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Abstract. In this paper, we use a developer-oriented statistical app-
roach to understand what causes people in complex software development
networks to decide to fork (break away), and what changes a community
goes through in the run-up to a decision to break-up. Developing com-
plex software systems is complex. Software developers interact. They may
have the same or different goals, communication styles, or values. Inter-
actions can be healthy or troubled. Troubled interactions cause troubled
communities, that face failure. Some of these failures manifest them-
selves as a community split (known as forking). These failures affects
many people; developers and users. Can we save troubled projects? We
statistically model the longitudinal socio-grams of software developers
and present early indicators and warning signs that can be used to pre-
dict an imminent break-up decision.

1 Introduction

Social networks are a ubiquitous part of our social lives, and the creation of online
social communities has been a natural extension of this phenomena. Social media
plays an important role in software engineering, as software developers use them
to communicate, learn, collaborate and coordinate with others [31]. Free and
Open Source Software (FOSS) development efforts are prime examples of how
community can be leveraged in software development, where groups are formed
around shared interest, and depend on continued interest and involvement to
stay alive [24].

Community splits in free and open source software development are referred
to as forks, and are relatively common [27]. Robles et al. [27] define forking as
“when a part of a development community (or a third party not related to the
project) starts a completely independent line of development based on the source
code basis of the project.”

Although the bulk of collaboration and communication in FOSS communities
occurs online and is publicly accessible for researchers, there are still many open
questions about the social dynamics in FOSS communities. Projects may go
through a metamorphosis when faced with an influx of new developers or the
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involvement of an outside organization. Conflicts between developers’ divergent
visions about the future of the project may lead to forking of the project and
dilution of the community. Forking, either as an acrimonious split when there is
a conflict, or as a friendly divide when new features are experimentally added,
affect the community [8].

Previous research on forking ranges from the study by Robles et al. [27] that
identified 220 significant FOSS projects that have forked over the past three
decades, and compiled a comprehensive list of the dates and reasons for forking
to the study by Baishakhi et al. [7] on post-forking porting of new features or
bug fixes from peer projects. It encompasses works of Nyman on developers’
opinions about forking [26], developers motivations for performing forks [23],
the necessity of code forking as tool for sustainability [25], and Syeed’s work on
sociotechnical dependencies in the BSD projects family [32].

Most existing research on forking, however, is post-hoc. It looks at the forking
events in retrospect and tries to find the outcome of the fork; what happened
after the fork happened. The run-up to the forking events are seldom studied.
This leaves several questions unanswered: Was it a long-term trend? Was the
community polarized, before forking happened? Was there a shift of influence?
Did the center of gravity of the community change? What was the tipping point?
Was it predictable? Is it ever predictable? We are missing that context.

Additionally, studies of FOSS communities tend to suffer from an important
limitation. They treat community as a static structure rather than a dynamic
process. Longitudinal studies on open source forking are rare. To better under-
stand and measure the evolution, social dynamics of forked FOSS projects, and
integral components to understanding their evolution and direction, we need
new and better tools. Before making such new tools, we need to gain a bet-
ter understanding of the context. With this knowledge and these tools, we could
help projects reflect on their actions, and help community leaders make informed
decisions about possible changes or interventions. It will also help potential spon-
sors make informed decisions when investing in a project, and throughout their
involvement to ensure a sustainable engagement.

We use an actor-oriented longitudinal statistical model [29] to study the evo-
lution and social dynamics of FOSS communities, and to investigate the driving
forces in formation and dissolution of communities. This paper is a part of a
larger study aiming to identify better measures for influence, shifts of influence,
measures associated with unhealthy group dynamics, for example a simmering
conflict, in addition to early indicators of major events in the lifespan of a com-
munity. One set of dynamics we are especially interested in, are those that lead
FOSS projects to fork.

2 Related Work

The free and open source software development communities have been stud-
ied extensively. Researchers have studied the social structure and dynamics of
team communications [9,15–17,22], identifying knowledge brokers and associ-
ated activities [30], project sustainability [22,25], forking [3–5,24], requirement
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satisfaction [13], their topology [9], their demographic diversity [19], gender dif-
ferences in the process of joining them [18], and the role of age and the core team
in their communities [1,2,6,12,34]. Most of these studies have tended to look at
community as a static structure rather than a dynamic process [11]. This makes
it hard to determine cause and effect, or the exact impact of social changes.

Post-forking porting of new features or bug fixes from peer projects hap-
pens among forked projects [7]. A case study of the BSD family (i.e., FreeBSD,
OpenBSD, and NetBSD, which evolved from the same code base) found that
10–15% of lines in BSD release patches consist of ported edits, and on average
26–58% of active developers take part in porting per release. Additionally, They
found that over 50% of ported changes propagate to other projects within three
releases [7]. This shows the amount of redundant work developers need to do to
synchronize and keep up with development in parallel projects.

Visual exploration of the collaboration networks in FOSS communities was
the focus of a study that aimed to observe how key events in the mobile-device
industry affected the WebKit collaboration network over its lifetime [33]. They
found that coopetition (both competition and collaboration) exists in the open
source community; moreover, they observed that the “firms that played a more
central role in the WebKit project such as Google, Apple and Samsung were by
2013 the leaders of the mobile-devices industry. Whereas more peripheral firms
such as RIM and Nokia lost market-share” [33].

The study of communities has grown in popularity in part thanks to advances
in social network analysis. From the earliest works by Zachary [35] to the more
recent works of Leskovec et al. [20,21], there is a growing body of quantita-
tive research on online communities. The earliest works on communities was
done with a focus on information diffusion in a community [35]. The study by
Zachary investigated the fission of a community; the process of communities
splitting into two or more parts. They found that fission could be predicted by
applying the Ford-Fulkerson min-cut algorithm [14] on the group’s communica-
tion graph; “the unequal flow of sentiments across the ties” and discriminatory
sharing of information lead to subcommunities with more internal stability than
the community as a whole [35].

3 Research Goals

Social interactions reflect the changes the community goes through, and so, it can
be used to describe the context surrounding a forking event. Social interactions in
FOSS can happen, for example, in the form of mailing list email correspondence,
bug report issue follow-ups, and source code contributions and co-authoring. We
consider some forking decisions [27] to be socially related, such that, they should
have left traces in the developers’ interactions data. Such traces may be identified
using longitudinal modeling of the interactions, without digging into the contents
of the communications. These three reasons are (1) Personal differences among
developer team, (2) The need for more community-driven development, and (3)
Technical differences for addition of functionality. In this study, we analyzed,
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quantified and visualized how a community is structured, how it evolves, and
the degree to which community involvement changes over time. Our over-arching
research objective was to identify these traces/social patterns associated with
different types of undesirable forking

R.G. 1:Do forks leave traces in the collaboration artifacts of open source projects
in the period leading up to the fork? To study the properties of possible social
patterns, we need to verify their existence. More specifically, we need to check
whether the possible social patterns are manifested in the collaboration artifacts
of open source projects, e.g., mailing list data, issue tracking systems data, source
code data. This is accomplished by statistical modeling of developer interactions
as explained in more detail in Sect. 4.

R.G. 2: What are the traces that can explain longitudinal changes in sociograms
in run-up to a forking event? What quantitative measure(s) can be used as an
early warning sign of an inflection point (fork)? Are there metrics that can
be used to monitor the odds of change, (e.g. forking-related patterns) ahead of
time? This will be accomplished by statistical modeling of developer interactions
as explained in more detail in Sect. 4.

4 Methodology

Detecting change patterns, requires gathering relevant data, cleaning it, and
analyzing it. In the following subsections, we describe the proposed process in
detail. Figure 1 shows the overview of our methodology.

4.1 Data Collection

The data collected were developer mailing lists, where developers’ interact by
sending and receiving emails, and source-code repository contribution logs, where
developers interact by modifying the code. The sociograms were formed based
on interactions among developers in these settings. For the purpose of our larger
study, not included in this paper, we gathered data for 13 projects, in three
categories of forking, plus a control group. We have included the data for a
project that forked in 2010. The name is left out for anonymity, to prevent
defaming a project, and to prevent individuals from becoming target of blame,
in case our findings may be misused. Mailing list data was cleaned such that
the sender and receiver email ID case-sensitivity differences would be taken into
account, to prevent duplicity. The Source Code repository version control logs
were used to capture the source code activity levels of the developers who had
contributed more than a few commits. The set of the developers who had both
mailing list activity and source code repository activity formed the basis of
the socio-grams we used in our analysis. The time period for which data was
collected is one year leading to when the decision to break-up (fork) happened.
This should capture the social context of the run-up to the forking event.
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Data Collection
Mailing Lists
Bug Tracking Repositories
Codebase

Data Cleaning and Wrangling
12 equioespaced directed graphs
for each project

Morkov Chain Monte Carlo Estimation
Rate of Change
Parameter Estimates with p-value and
s.e.

Statistical Model
Test of Goodness of Fit
Relative Importance of Effects

Multi-Parameter T-test and MANOVA
Project Comparison
Multivariate Analysis of Variance be-
tween Multiple Groups, with p-value

Results
Reresented Collaboration with Longitudinal Change
Modeled change and Rate of change statistically
Expressed underlying properties/values of commu-
nity Behavior as model effects and their significance
and relative importance
Good starting point for gaining an understanding of
longitudinal change of underlying properties of an
open source project community

Raw Data

12 Directed Graph representation of each project’s collaborations

Model parameter estimates

A well-fitting statistical model (i.e. weighted sum of effects) for each project

Between group and cross-group comparison results of significance with p-values

Fig. 1. The methodology in a glance

Social connections and non-connections can be represented as graphs, in
which the nodes represent actors (developers) and the edges represent the inter-
action(s) between actors or lack thereof. Such graphs can be a snapshot of a
network – a static sociogram – or a changing network, also called a dynamic
sociogram. In this phase, we process interactions data to form a communication
sociogram of the community. Two types of analysis can be done on sociograms:
Either a cross-sectional study, in which only one snapshot of the network is
looked at and analyzed; or a longitudinal study, in which several consecutive
snapshots of the network are looked at and studied. We are interested in pat-
terns in the run-up to forks, therefore, unlike most existing research on forking,
we did a longitudinal study. We formed 10 equispaced consecutive time-window
snapshots of the socio-grams for the community, using the mailing list interac-
tion data and the source code repository commit activity data. These socio-grams
were used to find a well-fitting statistical model that would explain how they
changed from time-window t1 through time-window t10.
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4.2 The Statistical Model

Longitudinal evolution of a network data is the result of many small atomic
changes occurring between the consecutively observed networks. In our case,
software developers are the actors in the networks, and they can form a con-
nection with another developer, break off an existing connection, or maintain
their status quo. These are the four possibilities of atomic change within our
evolving networks: (1) forming a new tie; (2) breaking off an existing tie; (3)
maintaining a non-connection; and (4) maintaining a connection. We assume a
continuous-time network evolution, even though our observations are made at
two or more discrete time points.

The state-of-the-art in studying longitudinal social networks, is the idea
of actor-oriented models [29], based on a model of developers changing their
outgoing ties as a consequence of a stochastic optimization of an objective
function. This framework assumes that the observed networks at discrete
times, are outcomes of a continuous-time Markov process. In the case of open
source developers, the actor-oriented model, can be informally described as
OpenSourceDeveloper-oriented model, in which, it is assumed that developers
are in charge of their communication and collaboration choices. They choose
to have interactions with certain other developers and/or they choose to stop
having interactions with another developer. In short, they have autonomy in
choosing their connections.

Let the data for our statistical developer-oriented model be M repeated
observations on a network with g developers. The M observed networks (at
least two) are represented as directed graphs with adjacency matrices X(tm) =
(Xij(tm)) for m = 1, ...,M , where i and j range from a to g. The variable Xij

shows whether at time t there exists a tie from i to j (value 1) or not (value 0).
Be definition, ∀i,Xii = 0 (i.e. the diagonal of the adjacency matrices).

In order to model the network evolution from X(t1) to X(t2), and so on, it
is natural to treat the network dynamics as the result of a series of small atomic
changes, and not bound to the observation moment, but rather as a more of less
continuous process. In this way, the current network structure is a determinant
of the likelihood of the changes that might happen next [10].

For each change, the model focuses on the developer whose tie is changing.
We assume that developer i has control over the set of outgoing tie variables
(Xi1, ...,Xig) (i.e. the ith row of the adjacency matrix). The network changes one
tie at a time. We call such an atomic change a ministep. The moment at which
developer i changes one of his ties, and the kind of change that he makes, can
depend on attributes represented by observed covariates, and the network struc-
ture. The moment is stochastically determined by the rate function, and the par-
ticular change to make, is determined by the objective function and the gratifica-
tion function. We cannot calculate this complex model exactly. Rather than cal-
culating exactly, we estimate it using a Monte Carlo Markov Chain method. The
estimated model is used to test hypotheses about the forked FOSS communities.
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These above three functions and their definitions taken from [28] are explained in
detail the following subsections.

4.2.1 Rate Function
The rate function λi(x) for developer i is the rate at which developer i’s out-
going connections changes occur. It models how frequently the developers make
ministeps. The rate function is formally defined [28] by

λi(x) = lim
dt→0

1
dt

P
(
Xij(t + dt) �= Xij(t) for some j ∈ {i, ..., g}|X(t) = x)

)
.

(1)
The simplest specification of the rate of change is that all developers have the
same rate of change of their ties.

4.2.2 Objective Function
The objective function fi(s) for developer i is the value attached to the network
configuration x. The idea is that, given the opportunity to make a change in his
outgoing tie variables (Xi1, ...,Xig), developer i selects the change that gives the
greatest increase in the objective function. We assume that if there is difference
between developers in their objective functions, these differences can be repre-
sented based on the model covariates [28]. For more details, please refer to [28].
The following weighted sum represents the objective function (2):

fi(β, x) =
L∑

k=1

βksik(x) (2)

Parameters β = (β1, ..., βL) is to be estimated. Functions sik(x) can be the
following [28]:

4.2.2.1 Structural Effects
For the structural effects, the following were used in the objective function.

1. The reciprocity effect, which reflects the tendency toward reciprocation of
connections. A high value for its model parameter will indicate a high ten-
dency of developers for reciprocated interactions.

2. The closure effects (e.g. in friendship networks, it means, friends of friends
tend to become friends) In our case, Transitive triplets effect, which models
the tendency toward network closure. It reflects the preference of developers
to be connected to developers with similar outgoing ties.

3. Three-cycles, may be interpreted as the tendency toward local hierarchy. It
is similar to reciprocity defined for three developers, and is the opposite of
hierarchy.

4. Activity, which reflects the tendency of developers with high in-degree/out-
degrees to send out more outgoing connections because of their current high
in-degree/out-degree.
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5. Covariate effects: Developers’ covariates may influence the formation or ter-
mination of ties. For example: (a) Covariate V-related activity, which reflects
the developer i’s out-degree multiplied by his covariate V value. (b) Covariate
V-related dissimilarity, which reflects the sum of differences in covariate V val-
ues’ between developer i and all developers to whom developer i is connected.
We use the following developer attributes as covariates:
– (Covariate V1) Developer’s level of activity (i.e. mailing list posts per

month)
– (Covariate V1) Developer’s level of contribution (i.e. code commits per

month) as shown in Table 2
– (Covariate V4) Developer’s seniority as a development community member

(i.e. how many total contributions they have had in the lifetime of the
project)

6. out-out degree assortativity, which reflects which reflects the tendency of
developers with high out-degree to be connected to other developers with
high out-degrees.

4.2.3 Markov Chain Transition Rate Matrix
The components of the developers-oriented model, described above, define a
continuous-time Markov chain on the space χ of all directed graphs on this set
of g developers. This Markov chain is used to estimate the model parameters
stochastically, instead of calculating them exactly, which is not possible for us.
This Markov chain has a transition rate matrix. The transition rate matrix (also
called intensity matrix), for this model is given by expression (3):

qij(x) = lim
dt→0

1
dt

P
(
X(t + dt) = X(i �→ j)|X(t) = x)

)

= λi(x)pij(x) (3)

Expression (3) shows the rate at which developer i makes ministeps, mul-
tiplied by the probability that he changes the arc variable Xij , if he makes a
ministep. Our Markov chain can be simulated by following the steps explained
in [28].

4.2.4 Markov Chain Monte Carlo (MCMC) Estimation
The described statistical model for longitudinal analysis of open source software
development communities is a complex model and cannot be exactly calculated,
but it can be stochastically estimated. We can simulate the longitudinal evolu-
tion, and estimate the model based on the simulations. Then we can choose an
estimated model that has a good fit to the network data. For details of the sim-
ulation and estimation procedures please refer to [28]. The desirable outcome
for the estimation is the vector parameter β̂ for which the expected and the
observed vectors are the same.
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5 Results

The results of parameter estimation are listed in Table 1. The parameter esti-
mates that are statistically significant are marked with an asterisk (*) in Table 1.
Recall that the weighted sum in expression (2) represents our objective function,
and the effects listed in Table 1 are the parameter estimates of βk’s in expres-
sion (2).

The rate parameters represent the rate of change for the period between t1
to t2 for developers (i.e. how likely developers were to change ties in that time
period). There’s a clear trend in the rates 1–9, with a peak of 11.65 for the t4 to
t5 time period. This suggests a significantly higher “preference” by developers for
(a) forming new ties and interacting with previously non-connected developers
and (b) terminating a previously connected tie. This peak value dies down as to
less than 1, for the t8 to t9 time period at 0.79 which can be used as an early
warning sign of an imminent change decision.

Table 1. Parameter estimates

Effect Par. (s.e.)

Rate 1 1.419 (0.402)

Rate 2 2.633 (0.919)

Rate 3 3.231 (1.222)

Rate 4 11.656 (7.158)

Rate 5 5.238 (1.871)

Rate 6 5.431 (1.901)

Rate 7 1.863 (0.520)

Rate 8 0.791 (0.258)

Rate 9 0.671 (0.206)

outdegree (density)* –5.389 (0.300)

reciprocity –6.448 (31.754)

transitive triplets –0.582 (0.875)

3-cycles –2.680 (8.084)

out-out degree(̂1/2) assortativity* 1.123 (0.291)

devScAct alter* –0.021 (0.009)

devScAct ego* 0.011 (0.003)

devScAct ego x devScAct alter –0.000 (0.000)

devMlAct alter 0.141 (0.010)

devMlAct ego –0.037 (0.051)

devMlAct ego x devMlAct alter 0.002 (0.003)

int. devMlAct ego x devScAct ego* 0.003 (0.002)
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Table 2. The list of developers source code contributions in the 10 months run-up to
the forking event, sorted by total number of commits.

Developer t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Sum t1..t10
1 Anonymized Developer #1 17 54 48 22 86 298 238 154 136 210 1263

2 Anonymized Developer #2 55 100 42 58 74 156 120 16 44 4 669

3 Anonymized Developer #3 7 34 12 70 64 70 8 38 146 118 567

4 Anonymized Developer #4 21 163 54 138 64 46 38 36 0 4 564

5 Anonymized Developer #5 38 190 6 26 40 14 10 30 34 36 424

6 Anonymized Developer #6 21 0 20 58 59 35 48 41 24 80 386

7 Anonymized Developer #7 0 0 0 0 0 36 42 47 143 15 283

8 Anonymized Developer #8 23 22 9 87 72 1 1 0 0 0 215

9 Anonymized Developer #9 8 60 53 55 3 1 0 0 12 0 192

10 Anonymized Developer #10 0 0 3 81 39 12 4 8 2 4 153

11 Anonymized Developer #11 0 0 0 0 8 60 1 6 14 23 112

12 Anonymized Developer #12 2 47 30 1 7 2 0 8 0 0 97

13 Anonymized Developer #13 0 0 3 0 0 0 11 13 1 63 91

14 Anonymized Developer #14 0 0 0 0 0 0 0 8 38 40 86

15 Anonymized Developer #15 3 35 33 1 0 0 0 0 0 0 72

16 Anonymized Developer #16 3 0 0 0 0 0 0 4 17 46 70

17 Anonymized Developer #17 0 3 0 25 40 0 0 0 0 0 68

18 Anonymized Developer #18 0 0 0 55 0 9 0 1 0 1 66

19 Anonymized Developer #19 0 0 0 0 0 0 4 21 17 23 65

20 Anonymized Developer #20 0 0 0 9 15 14 11 2 6 0 57

21 Anonymized Developer #21 13 1 3 3 0 12 17 2 0 0 51

22 Anonymized Developer #22 8 18 12 0 0 0 0 0 3 4 45

23 Anonymized Developer #23 0 0 9 6 0 0 1 3 1 24 44

24 Anonymized Developer #24 0 0 0 0 0 0 13 16 3 4 36

25 Anonymized Developer #25 5 20 10 0 0 0 0 0 0 0 35

26 Anonymized Developer #26 1 0 11 2 14 7 0 0 0 0 35

27 Anonymized Developer #27 0 0 0 0 0 0 4 14 3 13 34

28 Anonymized Developer #28 3 12 4 1 5 0 0 1 1 4 31

29 Anonymized Developer #29 0 0 0 26 1 0 0 0 0 0 27

30 Anonymized Developer #30 0 0 0 0 0 0 0 0 0 26 26

31 Anonymized Developer #31 0 0 0 0 3 8 7 0 0 8 26

32 Anonymized Developer #32 0 0 0 0 10 13 0 1 0 0 24

33 Anonymized Developer #33 0 0 0 0 0 0 19 2 2 0 23

34 Anonymized Developer #34 0 0 0 16 7 0 0 0 0 0 23

35 Anonymized Developer #35 0 0 0 0 0 0 2 19 0 0 21

36 Anonymized Developer #36 0 8 11 0 0 0 0 0 0 0 19

37 Anonymized Developer #37 0 0 0 18 0 0 0 0 0 0 18

38 Anonymized Developer #38 0 0 0 0 0 0 17 0 0 0 17

39 Anonymized Developer #39 0 0 0 11 6 0 0 0 0 0 17

40 Anonymized Developer #40 0 0 0 0 0 0 0 2 0 12 14

41 Anonymized Developer #41 3 0 1 0 0 0 0 0 0 9 13

42 Anonymized Developer #42 0 0 0 0 0 0 7 2 2 2 13

43 Anonymized Developer #43 2 0 0 3 0 1 1 0 1 5 13

44 Anonymized Developer #44 0 0 0 0 0 0 0 0 8 5 13

45 Anonymized Developer #45 1 2 0 5 1 0 0 1 3 0 13

46 Anonymized Developer #46 0 0 0 0 4 5 3 0 1 0 13

47 Anonymized Developer #47 0 0 0 0 0 0 0 0 3 9 12

48 Anonymized Developer #48 0 0 0 0 0 0 10 1 0 0 11

49 Anonymized Developer #49 0 0 0 0 0 0 1 10 0 0 11

50 Anonymized Developer #50 0 6 5 0 0 0 0 0 0 0 11

51 Anonymized Developer #51 0 0 2 1 0 0 0 0 0 8 11

52 Anonymized Developer #52 0 1 0 0 0 0 0 6 2 0 9

53 Anonymized Developer #53 0 0 0 4 4 0 0 0 0 1 9

54 Anonymized Developer #54 0 0 0 0 0 0 0 0 0 9 9

55 Anonymized Developer #55 1 0 0 0 1 6 0 0 0 0 8

56 Anonymized Developer #56 1 6 1 0 0 0 0 0 0 0 8

57 Anonymized Developer #57 1 7 0 0 0 0 0 0 0 0 8

58 Anonymized Developer #58 0 0 0 0 0 0 0 0 0 8 8

59 Anonymized Developer #59 0 0 0 2 4 0 0 0 0 0 6

60 Anonymized Developer #60 0 0 1 1 0 1 1 0 0 1 5
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6 Conclusion

In this study, we used a developer-oriented approach to statistically model the
changes a FOSS community goes through in the run-up to a fork. The model
represented tie formation, breakage, and maintenance between developers. We
use 10 snapshots of the graph as observed data to estimate the influence of several
effects on formation of the observed networks. We used a stochastic estimation
method to estimate several model parameters of the model and used a Wald-
type t-test to estimate the significance of these parameters on this longitudinal
change.

The results show that the out-out degree assortativity and the outdegree
(density) effects are statistically significant, which can be interpreted that devel-
opers maintained a “preference” for interacting with developers who had similar
outdegree levels. For example, core developers with high levels of mailing list
activity responding to messages, were more likely to be connected to other simi-
larly behaving high-outdegree developers. Also, that top answerer/repliers on the
mailing list were more likely to contact other top developers, and the community
shows a preference for inter-stratum ties.

The developers’ source code repository contribution level (devScAct ego) was
also statistically significant, which implies developers with higher levels of source
code contributions increase their outdegree more rapidly. The developers’ source
code repository contribution level (devScAct alter) is also statistically significant,
which implies developers with higher levels of source code contributions increase
their indegree more rapidly.

Perhaps, an interesting observation is the existence of significance for high
activity/contribution to the source code repository, however, in contrast, there’s
a lack of significance for high activity on the mailing list. In summary, high levels
of contribution to the source code brings you connections more rapidly, while
high levels of contributions to the mailing list is not suggestive of this. This can
be interpreted as a sign of meritocracy based on code, rather than talk, which
captures a healthy dynamic in this project, that was forked because of addition
of functionality, and was classified as a healthy fork.

7 Threats to Validity

The study findings may not be generalized. First, one reason is that the projects
is this research study were selected from a pool of candidate projects, based on
a filtering criteria that included availability of their data. Given access, a larger
number of projects as the sample size could result in a more robust investigation.

Second, we used data from online communications. The assumption that all
the communication can be captured by mining repositories is intuitively imper-
fect, but inevitable. Third, social interactions data is noisy, and our statistical
approach might be affected because of this.

Third, the statistical model we use to model the longitudinal evolution of
collaboration networks is estimated stochastically, rather than being calculated
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exactly. The stochastic process might not always arrive at the same results. To
counter this issue, we run the algorithm several times to double-check for such
irregularities.
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