Release Early, Release Often and Release
on Time. An Empirical Case Study
of Release Management

Jose Teixeiral2(=)
1 Abo Akademi, Turku, Finland
jose.teixeira@abo.fi
2 Turku Centre for Computer Science (TUCS), Turku, Finland
http://www. jteixeira.eu

Abstract. The dictum of “Release early, release often.” by Eric
Raymond as the Linux modus operandi highlights the importance of
release management in open source software development. Nevertheless,
there are very few empirical studies addressing release management in
open source software development. It is already known that most open
source software communities adopt either feature-based or time-based
release strategies. Each of these has its advantages and disadvantages
that are context-specific. Recent research reported that many prominent
open source software projects have moved from feature-based to time-
based releases. In this longitudinal case study, we narrate how OpenStack
shifted towards a liberal six-month release cycle. If prior research dis-
cussed why projects should adopt time-based releases and how they can
adopt such a strategy, we discuss how OpenStack adapted its software
development processes, its organizational design and its tools toward a
hybrid release management strategy — a strive for balancing the benefits
and drawbacks of feature-based and time-based release strategies.

Keywords: Open-Source - OSS - FLOSS - Release management - Open-
Stack

1 Introduction

The dictum of “Release early, release often.” by Eric Raymond as the Linux
modus operandi [1,2] highlights the importance of release management in open
source software development (see [3-5]). Across disciplines, release management
was acknowledged as a very complex process that raises many issues among the
producers and users of software [6-9]. Nevertheless, there are very few empiri-
cal studies addressing release management in open source software development
[5,10]. This is unfortunate since many lessons can be learned from open source
software communities [11-13]. After all, the freedom to study socio-technical
aspect of software development contrasts open source software from the propri-
etary model where access to the software development team is only granted to
a few.

© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 167-181, 2017.
DOI: 10.1007/978-3-319-57735-7_16

168 J. Teixeira

Given such scarcity of empirical work addressing release management in the
context of open source software [5,10], we address how a particularly large,
complex and high-networked open source software ecosystem implemented a
time-based release strategy. Taking the case of OpenStack, a fast growing cloud
computing platform that is attracting great scholarly attention recently (e.g.,
[14-18]), we explore a ‘time-based release management strategy’ implementation
in practice by looking at the release management process per se as well as to the
organizational design and the tools supporting it.

2 Prior Related Work

Within the open source context, it is known that release management affects
both producers of software and its users. In one side, prior research suggested
that community activity increases when the scheduled release date gets closer
[19]. On the user side, new releases result in spikes of downloads [20]. After
all, as noted by the early work of Martin Michlmayr that focused on release
management in open source software (see [21]), release management is concerned
with the delivery of products to end-users. Is therefore not surprising that some
recently saw release management as a process that supports value co-creation
among suppliers and consumers of software (see [6]).

As pointed out by three recent doctoral dissertations addressing release man-
agement in the context of open-source software [10,21,22], most open source
software communities adopt either feature-based or time-based release strate-
gies. Many prominent open source software projects start with sporadic releases
in which developers announce the newly developed features'. However, as many
of this projects grown in size and complexity, they start adopting time-based
release strategies?. An early empirical study that mined the repository of a
project while it adopted a time-based release strategy (i.e., the Evolution
e-mail client), suggested that the adoption of a time-based released boosted the
development in general terms over time in comparison to feature-based release
management [23]. More recent research, based on interviews with key members
of seven prominent volunteer-based open source projects, point out that many
of the problems associated with release-based strategies can be overcome by
employing a time-based release strategy [5]. It is getting generally accepted that
when a open-source software project grows in size and complexity, a time-based
release strategy should be considered.

Time-based release strategies encompass meeting a schedule, an agenda, a
deadline — either a strict or more liberal ones. To enforce that software is released
on time, the use of freezes (such as code freezes), will set a clear deadline to the

! See the historical newsgroup news: comp.os.linux.announce where developers
announced new releases of open-source software for Linux with a strong emphasis
on the implemented features.

2 See https://www.kernel.org/category/releases.html and https://www.debian.org/
releases/ for information on the releases of Linux (2-3 months release cycle) and
Debian (with a two years release cycle).

https://groups.google.com/d/forum/comp.os.linux.announce
https://www.kernel.org/category/releases.html
https://www.debian.org/releases/
https://www.debian.org/releases/

Release Early, Release Often and Release on Time 169

software development team. If open source developers have much freedom to
self-manage their own software development efforts (when comparing with tra-
ditional proprietary paradigms), the use of freezes acts in the opposite way, it
constrains the developers. If new features are not implemented before the next
freeze, they will not be included in the next release. Consequently, when devel-
opers realize that a set of new features will bot be ready before the next freeze,
the development of such features is either canceled, put on hold or developed at
the side to be integrated later on future software releases.

Such freezes, that occur before the scheduled time-based release, act as con-
trol mechanisms that slowly halt the production of the development core code
(see [13,24]). In large and complex open source software projects involving a
modular architecture in which many components integrate with each other,
such freeze forces developers to (1) fix and release the individual components
upstream, (2) integrate the different components and test the integrated core.

As earlier reported (see [13]) such freeze categories can include:

feature freeze “no new functionality can be added, the focus should is on
removing defects;”
string freeze “no messages displayed by the program, such as error mes-

sages, can be changed — this allows translating as many messages as possible
before the release;”3

code freeze “permission is required to make any change, even to fix bugs.”

3 Empirical Background

The cloud computing business is dominated by a small number of players (e.g.,
Amazon, Google and Microsoft). The leading players do not sell cloud infrastruc-
ture products. Instead, they provide bundled computing services. If there would
be no alternatives, all cloud computation would run in hardware and software
infrastructures controlled by very few players with increased customer lock-in
(see [16]).

Competing with the providers of such services, the leading product alterna-
tives are not commercial but rather four open source projects (i.e., OpenStack,
CloudStack, OpenNebula, and Eucalyptus). While the commercial cloud com-
puting services are developed and tightly controlled by a single organization,
the open source products are more inclusive and networked — multiple firms
participate in its development as well as multiple firms attempt to capture value
from it.

Our empirical unit of analysis, OpenStack is an open source software cloud
computing infrastructure capable of handling big data. It is primarily deployed
as an “Infrastructure as a Service” (IaaS) solution. It started as a joint project of
Rackspace, an established IT web hosting company, and NASA, the well-known
U.S. governmental agency responsible for the civilian space program, aeronautics

3 Here we add that many automated user-interface testing tools and techniques depend
on the ‘steadiness’ of certain strings (see [25,26]).

170 J. Teixeira

and aerospace research. The project attracted much attention from the industry.
By the end of 2016, OpenStack counted with more than 67000 contributors, 649
supporting companies. Furthermore, more than 20 millions lines of code were
contributed from 169 countries?.

Both private companies (e.g., AT&T, AMD, Canonical, Cisco, Dell, EMC,
Ericsson, HP, IBM, Intel, and NEC, among many others) and public entities
(e.g., NASA, CERN, Johns Hopkins University, Instituto de Telecomunicagoes,
Universidade Federal de Campina Grande, and Kungliga Tekniska Hogskolan,
among others) work together with independent, non-affiliated developers in a
scenario of pooled R&D in an open source way (i.e., emphasizing development
transparency while giving up intellectual property rights). Paradoxically, even
if OpenStack emphasizes collaboration in the joint-development of a large open
source ecosystem, there are many firms directly competing with each other within
the community. Among others, there is competition among providers of public
cloud services based on OpenStack (e.g., HP, Canonical, and Rackspace), among
providers of specialized hardware complementing OpenStack (e.g., HP, IBM, and
Nebula), and among providers of complementary commercial software plug-ins
complementing OpenStack (e.g., VMware, Citrix, and Cisco) (see [16,27]).

We decided to address OpenStack due to its perceived novelty, its high inter-
networked nature (i.e., an “ecosystem” involving many firms and individual
contributors), its heterogeneity (i.e., an ecosystem involving both startups and
high-tech corporate giants), its market-size ($1.7bn, by 2016°), its complexity
(i-e., involving different programming languages, different operating systems, dif-
ferent hardware configurations) and size (20 millions lines of code contributed
by more than 67000 developers).

From the early beginnings, and while OpenStack was growing (e.g., in terms
of the number of contributors, its code-base, and adoption among other socio-
technical indicators), it adopted a six-month, time-based release cycle with fre-
quent development milestones that raised much discussion among its developers.
We found it an interesting case to study release management within the overlap
of open source software, software ecosystems, and complex software systems.

4 Methodological Design

This empirical case study was guided by the broad research question on “How
OpenStack implemented a time-based release strategy”. A particular emphasis
was given to the release management process per se as well as to the organiza-
tional design and the tools supporting it.

Our efforts were built on top of publicly-available and naturally-occurring
archival data derived from the OpenStack project. Such data are not a conse-
quence of our own actions as researcher, but are created and maintained by the
OpenStack community in their own pursuits of developing a cloud computing

* See http://www.openstack.org/ for the official website.
5 See http://451research.com /report-short ?entityIld=82593.

http://www.openstack.org/
http://451research.com/report-short?entityId=82593

Release Early, Release Often and Release on Time 171

infrastructure. We took into account many methodological notes in case study
research that legitimate the use of archival data when studying a case [28-32].

We started by digesting many websites officially related to OpenStack
(e.g., https://www.openstack.org/, https://wiki.openstack.org and http://docs.
openstack.org/) expanding later to other websites. The selection of the initial
sources (i.e., departure points) took in consideration key guidelines on how to
conduct qualitative empirical research online [33,34]. From the initial sources,
we were forced to follow many links to collect further information related to
release management in OpenStack — we often landed in blogs maintained by
organizations and individuals that recurrently contribute to OpenStack. Rele-
vant data was meticulously organized withing a database for later analysis [35,
pp. 94-98].

From our initial screening of qualitative data, we were able to: (1) make sense
of the industrial background in which Openstack is embedded, (2) make sense
of the complex software development processes that steer the project evolution,
(3) survey complex inter organizational arrangements within the project, and
(4) understand the role of many of the software tools that support software
development processes.

After getting familiar with many social-technical issues within OpenStack,
we analyzed the collected data from the lenses of extant knowledge in release
management and open source software. Given the lack of empirical knowledge
addressing release management in open source software [5, 10], we explored a
‘time-based release management strategy’ in practice. Our rich description on
how OpenStack implemented its six-month, time-based release cycle with fre-
quent development milestones should increase our ability to understand and
explain release management within the context of complex open source software
ecosystems. To enhances the validity of our description on how OpenStack imple-
mented its time-based release strategy, we asked four OpenStack developers (two
of them with release management responsibilities) to early read and comment
our Sect.5.1 in advance — we reduced then possible misinterpretations of the
collected natural occurring data.

5 Results

Although our research is still at preliminary stage, we believe that some of our
preliminary results can already contribute towards a better understanding of
release management within complex open source software ecosystems. After all,
release management is an under-researched area in which many lessons can be
learned from open source software [13]. Our description of the implementation of
a ‘time-based release management strategy’ in the particular case of OpenStack
is organized as a complex socio-technological process and as a complex inter-
organizational arrangement supported by different tools and systems.

https://www.openstack.org/
https://wiki.openstack.org
http://docs.openstack.org/
http://docs.openstack.org/

172 J. Teixeira

5.1 Release Management at OpenStack

OpenStack was first launched by Rackspace and NASA in July 2010 as an
“open-source cloud-software initiative”. The first release, code-named ‘Austin’,
appeared four months later, with plans to release regular updates of the software
every few months. ‘Austin’ was already a sizable release as it inherited the code-
base from NASA’s Nebula platform as well as the code-base from Rackspace’s
Cloud Files platform. Firms such as Canonical, SUSE, Debian and Red Hat —
all with a recognized role in the open software world were among the first organi-
zations engaging with OpenStack. On the other side, Citrix, HP, and IBM were
among the first high-tech giants that contributed to development of the project.

As OpenStack increased both in size and complexity, the forthcoming releases
code-named ‘Bexar’, ‘Cactus’, and ‘Diablo’ came at irregular periods that ranged
from three to five months®. As captured by the following quote, the ‘Diablo’ was
the first of many forthcoming releases launched within a six months release cycle.

“This release marks the first six month release cycle of OpenStack. The next
release, Essex, will also be a six month release cycle and development is now
officially underway. While Diablo includes over 70 new features, the theme is
scalability, availability, and stability.” — Devin Carlen, 29 September 20117 .

OpenStack is so far orchestrated by the Git distributed version control sys-
tem (aka repository) and the Gerrit revision control system (aka code review
tool). Its source-code is hosted across dozens of repositories®. Due to the inher-
ent complexity of a large-scale project developed by dozens of firms and hun-
dred of developers, keeping everything within a single repository would raise
issues on “when and where are bugs introduced” or “tracing longitudinally the
development of features”. Moreover, by using a multiple-repository approach
access-control could be customized to each individual repository, new develop-
ers would not spend so much time learning the structure of a large source-code
tree, and small changes across the multiple projects would not bother so much
the other projects. Additionally, OpenStack also attempted a modular architec-
ture with various components, each repository was then managed by the project
team responsible by each component?. Some components, such as the OpenStack
Compute (aka Nova and the computing fabric controller), are core components
in which many other components rely on. To be able to integrate with such
components, modular designs and much cross-project coordination is required.

“We started this five-year mission with two projects: Nova (Compute) and Shift
(Object Store) and over time, the number of projects in OpenStack grew. Some of

5 See historical information on the exact release dates at https://releases.openstack.
org/.

7 See https://www.openstack.org/blog/2011/09/openstack-announces-diablo-
release/.

8 For an exhaustive list of OpenStack repositories see http://git.openstack.org/cgit.

9 We acknowledge that some OpenStack components are also hosted in multiple repos-
itories (e.g., Neutron the “network connectivity as a service“component. They are
however exceptional cases.

https://releases.openstack.org/
https://releases.openstack.org/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
http://git.openstack.org/cgit

Release Early, Release Often and Release on Time 173

this where parts of the existing projects that split out to have their own separate
teams and become little more modular. Other things were good new ideas that
people had that fit within the realm of OpenStack — Like interesting things that
you would want to do in or with a cloud. Over time, we built a process around
that to deal with the fact that there were so many of this projects coming in.” —
Sean Dague, 15 May 2015'°

OpenStack keeps refining its release management process but always com-
mitted to a six-month release cycle. Each release cycle encompasses: planning
(I month), implementation (3 months), and integration where most pre-release
critical bugs should be fixed (2months). During the earlier release phase, the
‘coding’ efforts are much driven by discussion and specifications, while in a later
release phase (i.e., stabilization of release candidates) the development turns
into the bug-fixing mode (as reported in other open source projects [5,19,23]).
At each release, developers start by implementing the discussed and/or speci-
fied key features while, by the end of the release, there is a peak of bug-fixing
activities. To sum up, each release cycle starts in a specification and discussion
driven way and ends in a bug-tracker oriented way.

The ‘planning stage’ is at the start of a cycle, just after the previous release.
After a period of much stress to make the quality of the previous release accept-
able, the community steps back and focus on what should be done for the next
release. This phase usually lasts four weeks and runs in parallel with the Open-
Stack Design Summit on the third week (in a mixture of virtual and face-to-
face collaboration). The community discusses among peers while gathering feed-
back and comments. In most cases, specification documents are proposed via
an infrastructure system!'! that should precisely describe what should be done.
Contributors may propose new specs at any moment in the cycle, not just dur-
ing the planning stage. However doing so during the planning stage is preferred,
so that contributors can benefit from the Design Summit discussion and the
elected Project Team Leads (PTLs) can include those features into their cycle
roadmap. Once a specification is approved by the corresponding project leader-
ship, implementation is tracked in a blueprint'?, where a priority is set and a
target milestone is defined, communicating when in the cycle the feature is likely
to go live — At this stage, the process reflects the principles of agile methods.

The ‘implementation stage’ is when contributors actually write the code (or
produce documentation, test cases among other software-related artifacts) map-
ping the defined blueprints. This phase is characterized by milestone iterations
(once again a characteristic of agile software development methods). Once devel-
opers perceive their work as ready to be proposed for merging into the master

10 Transcribed from video, see [1:26-2:06] https://www.openstack.org/summit/
vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-
openstack-projects-governance.

L See http://specs.openstack.org/ for intra-project and cross-project specifications.

2 See https://wiki.openstack.org/wiki/Blueprints for blueprints that track each fea-
tures implementation.

https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
http://specs.openstack.org/
https://wiki.openstack.org/wiki/Blueprints

174 J. Teixeira

branch, it is pushed to OpenStack’s Gerrit review system for public review'3.

It is important to remark that in order to be reviewed in time for a milestone,
the change should be proposed a few weeks before the targeted milestone pub-
lication date. An open source software collaboration platform' is used to track
blueprints in the ‘implementation stage’. In a more open-source way and not
to discourage contributors, it is worth remarking that not all “features” have
to go through the blueprints tracking: contributors are free to submit any ad
hoc patch. Both specifications and blueprints are tools supporting the discus-
sion, design, and progress-tracking of the major features in a release. Even if
the big corporate contributors are naturally more influential in the election of
Project Team Leads (PTLs) steering the tracking process, it should not prevent
other contributors from pushing code and fixes into OpenStack. Development
milestones are tagged directly on the master branch during a two-day window
(typically between the Tuesday and the Thursday of a milestone week). At this
stage, heavy infrastructure tools that continuously integrate and test the new
code play a very important role'®.

At the last development milestone OpenStack applies three feature freezes
(i.e., FeatureFreeze, SoftStringFreeze and HardStringFreeze as described in
Table 1. At this point, the project stops accepting new features or other dis-
ruptive changes. It concentrates on stabilization, packaging, and translation.
The project turns then into a ‘pre-release stage’ (termed as ‘release candidates
dance’®). Contributors are encouraged to turn most of their attention to testing
the result of the development efforts and fix release-critical bugs. Critical miss-
ing features, dubious features, and bugs are documented, filed and prioritized.
Contributors are advised to turn their heads to the quality of the software and
its documentation. The development becomes mainly bug-fixing oriented and a
set of norms and tools guide this last product-stabilization phase!”. Between the
last milestone and the publication of the first release candidate, contributors are
incited to stop adding features and concentrate on bug fixes. Only changes that
fix bugs and do not introduce new features should be allowed to enter the master
branch during this period. Any change proposed for the master branch should at
least reference one bug on the bug tracking system. Once all the release-critical
bugs are fixed, OpenStack produces the first release candidate for that project

13 For more information on the OpenStack code-review activities, see http://docs.

openstack.org/infra/manual /developers.html#code-review.

See https://launchpad.net/ for more information on the adopted software collabo-

ration platform as well as https://launchpad.net/openstack for more information on

how OpenStack uses it.

See http://docs.openstack.org/infra/jenkins-job-builder/ for more information on

continuous upstream unit testing as well as http://docs.openstack.org/infra/zuul/

and http://docs.openstack.org/developer/tempest/ for more information on contin-

uous upstream integration testing across interrelated projects and repositories.

See http://docs.openstack.org/project-team-guide/release-management.html for

more information on the release cycles.

17 See https://wiki.openstack.org/wiki/BugTriage and https://wiki.openstack.org/
wiki/Bugs for more information on bug-fixing activities.

14

15

16

http://docs.openstack.org/infra/manual/developers.html#code-review
http://docs.openstack.org/infra/manual/developers.html#code-review
https://launchpad.net/
https://launchpad.net/openstack
http://docs.openstack.org/infra/jenkins-job-builder/
http://docs.openstack.org/infra/zuul/
http://docs.openstack.org/developer/tempest/
http://docs.openstack.org/project-team-guide/release-management.html
https://wiki.openstack.org/wiki/BugTriage
https://wiki.openstack.org/wiki/Bugs
https://wiki.openstack.org/wiki/Bugs

Release Early, Release Often and Release on Time 175

(named RC1). Across this last stage, the repository version control system
(i.e., Git) plays an important role in alleviating the interruption caused by the
freezes — freeze applies only to the stable branch so that developers can continue
their work on other the development branches (i.e., the trunk). New features
should be committed to other branches, discussed at the ‘planning stage’, and
merged into the stable branch at the next ‘implementation stage’.

Table 1. The three feature freezes of OpenStack

Freeze Description

FeatureFreeze Project teams are requested to stop merging code adding new
features, new dependencies, new configuration options, database
schema changes, changes in strings ... all things that make the
work of packagers, documenters or testers more difficult

SoftStringFreeze | After the FeatureFreeze, translators start to translate the strings.
To aid their work, any changed of existing strings is avoided, as
this will invalidate some of their translation work. New strings
are allowed for things like new log messages, as in many cases
leaving those strings untranslated is better than not having any
message at all

HardStringFreezee | 10 days after the SoftStringFreeze, any string changes after RC1
should be discussed with the translation team

The OpenStack release team is empowered during this last phase. It cre-
ates a stable/* branch from the current state of the master branch and uses
access control list (ACL) mechanisms to introduces any new release-critical fix
discovered until the release day. In other words, further changes at this stage
require permission from the release team — in the words of OpenStack, they will
be treated as feature freeze exceptions (FFE). Between the RC1 and the final
release, OpenStack looks for regression and integration issues. RC1 may be used
as is for the final release unless new release-critical issues are found that warrant
an RC respinning. If this happens, a new milestone will be open (RC2), with
bugs attached to it. Those RC bug fixes need to be merged in the master branch
before they are allowed to land in the stable/* branch. Once all release-critical
bugs are fixed, the new RC is published. This process is repeated as many times
as necessary before the final release. As it gets closer to the final release date, to
avoid introducing last-minute regressions, the release team limits the number of
changes and their impact: only extremely critical and non-invasive bug fixes can
get merged. All the other bugs are documented as known issues in the Release
Notes instead.

On the release day, the last published Release Candidate of each integrated
project is collected and the result is published collectively as the OpenStack
release for this cycle. OpenStack should by then be stable enough for real indus-
trial deployments. But once the version is released, a new cycle will commence
within OpenStack; the master branch switches to the next development cycle,

176 J. Teixeira

new features can be freely merged again, and the process starts again. After
the release and a period of much stress that required much coordination, most
of the community shifts again to the ‘planning stage’ and many will attend
the Design Summit. A new branch was opened already to accommodate new
developments. Even so, the launched release needs to be maintained and further
stabilized until its end of life (EOL) when it is no longer officially supported by
the community. OpenStack might release “bugfix updates” on top of previously
announced releases with fixed bugs and resolved security issues, actions that
might distract developers working on newer stuff.

Changes in the development core code
Release-Milestones

= Rp|egse

1 Freeze

" Planning | Implementation | Freeze, integrate, Stabilize and
stabilize and launch support

I = P P 3 3 gz
b n & g & 5 s
2 25 E E] E g gé
>
6 months release cycle Bugfix and security
4 wks { 3 months /' 2 months up to1 year SUDPOFt\

Fig. 1. Overview of the OpenStack standard release cycles.

The overall release management process, as illustrated in Fig. 1, follows a
‘plan, implement, freeze, stabilize and launch’ cycle between releases. Each
release is then re-stabilized with a posteriori release-updates to fix bugs and
security issues. Nevertheless, the process described so far is just the most recur-
rent pattern within OpenStack — the default modus operandi. The described
process is actually quite open and liberal. It acts as a ‘recommendation’ for
the different teams so that whatever is developed is then later more smoothly
integrated, stabilized and released in a coordinated fashion.

Since the October 2016 (affecting the ‘Newton’ release), OpenStack actu-
ally recommends its project teams to opt from four different release man-
agement models: Common cycle with development milestones, Common cycle
with intermediary releases, Trailing the common cycle and Independent release
model as following described. Most of this models follow a common six-month

Release Early, Release Often and Release on Time 177

development cycle, some release intermediary releases within the six-months
cycle and others are allowed to manage their own release strategy!'®.

Common cycle with development milestones. The official and default
time-based model followed by most teams. It results in a single release at
the end of the development cycle and includes three development milestones
(as in Fig. 1).

Common cycle with intermediary releases. For project teams which want
to do a formal release more often, but still want to coordinate a release at
the end of the cycle from which to maintain a stable branch. Recommended
for libraries, and to more stable components which add a limited set of new
features and do not plan to go through large architectural changes.

Trailing the common cycle. For project teams that rely on the completeness
of other components (e.g., packaging, translation, and UT testing) and may not
publish their final release at the same time the other projects. For example,
teams packaging and deploying OpenStack components need the final releases
of many other components to be available before they can run their own final
tests. Cycle-trailing project teams are given an extra two weeks after the
official release date to request the publication of their own releases. They
may otherwise use intermediary releases or development milestones.

Independent release model. For project teams that do not benefit from a
coordinated release or from stable branches. They may opt to follow a com-
pletely independent release model. Suitable for instance for the OpenStack
own infrastructural systems (e.g., the ones supporting upstream testing and
integration) as well for components with little dependence on the overall
Openstack core architecture.

“We still have a coordinated release at the end of the six months for projects
that are willing to those deadlines and milestones, but the main change is that
we will move from managing most of them to refine processes and tools for
each project to be able to produce those releases easier. The development cycle
will still be using a six months development cycle, even if some projects might
do intermediary releases where it makes sense, but will still organize almost
everything under a six months development cycle between design summits.”—
Thierry Carrez, 15 May 2015

6 Discussion

Prior work had already inquired on OpenStack release management issues (see
[16, pp. 10-11] for work pointing up collaboration issues and [10, pp. 80-82]
for work pointing up communication issues). However and to the best of our

18 See http://docs.openstack.org/project-team-guide/release-management.html ~ for
the details of each release management model.

19 Transcribed from video, see [6:34-7:00] https://www.openstack.org/summit/
vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-
openstack- projects-governance.

http://docs.openstack.org/project-team-guide/release-management.html
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance

178 J. Teixeira

knowledge, this is the first paper that is explicitly aimed at describing how a
large and complex open-source software ecosystem implemented a liberal time-
based release strategy. As this point, we are not attempting to evaluate, appraise
or compare it — we are just describing it. Future research could contrast the
processual practices of release management across multiple cases (see [5,10]).
Digital trace data generated by the upstream integration processes, the source-
code repository and the bug tracker could be used to triangulate the authenticity
of the conceptual release management models.

Our results confirm the pivotal role of freezes within the release management
process (cf. [13,24]). In our case, the use of freezes forces developers that want
to see their work in the next release to make three big shifts in the focus of the
production: (1) from the individual component level to the overall integration
as a whole, (2) from developing new features to ensuring its landing, integration
and stabilization, and (3) from individual work, or collaboration within smaller
teams, to coordination across the overall community.

Finally, in the light of prior work, the liberal release management process of
OpenStack can be considered a hybrid of feature-based and time-based release
management (see [22, pp. 23]). This as OpenStack encourages regular releases
(every six months) but also attempts to plan the introduction of new features
at each regular release. Leaders of each project team choose a set of features for
the next release at the planning stage. However, if these features are not stable
enough to be included in the next release, they will be left out by the cross-
project release management team. As pointed out recently, release management
constrains the evolution of the integrated whole [10, p. 4].

7 Conclusion

OpenStack implemented a time-based release strategy on a six-month release
cycle. Each cycle comprehended a ‘planning stage’, an ‘implementation stage’
and ‘freeze, stabilize and launch’ stage. At the middle of each release cycle, the
community relies upon three freezes (i.e., “FeatureFreeze”, “SoftStringFreeze”
and “HardStringFreezee”) that encourages developers to change their produc-
tion focus from the development of components to the overall upstream inte-
gration and stabilization of components as a whole — thus affecting much the
work and communication patterns of the community. The implemented release
cycle is quite liberal (i.e., flexible to adaptation), in particular contexts, different
project teams across the community are allowed adapt the ‘default’ six months
release cycle. Moreover, the implemented release management process exhibits
hybrid characteristics of both feature-based and time-based release management
strategies as the process is both feature and time oriented.

In the case of large and complex open-source software ecosystem, the imple-
mentation of a time-based release strategy, as a complex process that inter-
twines with many other software development processes, requires the support of
a well suited organizational design as much coordination is needed. Moreover,
the process constrains the evolution of integrated core and depends heavily on

Release Early, Release Often and Release on Time 179

many software tools that make it possible (e.g., version control, revision control,
continuous upstream integration, continuous upstream testing, and configura-
tion management). Besides its acknowledged benefits, the implementation of a
time-based release strategy is a challenging cooperative task involving multiple
people and technology.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Raymond, E.: The Cathedral and the Bazaar. Knowl. Technol. Policy 12(3), 2349
(1999)

Raymond, E.: The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media, Sebastopol (2001)

Zhao, L., Elbaum, S.: A survey on quality related activities in open source. SIG-
SOFT Softw. Eng. Notes 25(3), 54-57 (2000)

Aberdour, M.: Achieving quality in open-source software. IEEE Softw. 24(1), 58—
64 (2007)

Michlmayr, M., Fitzgerald, B., Stol, K.J.: Why and how should open source
projects adopt time-based releases? IEEE Softw. 32(2), 5563 (2015)

Barqawi, N., Syed, K., Mathiassen, L.: Applying service-dominant logic to recur-
rent release of software: an action research study. J. Bus. Ind. Market. 31(7),
928-940 (2016)

Khomh, F., Adams, B., Dhaliwal, T., Zou, Y.: Understanding the impact of rapid
releases on software quality. Empir. Softw. Eng. 20(2), 336-373 (2015)
Choudhary, V., Zhang, Z.: Research note-patching the cloud: the impact of saas on
patching strategy and the timing of software release. Inf. Syst. Res. 26(4), 845-858
(2015)

Wright, H.K., Perry, D.E.: Release engineering practices and pitfalls. In: 2012 34th
International Conference on Software Engineering (ICSE). pp. 1281-1284, June
2012

Poo-Caamano, G.: Release management in free and open source software ecosys-
tems. Ph.D. thesis, University of Victoria, Canada (2016)

O’Reilly, T.: Lessons from open-source software development. Commun. ACM
42(4), 32-37 (1999)

Spinellis, D., Szyperski, C.: How is open source affecting software development?
IEEE Softw. 21(1), 28 (2004)

Fitzgerald, B.: Open source software: lessons from and for software engineering.
Computer 44(10), 25-30 (2011)

Wuhib, F., Stadler, R., Lindgren, H.: Dynamic resource allocation with manage-
ment objectives-implementation for an openstack cloud. In: 2012 8th International
Conference on Network and Service Management (CNSM) and 2012 Workshop on
Systems Virtualiztion Management (SVM), pp. 309-315. IEEE (2012)

Corradi, A., Fanelli, M., Foschini, L..: VM consolidation: a real case based on open-
stack cloud. Futur. Gener. Comput. Syst. 32, 118-127 (2014)

Teixeira, J., Robles, G., Gonzalez-Barahona, J.M.: Lessons learned from applying
social network analysis on an industrial free/libre/open source software ecosystem.
J. Internet Serv. Appl. 6(1), 14 (2015)

Ge, X., Liu, Y., Du, D.H., Zhang, L., Guan, H., Chen, J., Zhao, Y., Hu, X.:
OpenANFYV: Accelerating network function virtualization with a consolidated
framework in openstack. ACM SIGCOMM Comput. Commun. Rev. 44(4), 353—
354 (2015)

180

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

J. Teixeira

Malik, A., Ahmed, J., Qadir, J., Ilyas, M.U.: A measurement study of open source
SDN layers in openstack under network perturbation. Comput. Commun. (2017)
Rossi, B., Russo, B., Succi, G.: Analysis of open source software development
iterations by means of burst detection techniques. In: Boldyreff, C., Crowston, K.,
Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIPAICT, vol. 299, pp. 83-93.
Springer, Heidelberg (2009)

Wiggins, A., Howison, J., Crowston, K.: Heartbeat: measuring active user base and
potential user interest in FLOSS projects. In: Boldyreff, C., Crowston, K., Lundell,
B., Wasserman, A.I. (eds.) OSS 2009. IFIPAICT, vol. 299, pp. 94-104. Springer,
Heidelberg (2009)

Michlmayr, M.: Quality improvement in volunteer free and open source software
projects - exploring the impact of release management. Ph.D. thesis, University of
Cambridge (2007)

Wright, H.K.: Release engineering processes, their faults and failures. Ph.D. thesis,
University of Texas (2012)

Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J.M., Ortuno-Perez, M.: Using
social network analysis techniques to study collaboration between a floss commu-
nity and a company. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G.
(eds.) OSS 2008. IFTPAICT, vol. 275, pp. 171-186. Springer, Boston (2008)
Anand, A., Bhatt, N., Aggrawal, D., Papic, L.: Software reliability modeling with
impact of beta testing on release decision. In: Ram, M., Davim, J.P. (eds.) Advances
in Reliability and System Engineering. Management and Industrial Engineering,
pp. 121-138. Springer, Cham (2017)

Mesbah, A., Van Deursen, A.: Invariant-based automatic testing of AJAX user
interfaces. In: IEEE 31st International Conference on Software Engineering, 2009.
ICSE 2009, pp. 210-220. IEEE (2009)

Artzi, S., Dolby, J., Jensen, S.H., Moller, A., Tip, F.: A framework for automated
testing of Javascript web applications. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 571-580. IEEE (2011)

Teixeira, J., Mian, S., Hytti, U.: Cooperation among competitors in the open-source
arena: the case of openstack. In: Proceedings of the International Conference on
Information Systems (ICIS 2016). Association for Information Systems (2016)
Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131-164 (2008)

Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods
for software engineering research. In: Shull, F., Singer, J., Sjgberg, D.LK. (eds.)
Guide to Advanced Empirical Software Engineering, pp. 285-311. Springer, London
(2008)

Yin, R.K.: Applications of Case Study Research. Sage, London (2011)
Fisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev.
14(4), 532-550 (1989)

Flynn, B.B., Sakakibara, S., Schroeder, R.G., Bates, K.A., Flynn, E.J.: Empirical
research methods in operations management. J. Oper. Manag. 9(2), 250-284 (1990)
Kozinets, R.V.: The field behind the screen: using netnography for marketing
research in online communities. J. Market. Res. 39, 61-72 (2002)

Kozinets, R.V.: Netnography: Doing Ethnographic Research Online. Sage Publi-
cations Limited, London (2009)

Yin, R.: Case Study Research: Design and Methods. Applied Social Research Meth-
ods Series. Sage Publications, London (1994)

Release Early, Release Often and Release on Time 181

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Release Early, Release Often and Release on Time. An Empirical Case Study of Release Management
	1 Introduction
	2 Prior Related Work
	3 Empirical Background
	4 Methodological Design
	5 Results
	5.1 Release Management at OpenStack

	6 Discussion
	7 Conclusion
	References

