users can stay abreast of
how changed data impacts their decisions and plans in real-time. This also better
supports the contextual control mode requirements of users by providing support to
complex mental operations when users are the most pressed for time. Similarly, the work
of setting up ADVICE can be performed ahead of time, when more time is available
and users are in more optimizing context control modes [1, 2].
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In comparison to risk surfaces, ADVICE gives users access to probe and modify the
mapping of data source impacts on a decision, making it easier for users to understand
and trust the resulting risk surface, which they have created themselves. Additionally,
by providing additional exploration tools, ADVICE supports collaborative plan criti-
quing by allowing intelligent constraint relaxation to see the impact on decision
outcome. As the users map the impact of data sources, they are aware of the scope of
the surfaces they have created, and the resulting brittleness/resilience of what they have
created. Finally, by rendering individual and weighted impacts in a perceptually linear
color code, ADVICE’s visualization are free of misleading perceptual discontinuities.

5 Conclusions

We have reviewed trends in geospatial decision support toward more integrated geospa-
tial information and identified several human factors issues and gaps with current
geospatial decision support. The goal of HCI is to provide useful and effective task
support for users through computer-based tools and interfaces. Too often, we have seen
users of legacy systems, (figuratively) break into a sweat (Fig. 1, left), as their tools
require of them mental gymnastics to make decisions. To further close the gulf of eval-
uation faced by geospatial decision makers, we developed and presented a prototype
decision support system call ADVICE. Through explicit, user-determined mapping of
data to decision impacts, ADVICE creates a decision surface and provided tools for the
exploration of that surface. Note that the human decision maker is still an active part of
the decision process, and that ADVICE does not take the decision from the decision
maker. Rather it helps to externalize some of the interpretation of data. In Fig. 1, we see
ADVICE as a redirection from the march towards a single unifying, model-based deci-
sion surface to something with more user interactivity. In this way human decision
makers are still integrated into the decision process, and can still supplying additional
contextualizing information that is not or cannot be explicitly represented in the system.
Future users of a fielded ADVICE system should be able to focus on insights into
complex problems and making quality decisions (Fig. 1, right).

Rather than visualize impact, per se, an alternative approach is to provide complex
filtering and searching functionality to assist users determine specific locations that meet
restrictive criteria (e.g., see [30]). This may be appropriate in tightly bound work
domains where there are exclusively black and white hard constraints, and few oppor-
tunities to explore or relax constraints as with selection of nuclear waste disposal sites.
In contrast, our end users in military command and control are faced with task domains
that are not always bounded. Here, ADVICE provides interactive exploration and visu-
alization of both hard and soft constraints.

While we have focused on a limited set of applications, we see the potential of
ADVICE as a decision support framework to be much greater. The principles of
helping users externalize utility functions to integrate multiple decision constraints
could be readily extended beyond geospatial, to other forms of decision making.
ADVICE could easily extend to consumer geospatial decisions such as searching for
a house or rental (desiring it to be close to work, restaurants, and parks, with good
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schools). More generally, the same principles could apply to other situations where
user-definable soft-filtering could provide better relevance weightings. For example,
in web commerce, rather than a hard filter on 4 star or above ratings, shoppers could
define explicit preferences (least 3 but more are better, lower price is better). Simi-
larly, those shopping for a new car could select results not only on hard constraints,
but on soft constraints relative to their desires (more MPG, lower price).
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