
Toward Fine-Grained Blackbox Separations
Between Semantic and Circular-Security Notions

Mohammad Hajiabadi1,2(B) and Bruce M. Kapron1,2

1 Department of Computer Science, University College London, London, UK
m.hajiabadi@ucl.ac.uk

2 Department of Computer Science, University of Victoria, Victoria, Canada
bmkapron@uvic.ca

Abstract. We address the problems of whether t-circular-secure encryp-
tion can be based on (t − 1)-circular-secure encryption or on semantic
(CPA) security, if t = 1. While for t = 1 a folklore construction, based on
CPA-secure encryption, can be used to build a 1-circular-secure encryp-
tion with the same secret-key and message space, no such constructions
are known for the bit-encryption case, which is of particular importance
in fully-homomorphic encryption. Also, all constructions of t-circular
encryption (bitwise or otherwise) are based on specific assumptions.

We make progress toward these problems by ruling out all fully-
blackbox constructions of
– 1-seed-circular-secure bit encryption from CPA-secure encryption;
– t-seed-circular-secure encryption from (t − 1)-seed-circular secure

encryption, for any t > 1.
Informally, seed-circular security is a variant of the circular security
notion in which the seed of the key-generation algorithm, instead of the
secret key, is encrypted. We also show how to extend our first result to
rule out a large and non-trivial class of constructions of 1-circular-secure
bit encryption, which we dub key-isolating constructions. Our separations
follow the model of Gertner, Malkin and Reingold (FOCS’01), which is
a weaker separation model than that of Impagliazzo and Rudich.

1 Introduction

A public-key encryption scheme is 1-circular secure if it is CPA secure in the
presence of an encryption of the secret key under its corresponding public key.
A more general notion is that of t-circular security under which CPA security
under t public keys pk0, . . . , pkt−1 should be maintained even when each pki is
used to encrypt the secret key of pk(i+1 mod t). These notions are a special case
of the general notion of key-dependent-message (KDM) security, under which
more general functions of the secret key(s) may be encrypted.

Work supported in part by the NSERC Discovery Grant “Foundational Studies
in Privacy and Security”. Part of this work completed while the first author was
at University College London and received funding from the European Research
Council under the ERC Grant Agreement no. 307937.

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part II, LNCS 10211, pp. 561–591, 2017.
DOI: 10.1007/978-3-319-56614-6 19

562 M. Hajiabadi and B.M. Kapron

A primary foundational application of the notion of circular security (for
any t) is in the context of fully homomorphic encryption. Currently, with the
exception of [11], all constructions of pure fully homomorphic encryption go
through a bootstrapping procedure, requiring a circular-security assumption on
a bootstrappable scheme built along the way.

When discussing circular security for an encryption scheme with secret-key
space {0, 1}τ and plaintext space {0, 1}η, an important feature is the relation
between τ and η: we call a scheme full-length if τ = η. It is straightforward
to build a full-length 1-circular-secure scheme from any CPA-secure scheme.1

Informally, this folklore construction is based on the idea that the underlying
plaintext m and public key pk can “communicate” to see if m is pk’s secret key.
Attempts in extending this idea to the t-circular security setting (for t > 1)
have so far met with less success and in fact to date all constructions of t-
circular secure schemes (full-length or otherwise) are based on assumptions with
certain algebraic properties or obfuscation assumptions [3,7,9,30,31,43]. One of
the goals of our work is to explain this state of difficulty.

Unfortunately, the full-length assumption is not the end of the story since in
many applications of circular security, the secret key is indeed encrypted bit-by-
bit or block-by-block, where the size of each block is considerably smaller than
the secret-key size (e.g., [16,42]). In such cases the above folklore construction
(for t = 1) no longer applies: the main difficulty is that since the secret key is no
longer encrypted as a whole, but as short blocks, we cannot perform the simple
check described above. Of particular importance in such settings is the notion
of circular security for single-bit encryption schemes (which we call bit-circular
security), which, beyond FHE applications, is fundamental for the following rea-
son: as shown by Applebaum [2], projection security, a notion slightly extending
bit-circular security by also allowing for encryptions of negated secret-key bits,
is sufficient to obtain KDM security w.r.t. any (a priori fixed) function fam-
ily. Thus, understanding basic forms of KDM security in the bitwise setting is
essential for the general understanding of KDM security.

Toward understanding the notion of circular security, several papers based
on various specific assumptions have given schemes that are CPA secure, but not
t-circular secure (for various values of t), [1,6,12,27]. We remark that although
these works provide evidence that t-circular security of any scheme cannot be
reduced to the CPA security of the same scheme, they do not shed light on the
impossibility of positive constructions.

Finally, we mention that despite the foundational importance of the notion
of bit-circular security, our understanding of what it takes to obtain this notion
(without relying on specific assumptions) is still lacking, and there is little previ-
ous addressing the problem. Haitner and Holenstein [21] rule out fully-blackbox
constructions of KDM-secure encryption w.r.t. quite large function families from

1 Assume, w.l.o.g, the CPA-secure scheme (G, E, D) has plaintext space {0, 1}n and
that G uses an n-bit seed, which is also the outputted secret key. Briefly, the idea
is to modify E so that E(pk, m) will first check whether G(m) produces pk as the
public key, in which case it returns an encryption of an innocuous message.

Toward a Separation of Circular Security and Semantic Security 563

trapdoor permutations. Rothblum [39] shows no fully-blackbox reduction can
prove that CPA security of a bit-encryption scheme implies circular security of
the same scheme. We stress that the result of [39] only considers reductions to
and from the same scheme, as opposed to the results of this paper which are
concerned with constructions.

Before moving on, we remind the reader of the simple fact that bit t-circular
security implies full-length t-circular security. Briefly, the state of knowledge
regarding circular security can be summarized as follows:

– Full-length t-circular security based on CPA security: we have a simple con-
struction for t = 1, but no known constructions for t > 1.

– For bit t-circular security: all constructions (for t = 1 or beyond) are based
on specific assumptions [7,9] and there is a preliminary separation for t = 1
from CPA security [39].

In this work we ask the following two questions

(1) Can bit 1-circular security be based on CPA security?
(2) Can full-length t-circular security (for t > 1) be based on CPA security?

1.1 Our Contributions and Discussion

In this paper we make progress toward answering both questions above in the
negative, by considering the stronger notion of seed-circular security. In its sim-
plest form, an encryption scheme is 1-seed-circular secure if it is CPA secure
in the presence of an encrypted version of the seed (of the key-generation algo-
rithm) under its corresponding public key. Similarly, we may define bit/full-
length) t-seed circular security. Note that the assumption of t-seed-circular secu-
rity is indeed at least as strong as that of t-circular security since any scheme
meeting the former can slightly be changed to meet the latter by altering the
key-generation algorithm to return the underlying seed as its secret-key output.
We first describe our main results and then discuss them in detail.

1. We prove there exists no fully blackbox construction (in the sense of [36]) of 1-
seed-circular-secure bit encryption from CPA-secure encryption (Theorem 6.)
We also show that this separation holds so long as the constructed scheme
has plaintext space {0, 1}c log n for any constant c (Sect. 5.6).

2. We prove that full-length (t + 1)-seed-circular security cannot be based in a
fully-blackbox way on bit t-seed circular security, for any t ≥ 1 (Theorem 9).

Our first result already rules out certain types of constructions for 1-circular-
secure encryption, namely those in which seeds and secret keys are the same.
We show how to adapt this result to the setting of circular security, to rule out
a large and non-trivial class of constructions of circular-secure encryption that
we call key-isolating constructions. Due to technicalities involved we refer the
reader to Sect. 7 for this notion. (A similar adaptation may be given for the
second result, but we do not pursue it in this paper.)

564 M. Hajiabadi and B.M. Kapron

For our second result, choosing the target notion to be full-length (t+1)-seed
circular security (as opposed to bit (t + 1)-seed circular security) and the base
notion to be bit t-seed circular security (as opposed to full-length t-seed-circular
security) only makes our result stronger.

Discussion of results and notions. We first start by discussing the signifi-
cance of the second result. We note that the folklore CPA-security-based con-
struction alluded to earlier indeed results in a full-length 1-seed-circular secure
scheme, since the constructed scheme has the same seed and secret-key space.
This shows that the notion of seed-circular security (at least for the full-length
case) is not so far fetched, reinforcing the significance of the separation result
and providing partial justification for the lack of success in basing full-length
t-circular security, for t > 1, on CPA security. In fact, it suggests that a less
ambitious goal than that of Question (2), namely of basing t-circular security on
(t − 1)-circular security, may still be too much to hope for.

As for the first result, we mention the following fact regarding the notion of
bit 1-seed-circular security. Since one of the main applications of this notion is
in the context of FHE, it is worth mentioning that if E is fully homomorphic
(or homomorphic enough to evaluate G), then if E is 1-seed-circular secure it
is also 1-circular secure, since one can use the homomorphic properties of E to
evaluate G homomorphically, thereby producing an encrypted secret key from
an encrypted seed. (This simple proof is, however, non-blackbox.)

From a practical point of view, the notion of seed circular security for spe-
cific schemes is not very natural since such schemes typically come with public
parameters (e.g., a group), and it is not very meaningful to talk about, say,
encrypting the bits used to generate those parameters. Nevertheless, if public-
parameter generation is thought of as a separate process, many specific schemes
have the property that their secret keys are just the same as their seeds (e.g.,
ElGamal). For example, both circular-secure schemes of [7,9] have the property
that w.r.t. fixed public parameters (which are a group plus l group elements),
their secret keys are just random l-bit-strings, being the same as their seeds.
Thus, as a step toward proving full blackbox impossibility for circular-secure
encryption, it may be worthwhile to formulate a notion of encryption with pub-
lic parameters, and investigate whether our results extend to this case. We have
not, however, carried this out at this moment.

We conclude the discussion with the following observation. Our first result
leaves us with an unexplained gap, namely to what extent the plaintext size
of the constructed scheme could be made bigger before obtaining a positive
(seed-)circular security result? For example, what happens if the construction is
allowed to have plaintexts of ω(log n) bits long? We believe that filling this gap
will further improve our understanding of the notion of 1-(seed-)circular security.

Our separation model. All our separations follow the model of [19]. We discuss
the model for the first result. For any candidate 1-seed-circular-secure construc-
tion E = (G,E,D) we show the existence of two oracles O = (g, e,d) and T such
that (a) there exists a PPT oracle adversary AO,T that breaks the (supposed)

Toward a Separation of Circular Security and Semantic Security 565

seed-circular security of EO and (b) no PPT oracle adversary BO,T can break the
CPA security of O. This immediately implies that there exists no fully-blackbox
reduction. As common in separation models we show the existence of O and T
non-constructively by proving results w.r.t. randomly chosen O and T. We give
an overview of our techniques and separation model in Sect. 4.

Most separation results in the literature indeed rule out the existence of
relativizing reductions, e.g., [8,17,25,40,41], which constitute a broader class
of constructions than fully-blackbox ones. We stress that our results do not
rule out relativizing reductions. Nonetheless, we are not aware of any “natural”
cryptographic construction that is relativizing but not fully-blackbox. Finally,
we mention that there exists separation results in the literature that also only
rule out fully-blackbox reductions, e.g., [21,24,28,29].

Blackbox versus non-blackbox techniques. We note that there are non-
blackbox reductions in cryptography, for which a blackbox-counterpart may or
may not (both provably and ostensibly) exist. (Here by non-blackbox we are
referring to the construction, not to the security proof.) We mention [14,26] as
two examples of blackbox constructions that replaced their earlier non-blackbox
counterparts [20,35]. Classical examples of non-blackbox constructions with no
known blackbox counterparts are [15,34], giving non-blackbox constructions of
CCA1- and CCA2-secure encryption from enhanced trapdoor permutations. The
state of our knowledge regarding the blackbox status of CCA-secure encryption
versus other “classical” public-key primitives is arguably limited, and the only
known works are the work of Gertner et al. [18], ruling out sheilding blackbox
constructions of CCA1-secure encryption from CPA-secure encryption, and that
of Myers and shelat [33] proving equivalence of one-bit and many-bit CCA2
secure encryption. Finally, we mention that the work of Mahmoody and Pass
[29] shows the existence of a non-blackbox construction (that of non-interactive
commitment schemes from so called hitting one-way functions) for which prov-
ably no blackbox counterpart exists.

Other related work. The question of what “general” assumptions may be used
to obtain KDM security is addressed in [23], where it is shown that projection-
secure public-key encryption (PKE) can be built from any CPA-secure PKE with
some structural properties. The power of circular-secure encryption is addressed
in [22], where it is shown that in combination with a so-called reproducibil-
ity property, bit circular security implies the existence of powerful primitives
including correlation-secure trapdoor functions [38], CCA2-secure encryption
and deterministic encryption. The body of work on blackbox separations is exten-
sive, some of which were mentioned earlier. We also mention the progress that
has been made in understanding the limitations of some of the common non-
blackbox techniques, e.g., [4,10].

Open Problems. The main open problem is to extend our impossibility results
to the circular-security setting. We explain in Sect. 8 why we were not able to do
this. Another interesting problem is to see to what extent our techniques extend
to obtain separations based on other classical public-key primitives.

566 M. Hajiabadi and B.M. Kapron

Note on proofs. Due to space constraints, proofs for some results have been
omitted. In all cases, proofs for these results appear in the full version.

2 Preliminaries

If R(x1, . . . , xi; r) is a randomized algorithm using randomness r, by
R(a1, . . . , ai) we mean the random variable obtained by sampling r uniformly
at random and returning R(a1, . . . , ai; r). If D is a distribution x ∈ D means
x ∈ support(D).

The notion of a public-key encryption scheme (PKE) (G,E,D) is standard.
The only convention we make is that the order of keys produced by G is as
a secret/public key pair (as opposed to a public/secret key pair). We refer to
the randomness space of G as the seed space of the scheme. We assume the
decryption algorithm is deterministic, and always decrypts correctly, and refer
to this as the correctness condition. (Our separation results will hold even if the
constructed scheme is allowed to make a small decryption error. However, for
the sake of simplicity we assume the stated condition.) All schemes in this paper
are many-bit or single-bit encryption schemes. If E’s plaintext space is {0, 1}η

by E(PK,M) for M ∈ {0, 1}∗ we mean that M is encrypted in blocks of size η,
augmenting M with enough zero bits to make |M | a multiple of η, if necessary.
In particular, when η = 1, this will denote the bit-by-bit encryption of M .

We shall use lowercase letters (g, e,d) to denote base (i.e., blackbox) schemes
and uppercase letters (G,E,D) to denote constructions.

Oracle convention. Whenever we talk about an oracle adversary/algorithm A
we adopt the following conventions: we say A is efficient (or PPT) if A can be
implemented as a PPT oracle algorithm; we say A is query-efficient if A always
makes at most a poly-number of oracle queries (but unlimited otherwise, and
may run exponential local computations). Whenever we put no restriction on an
adversary it means that it is not restricted in any way.

We define when an adversary breaks the (seed-)circular security of a bit-
encryption scheme. The definition naturally extends to the many-bit case.

Definition 1. Let E = (G,E,D) be a bit PKE with seed space {0, 1}n. Let

InpSeed = (PK1, . . . , PKt, EPK1(S2), . . . , EPKt−1(St), EPKt
(S1))

InpSec = (PK1, . . . , PKt, EPK1(SK2), . . . , EPKt−1(St), EPKt
(SK1))

b ← {0, 1}, C ← EPK1(b),

where Si ← {0, 1}n and (SKi, PKi) = G(Si), for 1 ≤ i ≤ t. Then we say

– A breaks the t-seed-circular security of E if Pr[A(InpSeed, C) = b] is non-
negligibly greater than 1/2.

– A breaks the t-circular security of E if Pr[A(InpSec, C) = b] is non-negligibly
greater than 1/2.

We now define the assumptions underlying our results in this paper.

Toward a Separation of Circular Security and Semantic Security 567

Terminology 1. The assumption of “bit t-seed-circular security” refers to the
existence of a t-seed-circular secure single-bit PKE. Also, “full-length t-seed-
circular security” refers to the existence of a t-seed-circular secure PKE with the
same seed and plaintext space. We have the following simple implications: (a)
CPA security ⇒ full-length 1-seed circular security and (b) bit t-seed-circular
security ⇒ full-length t-seed-circular security.

We define a notion of blackbox reductions between encryption primitives.
See [5,36] for more general notions of blackbox reductions.

Definition 2. A fully-blackbox reduction of P -secure (e.g., circular-secure)
encryption to Q-secure (e.g., CPA-secure) encryption consists of two PPT oracle
algorithms (E , Red), satisfying the following: for any PKE O = (g, e,d),

1. EO = (GO, EO,DO) forms a PKE, and
2. for any adversary A breaking the P -security of (GO, EO,DO), the oracle

algorithm RedA,O breaks the Q-security of O.

3 PKE Oracle Distribution

Convention. Whenever we say a function f : D → R with property P (e.g.,
injectivity) is a randomly chosen function we mean f is chosen uniformly at
random from the space of all functions from D to R having property P .

We describe a distribution under which a PKE oracle (with some auxiliary
oracles) is sampled. These oracles will be used to model “ideal” base primitives
in our separations. We largely follow the notational style of [18]. As notation,
if f is a function whose output is a tuple, say a pair, we write f(x) = (∗, y) to
indicate that f(x) = (y′, y), for some y′.

Definition 3. We define an oracle distribution Ψ which produces a PKE oracle
with certain length parameters, plus two auxiliary oracles. Formally, Ψ produces
an ensemble of oracles On = (On,un,wn)n∈N

, where for every n ∈ N, On =
(gn, en,dn) and (un,wn) are chosen as follows.

– gn : {0, 1}n → {0, 1}5n is a random one-to-one function, mapping a secret key
to a public key.

– en : {0, 1}5n × {0, 1} × {0, 1}n → {0, 1}7n is a function, where for every pk ∈
{0, 1}5n, en(pk, ·, ·) is a random one-to-one function.

– dn : {0, 1}n × {0, 1}7n → {0, 1} ∪ {⊥} is defined by letting dn(sk, c) = b if and
only if en(gn(sk), b, r) = c, for some r ∈ {0, 1}n; otherwise, dn(sk, c) = ⊥.

– un : {0, 1}5n × {0, 1}7n → ({0, 1} × {0, 1}n) ∪ {⊥} is defined as un(pk, c) =
(b, r) if en(pk, b, r) = c, and un(pk, c) = ⊥ if for no (b, r) does it hold that
en(pk, b, r) = c. That is, un(pk, c) decrypts c relative to pk, and if successful,
also returns the unique randomness used to produce c. (The oracle u is not
typically allowed to be freely used. See Definition 4.)

– wn : {0, 1}5n → {⊥,�} is defined as wn(pk) = � if for some sk gn(sk) = pk,
and wn(pk) = ⊥, otherwise. That is, wn(pk) checks whether pk is a valid
public key.

568 M. Hajiabadi and B.M. Kapron

Definition 4. In all settings where access to u is granted this access is limited
and is determined based on the underlying challenge inputs. Specifically, we call
Ag,e,d,u,w CCA-valid if Ag,e,d,u,w on input (pk, c) never calls 〈u, (pk, c)〉. This
definition naturally generalizes to the case in which A’s input consists of several
challenge public keys with several challenge ciphertexts for each public key, e.g.,
the t-seed circular security setting.

Omitting the security parameter. We define g(sk) = gn(sk), for every n
and sk ∈ {0, 1}n, and use a similar convention for other functions in Definition 3.
Sometimes when we need to emphasize under what security parameter a query is
made, we put in the sub-index n; in other places we typically omit the sub-index.

Ψ-valid oracles. We call a triple of functions (g, e,d) Ψ -valid if (g, e,d) is
part of a possible output of Ψ , i.e., the domains and ranges of g, e and d are
as specified in Definition 3, and also all the corresponding injectivity conditions
hold. Similarly, we may use the same convention to call, say, g, Ψ -valid.

Notation. For oracles O = (O1, . . . , Om) and an oracle algorithm AO, we let
qry = 〈Oi, q〉 denote an A’s query q to oracle Oi; if u = Oi(q) we use (〈Oi, q〉, u)
to indicate that A calls Oi on q and receives u; we also define O(qry) = u. If Que
is a set of such query/response pairs we use shorthands like (〈Oj , ∗〉, u) ∈ Que
to mean that for some q, (〈Oj , q〉, u) ∈ Que. Thus, (〈Oj , ∗〉, u) /∈ Que indicates
that for no q, we have (〈Oj , q〉, u) ∈ Que.

Symbolic representation of oracle queries. Sometimes we need to talk
about sets containing query/response pairs generated under some oracle, and
later on check them against another oracle. For this reason, we may sometimes
talk about symbolic query/response pairs. For example, the symbolic form of a
concrete query/response pair (〈g, sk〉, pk) is denoted (〈g, sk〉, pk).

4 General Overview of Techniques

We give an overview of our approaches for the two main results: separating bit
1-seed circular security (see Terminology 1) from CPA security and separating
full-length (t + 1)-seed-circular security from bit t-seed-circular security.

4.1 CPA Security �⇒ Bit 1-seed-circular Security

Summary of approach. First, note a random O = (g, e,d), chosen as
(O,u,w) ← Ψ will be “ideally” secure w.r.t. all notions security discussed in
this paper. One idea for proving separations is to add some weakening compo-
nents v to O and show that relative to (O,v) the base primitive exists, but
not the target primitive. We could not make this approach work. Instead, we
follow the model of [19], by defining a weakening oracle T, for every candidate
construction (G,E,D), in such a way that T breaks the claimed security of
(GO, EO,DO), for a random O, but not the base security of O. We emphasize
that T depends on (G,E,D).

Toward a Separation of Circular Security and Semantic Security 569

Let E = (G,E,D) be a candidate bit-encryption construction,
(g, e,d,u,w) ← Ψ and O = (g, e,d). Our goal is to give an oracle T s.t.
(I) T is helpful in breaking the (alleged) seed-circular-security of EO and (II)
T is not helpful in breaking the CPA security of O. The most obvious idea is
that on inputs of the form (PK,C1, . . . , Cn), an alleged public key PK and a
bit-by-bit encryption of PK’s seed under EO(PK, ·), T will check whether PK
is a valid public key under GO and if so decrypt C1, . . . , Cn under a secret key
corresponding to PK to get some string S and return S if GO(S) produces PK.

There are two problems with the above raw approach. First, even doing a
simple check, namely whether PK is a valid public key, can potentially grant a
CPA adversary against O much power, violating Condition (II) above. (It is not
hard to think of contrived constructions E for which this is the case.) Second,
even if we assume a CPA-adversary AO,T(pk, c)—against O—always calls T on
valid PK’s, we still have to make sure that A cannot come up with a clever
query T(PK,C1, . . . , Cn) whose response leaks information about g−1(pk) or
about c’s plaintext bit.

Our approach starts by resolving the first problem, using an idea from
[19] (also used in some subsequent works [18,41]): the oracle T performs
the decryption of (C1, . . . , Cn) not relative to O, but relative to some ˜O =
(g̃, ẽ, ˜d), under which PK is indeed a valid public key (i.e., T decrypts using
D
˜O(SK ′, C1 . . . Cn), where (SK ′, PK) ∈ G

˜O). Without further restrictions on ˜O
the result of decryption is most likely a random noise, as ẽ and ˜d can behave arbi-
trarily. Thus, we need to ensure that w.h.p. over a random R, EO(PK, b;R) =
E
˜O(PK, b;R), for any bit b. This would ensure that D

˜O(SK ′, C1 . . . Cn) w.h.p.
will be the real output, if (PK,C1, . . . , Cn) were “honestly” generated, showing
that T is useful in breaking 1-seed-circular security of (Gg, Ee,Dd).

Specifically, we construct ˜O by super-imposing a poly number of
query/response pairs Qs, which serve as a certificate of PK’s validity, on O.
More precisely, we first sample (offline) a set of query/response pairs Qs in such
a way that GQs = (∗, PK); then, we super-impose (Definition 5) Qs on O to
obtain ˜O. (Sometimes Qs needs to also agree with some previous information.)

To resolve the second problem the oracle T will refuse to decrypt queries
deemed “dangerous”: those that can be issued by a CPA adversary A against
O, and whose responses may leak information about A’s challenge secrets. The
main challenge is to formulate these dangerous queries in such a way that T is
provably of no use to any CPA adversary against O, while guaranteeing that T
still decrypts w.h.p. a randomly encrypted random seed chosen relative to EO.

Concrete overview. We now give a concrete overview of the above approach
for a simple class of constructions. We first start by defining the task of super-
imposing a set of g-type query/response pairs on an oracle (g, e,d).

Definition 5. We define the following procedure we call KeyImpose.

– Input: (g, e,d) and a set Qs = {(〈g, sk1〉, pk1), . . . , (〈g, skw〉, pkw)}, satisfying
ski �= skj for all distinct i and j.

570 M. Hajiabadi and B.M. Kapron

– Output: (g̃, ˜d), where

g̃(sk) =
{

g(sk) if sk /∈ {sk1, . . . , skw}
pki if sk = ski for some 1 ≤ i ≤ w

(1)

˜d(sk, c) is defined as follows: if there exist b and r such that e(g̃(sk), b, r) = c

then ˜d(sk, c) = b; otherwise, ˜d(sk, c) = ⊥.

Note that in the above definition if (g, e,d) is a valid PKE scheme and Qs

satisfies the required condition then (g̃, e, ˜d) is also a valid PKE scheme. The
resulting g̃, however, will not be injective if there are “collisions” between Qs

and g. Nonetheless, the resulting (g̃, e, ˜d) is still both well-defined and valid.
We will use the following fact over and over again in the paper. Informally, it

shows one particular situation where ˜d queries, defined as above, can be handled
using full access to (g, e,d) and partial access to u.

Fact 1. Let (g, e,d,u,w) be a Ψ -valid oracle and let Bg,e,d,u,w(pk, . . .) be a
CCA-valid adversary (Definition 4) with a challenge public key pk. (The set
of B’s challenge ciphertexts is not important for this discussion.) Let Qs be a
set of query/response pairs meeting the condition of Definition 5 and (g̃, ˜d) =
KeyImpose(g, e,d,Qs). Assuming (〈g, ∗〉, pk) /∈ Qs, then Bg,e,d,u,w(pk, . . .), by
having Qs as a separate input, can efficiently compute ˜d(sk′, c′), for all sk′ and
c′ without violating the CCA condition.

Proof. For any query qu = 〈˜d, (sk′, c′)〉, either (i) (〈g, sk′〉, ∗) /∈ Qs or (ii) for
some pk′ �= pk, (〈g, sk′〉, pk′) ∈ Qs. If (i) holds then ˜d(sk′, c′) = d(sk′, c′) and so
B can reply to qu by calling 〈d, (sk′, c′)〉. If (ii) holds, the answer to qu can be
determined by calling 〈u, (pk′, c′)〉, which is a valid query for B as pk′ �= pk. ��
We make the following two assumptions for any construction (G,E,D) discussed
throughout.

Assumption 1. For any Ψ -valid O = (g, e,d) we assume GO, EO and DO, on
inputs corresponding to security parameter n make exactly nϑ oracle calls (for
ϑ ≥ 1) and that GO(1n) uses exactly n random bits.2

Assumption 2. We assume G, E and D, on inputs relative to security para-
meter 1n only call their oracles under the same security parameter 1n. This
assumption is only made to simplify our exposition. Indeed, we are not aware of
any construction that does not satisfy this assumption.

2 Note that we do not claim that there exists a universal ϑ that works for all construc-
tions E = (G, E, D). Rather, for any fixed construction (G, E, D) which we want to
rule out (i.e., define a breaking oracle T for), we fix a ϑ that satisfies the stated
conditions. Also, the assumption that G relative to any Ψ valid oracle uses n coins
is not necessary; it can indeed be any fixed p(n) number of coins, but assuming it
to be n allows us to dispense with an additional parameter p.

Toward a Separation of Circular Security and Semantic Security 571

We now describe our techniques for a simple class of constructions, those
with oracle access of the form (Gg, Ee,Dd). We first give the oracle T, defined
w.r.t. a fixed (g, e,d) and a fixed construction (G,E,D), which helps us to
break the seed-circular security of (Gg, Ee,Dd). Fix (G,E,D) throughout this
section, so we make the dependence of T on (G,E,D) implicit below. The oracle
T is selected from a class of oracles, but it is convenient to define the output
distribution of a randomly chosen T on an arbitrary given input, as we do below.

Description of T:
Oracles: (g, e,d,w)
Input: (1n, PK,C1, . . . , Cn)

1. Choose (g′, S′) uniformly at random from the set of all pairs satisfying (a) g′

is Ψ -valid and (b) Gg′
(1n, S′) = (∗, PK). If no such a pair exists return ⊥.

Otherwise, let SK ′ be the secret key output by Gg′
(1n, S′).

2. Let Qs contain the symbolic versions of all query/response pairs made in the
execution of Gg′

(1n, S′). Define (g̃, ˜d) = KeyImpose(g, e,d,Qs). Let QPub
include any pk such that w(pk) = � and (〈g, ∗〉, pk) ∈ Qs.

3. Compute Sout = D
˜d(SK ′, C1 . . . Cn). Execute Gg(Sout) and if for all pk ∈

QPub the query/response (〈g, ∗〉, pk) is made during the execution, then
return Sout; otherwise, return ⊥.

We now informally discuss why T provides the “desired” properties.

4.1.1 T Does Not Break CPA Security of a Random (g, e, d)
We show that any adversary AO,T(1n, pk, c) against the CPA-security of O can
be fully simulated without T, by a CCA-valid adversary BO,u,w(1n, pk, c) (See
Definition 4). We then show any such B has a very small chance of breaking the
security of O, by relying on a special case of the following lemma which shows
a random O is t-seed-circular secure in a strong sense. As notation whenever we
write f1(n) ≤ f2(n) we mean that this holds asymptotically.

Lemma 1. Let t = t(n) be a poly. Let B be a CCA-valid oracle adversary (Def-
inition 4), which has access to some Ψ -valid oracle (g, e,d,u,w), and which
makes at most 2n/4 queries and outputs a bit. It then holds that

Pr
[
BO,u,w(1n, pk1, . . . , pkt, e(pk1, sk2), . . . , e(pkt, sk1), e(pk1, b)) = b

]
≤ 1

2
+

1

2n/4
,

where O = (g, e,d,u,w) ← Ψ , O = (g, e,d), b ← {0, 1}, ski ← {0, 1}n and
pki = g(ski) for 1 ≤ i ≤ t.

Fix a Ψ -valid oracle (O,u,w). We show that any adversary AO,T(1n, pk, c),
against the CPA-security of O = (g, e,d), can be perfectly simulated by a CCA-
valid adversary BO,u,w(1n, pk, c) that makes a poly-related number of queries.
The crux of our techniques lies in showing how B, using u and w, can simulate
A’s T access.

572 M. Hajiabadi and B.M. Kapron

Specifically, BO,u,w(1n, pk, c) starts running AO,T(1n, pk, c) and forwards all
A’s O = (g, e,d) queries to its own corresponding oracles.

To respond to a T query of the form Tqu
def= 〈T, (1n1 , PK,C1, . . . , Cn1)〉

made by A, B acts as follows (note it may be that n1 �= n, as A can make
queries under different security parameters): B forms SK ′ and Qs exactly as
in Steps 1 and 2 of T’s computation. It is able to do so since during these
two computations no queries are made to the real oracles (though, a massive
offline search is involved). Next, B starts simulating D

˜d(SK ′, C1, . . . , Cn1), where
(g̃, ˜d) = KeyImpose(g, e,d,Qs). Since it is not clear how B can perform this
decryption by only making a polynomial number of queries and without ever
calling 〈u, (pk, c)〉, we consider two possible cases:

(A) (〈g, ∗〉, pk) /∈ Qs: In this case B can fully execute D
˜d(SK ′, C1, . . . , Cn1),

since by Fact 1 B can handle all encountered queries, which are all of
type ˜d. (Recall that pk is B’s challenge public key.) Now if Sout =
D
˜d(SK ′, C1, . . . , Cn1), then B performs the rest of Step 3 of T, which B

can fully do since the rest only involves making g and w queries. Thus, B
can find the answer to Tqu.

(B) (〈g, ∗〉, pk) ∈ Qs: In this case, recalling the definition of Qpub, we have
pk ∈ QPub, since pk is B’s challenge public key and so by definition w(pk) =
�. Thus, by the condition given in Step 3 of T’s description, if Sout =
D
˜d(SK ′, C1, . . . , Cn1) then at least one of the following holds:

(a) The answer to Tqu is ⊥; or
(b) The query/response pair (〈g, ∗〉, pk) will show up during Gg(Sout), i.e.,

g−1(pk), B’s challenge secret key, is revealed during Gg(Sout).
We now claim that B can find two strings S0 and S1 such that Sout ∈
{S0, S1}. If this is the case, B can execute both Gg(S0) and Gg(S1); if dur-
ing either execution a query/response (〈g, ∗〉, pk) is observed, B has learned
g−1(pk), winning the game; otherwise, B in response to Tqu returns ⊥,
which is indeed the correct response.
It remains to demonstrate the claim. To find S0 and S1, B attempts to sim-
ulate D

˜d(SK ′, C1, . . . , Cn1). For any query qu = 〈˜d, (sk′, c′)〉 encountered
in the simulation, one of the following holds
(i) (〈g, sk′〉, ∗) /∈ Qs; or
(ii) (〈g, sk′〉, pk′) ∈ Qs for pk′ �= pk; or
(iii) (〈g, sk′〉, pk) ∈ Qs and c′ �= c; or
(iv) (〈g, sk′〉, pk) ∈ Qs and c′ = c.
B can find the answer to qu by querying 〈d, (sk′, c′)〉 for Case (i), querying
〈u, (pk′, c′)〉 for Case (ii), and querying 〈u, (pk, c′)〉 for Case (iii). The latter
two are legitimate u queries (see Definition 4).
For Case (iv) B continues the execution of D

˜d(SK ′, C1, . . . , Cn1) in two
parallel branches BR0 and BR1, where B replies to qu with b on BRb.
On both branches B replies to queries for which Cases (i), (ii) and (iii)
hold exactly as above. If on some branch BRb′ , still during the execu-
tion of D

˜d(SK ′, C1, . . . , Cn1), for a query qu′ Case (iv) holds again (i.e.,

Toward a Separation of Circular Security and Semantic Security 573

qu′ = 〈˜d, (sk′, c)〉 and (〈g, sk′〉, pk) ∈ Qs) B replies to qu′ with b′, making it
consistent with the previous reply. Thus, these two branches result in two
strings S0, S1 satisfying the claim.

By invoking Lemma 1 we deduce that for random O = (g, e,d) and T, any
AO,T(pk, c) that makes at most, say, 2n/5 queries (basically any number m of
queries where 2n/4/m is super-polynomial) has advantage at most 1

2 + 1
2n/4 of

computing b, where sk ← {0, 1}n, pk = g(sk) and c ← e(pk, b).

4.1.2 T Breaks Seed-Circular Security of (G,E,D)
We show

CLAIM A. T is useful if used honestly: For O = (g, e,d,u,w) ← Ψ , S ←
{0, 1}n, (SK,PK) = Gg(S) and (C1, . . . , Cn) ← Ee(PK,S), the probability
that T(1n, PK,C1, . . . , Cn) does not return S is exponentially small.

To prove CLAIM A, we need the following simple information-theoretic
lemma, showing that the probability that an adversary can “forge” a public
key is small.

Lemma 2. Let B be an oracle adversary, which has access to some Ψ -valid
oracle O = (g, e,d,u,w), and which on input 1n makes a list Que of at most 2n

queries and outputs a public key pkout ∈ {0, 1}5n. It then holds that

Pr
O←Ψ

[w(pkout) = � and (〈g, ∗〉, pkout) /∈ Que] ≤ 1
22n

.

Proof of CLAIM A. Let the variables g′, S′, Qs, SK ′, g̃, ˜d and Sout be sampled
as in T(1n, PK,C1, . . . , Cn). Recall that (SK ′, PK) = GQs(1n, S′), that (g̃, ˜d) =
KeyImpose(g, e,d,Qs) and that Sout = D

˜d(SK ′, C1 . . . Cn).
Recall the way S, PK,C1, . . . , Cn are chosen in the claim. We first claim

Sout = S. This follows since (a) (C1, . . . , Cn) ← Ee(PK,S), (b) (g̃, e, ˜d) is a
correct PKE, and (c) (SK ′, PK) = Gg̃(1n;S′), since g̃ agrees with Qs. Thus,
by the correctness of (G,E,D), Sout = S. Thus, T(1n, PK,C1, . . . , Cn) either
returns S or ⊥.

Let Fail be the event T(PK,C1, . . . , Cn) = ⊥. We show how to successfully
forge a public pk ∈ {0, 1}5n whenever Fail holds. By Lemma 2 we will then have
Pr[Fail] ≤ 1

22n , implying that with probability at least 1− 1
22n , T(PK,C1, . . . , Cn)

returns S. We first start with some intuition behind the forgery.
Recall that Sout = S. By definition, Fail occurs if there exists pk s.t. (a)

w(pk) = �, (b) pk is embedded in Qs (i.e., (〈g, ∗〉, pk) ∈ Qs) and (c) the
query/response (〈g, ∗〉, pk) does not show up during Gg(1n, S). Now the forgery
is enabled by the fact that Qs is produced based on PK in offline mode. (Recall
that (SK,PK) = Gg(1n, S)). The only thing left is to prove that the forged pk is
indeed in {0, 1}5n. The reason is the following: since (〈g, ∗〉, pk) ∈ Qs, the pub-
lic key pk shows up as the response to a g′ query during Gg′

(1n, S′). Recalling
that g′ is Ψ -valid (see Step 1 of T’s computation), by Assumption 2 we have
pk ∈ {0, 1}5n. Given this intuition, the forging adversary A works as follows.

574 M. Hajiabadi and B.M. Kapron

AO(1n) generates S ← {0, 1}n and (SK,PK) = Gg(S); it then samples a Ψ -
valid function g′ and a seed S′ in such a way that Gg′

(1n, S′) = (∗, PK) and lets
Qs contain the symbolic versions of all query/response pairs made to g′. Denoting
by Que the set of all query/response pairs of A so far (which was populated only
during Gg(S)), for all pk s.t. (〈g, ∗〉, pk) ∈ Qs and (〈g, ∗〉, pk) /∈ Que, A calls
〈w, pk〉: as soon as A receives � in response, it returns pk. ��
We can now, using standard techniques, combine the two facts above about T
to rule out fully-blackbox reductions for the construction type considered.

We conclude this subsection with a remark. The separation proved in this
subsection will hold even if the candidate construction E is full length. This can
easily be checked, considering nowhere in our analysis do we use the fact that
E is a single-bit encryption algorithm. This may briefly be thought of as con-
tradicting the positive construction basing full-length 1-seed circular security on
CPA security! However, the catch here is that the positive construction alluded
to earlier does not belong in the class of constructions ruled out here, since the
constructed E calls the base key-generation algorithm. When discussing the gen-
eral separation result in Sect. 5 we will point out exactly where our separation
fails if the constructed scheme is full-length.

4.2 Bit t-seed-circular Security �⇒ Full-Length (t + 1)-seed-circular
Security

For simplicity, we show how to separate full-length 2-seed-circular security from
bit 1-seed circular security, as this case already captures most of the underlying
techniques. Since in this case the seed in the constructed scheme is encrypted as a
whole we denote a seed encryption as C ← EPK(S). Fix the proposed full-length
encryption construction (G,E,D), for which we will define a weakening oracle
T2 in such a way that T2 breaks the 2-seed circular security of (Gg, Ee,Dd),
but not the 1-seed circular security of (g, e,d).

For this new setting, we cannot use the previous approach, mainly because
the analysis there for showing that T is simulatable by a CCA-valid adversary
against (g, e,d) (Subsect. 4.1.1) heavily relies on the fact that only one challenge
ciphertext is present, whose value can be guessed in two branches. That simu-
lation trick will fail here because an adversary against the bit 1-seed circular
security of (g, e,d), which will have access to T2 and which we want to simulate
without T2, is provided with n + 1 ciphertexts. Thus, we need some new ideas
for the oracle T2, outlined below. We also use some of the previous ideas.

T2 accepts inputs of the form (PK0, PK1, C0, C1), where purportedly Ci,
for i = 0, 1, is the encryption of PK1−i’s seed under E(PKi, ·). Intuitively, T2

will decrypts C0 and C1 relative to, respectively, oracles ˜O0 and ˜O1, obtained
by superimposing two sampled sets Q0

s and Q1
s , meeting a certain condition,

on O. Specifically, T2 samples two sets of query/response pairs Q0
s and Q1

s in
such a way that for i = 0, 1 (a) GQi

s = (SK ′
i, PKi) for some SK ′

i and (b) the
sets of embedded public keys in Q0

s and Q1
s are disjoint, namely for all pk: if

(〈g, ∗〉, pk) ∈ Q0
s then (〈g, ∗〉, pk) /∈ Q1

s . (If such Q0
s and Q1

s cannot be found,

Toward a Separation of Circular Security and Semantic Security 575

T2 returns ⊥.) Then, T2 forms (g̃i, ˜di) = KeyImpose(g, e,d,Qi
s), and S0

out =
D
˜d1(SK ′

1, C1) and S1
out = D

˜d0(SK ′
0, C0). Finally, T2 returns S0

out if for both
i = 0, 1 all embedded public keys in Qi

s appear during the execution of Gg(Si
out).

The check (b) above is aimed at making T2 simulatable using u
and w oracles: namely, to make any 1-seed circular security adversary
AO,T2(pk, c1, . . . , cn, c) against O = (g, e,d) simulatable by CCA-valid adver-
sary BO,u,w(pk, c1, . . . , cn, c). The main idea behind the simulation is that, for
any query 〈T2, (PK0, PK1, C0, C1)〉 of A, the adversary B will be able to decrypt
at least one of Ci’s, specifically the one for which (〈g, ∗〉, pk) /∈ Qi

s. This follows
by Fact 1. (Recall pk is B’s challenge public key.) If for the other index (i.e.,
1− i) it holds that (〈g, ∗〉, pk) ∈ Q1−i

s then as before we can show that either the
answer to the underlying T2 query is ⊥, or B will learn its challenge secret key
(i.e., g−1(pk)) along the way.

The check (b) however may make the oracle T2 too weak to break the 2-
seed circular security of (GO, EO,DO). In particular, if there are pk’s that occur
w.h.p. as responses to g queries during a random execution of Gg(1n), then T2,
even on “honest” inputs, may return ⊥ too often. To resolve this problem, we
first sample a large number of executions of GO, record all the query/response
pairs and make Q0

s and Q1
s be consistent with this information.

We now describe the oracle T2.

Description of T2:
Oracles: (g, e,d,w)
Input: (1n, PK0, PK1, C0, C1)

1. Learning heavy key-generation queries: Execute Gg(1n) � times inde-
pendently at random and record all query/response pairs to Freq. (We instan-
tiate � later.) For any (〈g, ∗〉, pk) ∈ Freq add pk to FreqPub.

2. Sampling oracles/secret keys consistent with Freq, PK1 and PK2. For
i = 0, 1:
– choose (g′

i , S
′
i) uniformly at random from the set of all pairs satisfying (a)

g′
i is Ψ -valid and is consistent with Freq and (b) Gg′

i(1n, S′
i) = (∗, PKi).

(If no such a pair exists return ⊥.) Let SK ′
i be the secret key output by

Gg′
i(1n, S′

i).
– Let Qi

s contain the symbolic versions of all query/response pairs made in
the execution of Gg′

i(1n, S′
i). Define (g̃i, ˜di) = KeyImpose(g, e,d,Qi

s). Let
QPubi have any pk s.t. w(pk) = � and (〈g, ∗〉, pk) ∈ Qi

s.
3. If (QPub0 ∩ QPub1) \ FreqPub �= ∅ then halt and return ⊥.
4. Compute S1

out = D
˜d0(SK ′

0, C0) and S0
out = D

˜d1(SK ′
1, C1). Return S0

out if
the following condition holds for both i = 0, 1, and return ⊥, otherwise: For
all pk ∈ QPubi \ FreqPub the query/response (〈g, ∗〉, pk) is made during the
execution of Gg(Si

out).

T2 does not break 1-seed-circular security of O. We show any adversary
AO,T2(1n, pk, c1, . . . , cn, c), against 1-seed-circular-security of O = (g, e,d) can

576 M. Hajiabadi and B.M. Kapron

be simulated by a CCA-valid adversary BO,u,w(1n, pk, c1, . . . , cn, c) that makes
a poly-related number of queries. By Lemma 1 we then obtain our desired result.

The main challenge for B is to handle A’s T2 queries. Fix a T2 query Tqu =
〈T2, (1n1 , PK,C1, C2)〉 of A. To reply to Tqu, B forms FreqPub, Q0

s , Q
1
s , SK ′

0

and SK ′
1 as in T2’s computation, which B can perfectly do. Without loss of

generality assume pk /∈ FreqPub, since otherwise B has found its challenge secret
key. Also, assume for some i ∈ {0, 1} pk /∈ QPubi because otherwise by Line 3 the
answer to Tqu is ⊥. In what follows assume pk /∈ QPub1. (The same argument
goes through if pk /∈ QPub0.)

B forms S0
out = D

˜d1(SK ′
1, C1), where (g̃1, ˜d1) = KeyImpose(g, e,d,Q1

s). By
Fact 1, B is perfectly able to run this decryption. Now consider two cases:

1. pk /∈ QPub0: in this case again B can compute S1
out = D

˜d0(SK ′
0, C0), where

(g̃0, ˜d0) = KeyImpose(g, e,d,Q0
s). Having both S0

out and S1
out B can easily

perform the rest of T2’s computation (which only involves g queries).
2. pk ∈ QPub0: in this case by Line 4 of T2’s computation, either the answer

to Tqu is ⊥ or pk’s corresponding secret key turns up during the execution
of GO(S0

out). (Recall that pk /∈ FreqPub.) Thus, B either finds its challenge
secret key or finds out that the answer to Tqu is ⊥.

T2 breaks 2-seed-circular security: For O = (g, e,d,u,w) ← Ψ , Si ←
{0, 1}n, (SKi, PKi) = Gg(Si) for i = 0, 1, and C1 ← Ee(PK1, S0) and
C0 ← Ee(PK0, S1) we show the probability that T2(1n, PK0, PK1, C0, C1) does
not return S0 is exponentially small. First, as in the corresponding proof in Sub-
sect. 4.1 we can easily show it is always the case that Si = Si

out for i = 0, 1.
Thus, the probability that T2(1n, PK0, PK1, C0, C1) does not return S0 is the
probability that one of the bad events in Lines 3 and 4 of T2’s computation
holds. Let Ev be the event that T2(1n, PK0, PK1, C0, C1) does not return S0.

The bad events in Lines 3 and 4 correspond to events Ev1 and Ev2, defined
as follows: Ev1 = (QPub0 ∩ QPub1) \ FreqPub �= ∅ and

Ev2 = ((QPub0 �⊆ RealPub0 ∪ FreqPub) ∨ (QPub1 �⊆ RealPub1 ∪ FreqPub)), (2)

where RealPubi = {pk | the query/response (〈g, ∗〉, pk) occurs during Gg(Si)}.
Note that for Ev2 we use the fact that Si = Si

out. We have Pr[Ev] ≤ Pr[Ev2] +
Pr[Ev1 ∧ Ev2].

First, using the same technique as in Subsect. 4.1.2 we can show Pr[Ev2] is
exponentially small. To bound Pr[Ev1∧Ev2], note whenever Ev1∧Ev2 happens,
the event Ev3, defined below, happens:

Ev3 = (RealPub0 ∩ RealPub1) \ FreqPub �= ∅.

Thus, we show how to bound the probability of Ev3. That is, the probability
that there exists pk such that pk ∈ RealPub0∩RealPub1, but pk /∈ FreqPub. Intu-
itively, this probability should be small because if pk ∈ RealPub0 ∩ RealPub1—
namely, the query/response (〈g, ∗〉, pk) occurs during both Gg(S0) and Gg(S1)—
then (〈g, ∗〉, pk) should also occur at least once during the many random exe-
cutions of Gg(1n) performed in Step 1 of T2’s computation, and thus it should

Toward a Separation of Circular Security and Semantic Security 577

be that pk ∈ FreqPub. Using this line of reasoning we can use Chernoff Bounds
to upperbound the probability of Ev3 by any arbitrary inverse-polynomial, by
instantiating the value of � (Step 1 of T2’s computation) accordingly.

5 CPA Security �⇒ Bit 1-seed-circular Security: General

In this section we describe the oracle T for general bit-encryption constructions
of 1-seed circular security, and in the following two sections we prove that this
oracle provides a separation.

Intuition. As in the previous section the main idea is to have T, on input
(PK,C1, . . . , Cn), decrypt C1, . . . , Cn relative to some ˜O = (g̃, ẽ, ˜d), satisfying
(a) G

˜O produces (∗, PK) and (b) for any b with high probability EO(PK, b,R) =
E
˜O(PK, b,R). To obtain ˜O we may be tempted to proceed exactly as before,

by sampling a set of query/response pairs Q and a seed S′ such that GQ(S′) =
(∗, PK) and then superimposing Q (which now has all types of queries) on O.
While the resulting ˜O satisfies Condition (a) it is not clear if Condition (b) is
satisfied: The problem is there may be queries q asked quite frequently during
random executions of EO(PK, b) (call them heavy), and which may also occur in
Q and receive a different response there. To overcome this problem we first run
EO(PK, b) for b = 0, 1 many times and collect all observed query/response pairs
in a set Freq. (This is formalized in Definition 6.) We then force the sampled set
Q to be consistent with Freq. Finally, we show how to superimpose Q on O to
obtain ˜O.

Setting things up. Fix the proposed construction (G,E,D). We now give an
assumption to make our analysis easier and then give definitions formalizing the
steps sketched above. We then use these definitions to define the oracle T.

Assumption 3. We assume any oracle algorithm that has access to both g and
d always queries 〈g, sk〉 before querying 〈d, (sk, ∗)〉. Also, we assume w.l.o.g.
that G never calls the decryption algorithm of the base scheme, O = (g, e,d).
(For 〈d, (sk, c)〉: letting pk = g(sk), either the query/response (〈e, (pk, ∗, ∗)〉, c)
was already made in which case G knows the answer, or the answer w.h.p. is ⊥.)
For ease of notation we keep d as a superscript to G and write GO.

Definition 6. We define the following probabilistic procedure, FreqQue.

– Oracles: O = (g, e,d,u)
– Input: A security parameter 1n (left implicit), public key PK and p ∈ N.
– Output: A set Freq formed as follows. For both b = 0, 1 run EO(1n, PK, b)

independently p times and add the symbolic versions of all query/response pairs
to Freq. Moreover, for any (〈d, (sk, c)〉, ∗) ∈ Freq if u(g(sk), c) = (b′, r′) �= ⊥
add (〈e, (pk, b′, r′)〉, c) to Freq.
Note that by Assumption 1 |Freq| ≤ 2pnϑ + 2pnϑ = 4pnϑ.

578 M. Hajiabadi and B.M. Kapron

In the above definition apart from the actual observed query/response
pairs we also enhanced Freq with some pairs obtained based on (〈d, (sk, c)〉, ∗)
query/response pairs. This enhancement is only made to make some of the proofs
simpler.

We say that oracle O = (g, e,d) is consistent with (or agrees with) a symbolic
query/response pair (〈g, sk〉, pk) if g(sk) = pk. The same definition can be given
for other types of query/response pairs. We say O is consistent with a set of
query/response pairs if O agrees with each element in the set.

Definition 7. We define the following procedure we call ConsOrc.

– Input: a public key PK and a set Freq of symbolic query/response pairs.
– Output: a secret key SK ′ and query/response sets Qs, Qc sampled as follows.

• Sample (g′, e′,d′, S′) uniformly at random under the constraints that
O′ = (g′, e′,d′) is Ψ -valid and is consistent with Freq and that GO′

(S′) =
(∗, PK). If no such a tuple exists, return ⊥.

• Let SK ′ be the secret-key outputted by GO′
(S′) and let the sets Qs and

Qc contain, respectively, the symbolic versions of all query/response pairs
made to g′ and e′. (Recall by Assumption 3 no d′-query is made.)

In Definition 5 we defined the task of superimposing a set of g type
query/response pairs on an oracle (g, e,d). We now define the task of superim-
posing a set Qc of e queries on (g, e,d): the result will be (eimp,dimp), perturbed
versions of (e,d). Intuitively, we want (g, eimp,dimp) to form a PKE, eimp to
agree with Qc and (eimp,dimp) to agree as much as possible with (e,d).

Definition 8. We define the following procedure we call EncImpose.

– Input: a Ψ -valid (g, e,d) and a set

Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)} ,

Note that pki’s above are not necessarily distinct.
– Output: (eimp,dimp), defined as follows. First, let W = {(pk1, c1), . . . ,

(pkp, cp)} and W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}. Define

eimp(pk, b, r) =

⎧

⎨

⎩

ci if (pk, b, r) = (pki, bi, ri), for some 1 ≤ i ≤ p
ĉ if (pk, e(pk, b, r)) ∈ W
e(pk, b, r) otherwise

(3)
where ĉ is defined as follows: Letting x be the smallest integer such that
(pk, e(pk, b, r + x)) /∈ W ∪ W′ we set ĉ = e(pk, b, r + x). Here, r + x is done
using a standard method.

dimp(sk, c) =
{

bi if g(sk) = pki and c = ci for some 1 ≤ i ≤ p
d(sk, c) otherwise (4)

Toward a Separation of Circular Security and Semantic Security 579

We justify the second case of eimp’s definition: if (pk, e(pk, b, r)) ∈ W, say
(pk, e(pk, b, r)) = (pki, ci), we cannot set eimp(pk, b, r) = e(pk, b, r) as we have
already set ci = eimp(pki, bi, ri): in particular, eimp will be rendered incorrect
if bi �= b. Thus, we keep shifting e(pk, b, r) (by adding x to r) until we hit a
ciphertext ĉ s.t. (pk, ĉ) /∈ W∪W′. The requirement (pk, ĉ) /∈ W′ is stronger than
necessary, but will simplify some proofs. Note eimp is not necessarily injective.

Description of T. We define the oracle T. We first describe the output dis-
tribution of a random T on a single input-call, (1n, PK,C1, . . . , Cn), and then
describe the underlying distribution from which T is chosen.
Oracles: O = (g, e,d,u,w). Denote O = (g, e,d).
Input: (1n, PK,C1, . . . , Cn) Operations:

1. Learning frequent queries: Let Freq ← FreqQueO,u(PK,n23ϑ). Define
FreqPub to be the set of public keys pk such that (〈g, ∗〉, pk) ∈ Freq.

2. Sampling oracle/secret-key consistent with PK and Freq: Sample

(SK ′,Qs,Qc) ← ConsOrc(PK,Freq). (5)

3. Defining intermediate oracles: Define

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, ˜d) = KeyImpose(g, eimp,dimp,Qs).

Let ẽ = eimp, and ˜O = (g̃, ẽ, ˜d). Let QPub contain any pk such that w(pk) =
� and (〈g, ∗〉, pk) ∈ Qs.

4. Decrypting the encrypted input: Compute Sout = D
˜O(SK ′, C1 . . . Cn).

5. Returning Sout subject to a check: Run GO(Sout) and let EmbedPub con-
tain any pk such that the query/response (〈g, ∗〉, pk) is made during GO(Sout).
If QPub ⊆ EmbedPub ∪ FreqPub return Sout; else, return ⊥.

Notation. TvarsO(PK) denotes the random variable (Freq, SK ′,Qs,Qc, ˜O)
obtained in the execution of T above w.r.t. O and PK. Note none of these
random variables depend on (C1, . . . , Cn). For the reader’s convenience, we pro-
vide a table summary of how all these variables sampled in the last page of the
paper.

Remark about T. Note that the only part of the oracle T that involves making
random choices are Step 1 (sampling from FreqQueO,u(PK,n23ϑ)) and Step 2
(sampling from ConsOrc(PK,Freq)). The number of random coins required to
do the sampling in Step 1 is obviously finite. For Step 2 recall that the output
of ConsOrc(PK,Freq) is formed based on sampling a Ψ -valid random oracle O′

that is consistent with Freq and also that GO′
(1n) generates PK (based on some

seed). By default, O′ should be defined for all security parameters. However, by
Assumption 2 it suffices to sample O′ only for security parameters n. Thus,
for any fixed input (1n, PK,C1, . . . , Cn), the amount of randomness used by a
random T to compute T(1n, PK,C1, . . . , Cn) is finite.

580 M. Hajiabadi and B.M. Kapron

Sampling space of T. We now explain how to choose a random T. In par-
ticular, we would like a randomly chosen T, if queried under a single input
many times, to always return the same output. To this end, every possible T
comes with a collection of random-coin strings, where for every possible query
qu = (1n, PK,C1, . . . , Cn) to T, the collection has a corresponding random-coin
string Coinqu, used by T to make the random choices that appear during the
computation of T(qu). When we write PrT[] we mean the probability is com-
puted over a T chosen uniformly at random from the above-mentioned space.

5.1 T Breaks 1-seed-circular Security of (G,E,D)

We show if T is called honestly (i.e., on a random public key and a random
encryption of the underlying seed) it will return the seed with high probability.
To formalize the statement we define the following environment that specifies a
random choice of (O,u,w) plus those underlying an honest random input to T.

Environment: Env(n): Output (O,u,w, S, PK,C1, . . . , Cn), where:

1. (g, e,d,u,w) ← Ψ and O = (g, e,d);
2. S ← {0, 1}n, (SK,PK) ← GO(S) and (C1, . . . , Cn) ← EO(PK,S).

Convention. Sometimes that we are interested only in a specific part of the
output of Env(n) we may use notation such as (O,u,w, PK) ← Env(n).

The following theorem shows T’s usefulness in breaking seed-circular security.

Theorem 2. It holds that

Pr
Env,T

[T(PK,C1, . . . , Cn) = S] ≥ 1 − 1
n5

, (6)

where
Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n).

Proof layout. The proof consists of two parts. First, we show (Lemma 3) that
with high probability Sout = S, where Sout is the string decoded in Step 5 of
the execution of T(PK,C1, . . . , Cn). Next we show, conditioned on Sout = S,
the probability that T(PK,C1, . . . , Cn) outputs ⊥ is small (Lemma 4).

Lemma 3. It holds that

α(n) = Pr[D ˜O(SK ′, C1 . . . Cn) �= S] ≤ 1
2n5

,

where the probability is taken over (O,u,w, S, PK,C1, . . . , Cn) ← Env(n) and
(Freq, SK ′,Qs,Qc, ˜O) ← TvarsO,u,w(PK).

Lemma 4. It holds that

α(n)
def
= Pr

Env,T

[(

D
˜O(SK ′, C1 . . . Cn) = S

)

∧ (T(PK,C1, . . . , Cn) = ⊥)
]

≤ 1
22n

,

where Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n), and SK ′ and ˜O are the
random variables sampled inside T(PK,C1, . . . , Cn).

The proof of Theorem 2 follows in a straightforward way by combining Lem-
mas 3 and 4. We prove Lemma 3 in Subsect. 5.2 and Lemma 4 in Subsect. 5.3.

Toward a Separation of Circular Security and Semantic Security 581

5.2 Proof of Lemma 3

We start with a simple fact: Informally, it states, in particular, that the string
SK ′ built during an execution of T(PK,C1, . . . , Cn) is a matching secret key of
PK relative to G

˜O.

Fact 3. For any (O,u,w, PK) ∈ Env(n) and any (Freq, SK ′,Qs,Qc, ˜O) ∈
TvarsO(PK), (a) ˜O is a correct PKE, and (b) (SK ′, PK) ∈ G

˜O(1n).

Equipped with Fact 3, toward proving Lemma 3 we bound the probability
that EO(PK,S;R) �= E

˜O(PK,S;R), for a random R. If this probability is
small then with high probability D

˜O(SK ′, C1 . . . Cn) results in S, as desired.
We will actually bound a related probability, where S above is replaced with
0n1n. (Recall that |S| = n.) To this end we need the following lemma.

Lemma 5. Fix (O,u,w, PK) ∈ Env(n) and let M = 0n1n. Let
(qu1, . . . , qu2nϑ+1) denote the oracle queries asked during the execution of
EO(PK,M ;R), for a random R. Then, for any query index 1 ≤ i ≤ 2nϑ+1

(A) Pr
[
(qui is g- or e-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
O(qui) �= Õ(qui)

)]
≤ 1

n8ϑ
,

(B) Pr
[
(qui is d-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
d(qui) �= d̃(qui)

)]
≤ 1

n8ϑ
,

where (Freq, SK ′,Qs,Qc, ˜O) ← TvarsO(PK) and R chosen at random.

We slightly abused notation above by writing ˜O(quj), since quj is a query
to O (e.g., quj = 〈g, sk′〉); the meaning, however, should be clear.

We first show how to derive Lemma 3 from Lemma 5.

Proof of Lemma 3. All probabilities that appear below are taken over the
choices (O,u,w, S, PK,C1, . . . , Cn) ← Env(n) and (Freq, SK ′,Qs,Qc, ˜O) ←
TvarsO,u,w(PK). Let QS be the set of all queries asked during the execution
under which (C1, . . . , Cn) ← EO(PK,S) was produced. We claim

Pr[D ˜O(SK ′, C1 . . . Cn) �= S] ≤ β(n) def= Pr
[

∃qu ∈ QS : O(qu) �= ˜O(qu)
]

.

The reason is: if the event inside the right-hand side probability does not hold,
then (C1, . . . , Cn) is also a valid output of E

˜O(PK,S). Also, by Fact 3 we know
that (SK ′, PK) ∈ G

˜O(1n) and that ˜O is a correct PKE. Thus, by the correctness
of the blackbox construction (G,E,D), we obtain D

˜O(SK ′, C1 . . . Cn) = S.
Let QS′ denote the set of all queries asked during a random execution of

EO(PK,M), where M = 0n1n. We claim

β(n) ≤ β′(n) def= Pr[∃qu ∈ QS′ : O(qu) �= ˜O(qu)]. (7)

Equation 7 holds because: if S has k 0’s, then QS is identically distributed to the
set of queries asked during a random execution of EO(PK, 0k1n−k). Moreover,
since k ≤ n, the probability that during a random execution of EO(PK, 0k1n−k)

582 M. Hajiabadi and B.M. Kapron

a query qu, with O(qu) �= ˜O(qu), is asked is less than the probability that during
a random execution of EO(PK,M) a query qu, with O(qu) �= ˜O(qu), is asked.

To conclude the proof of Lemma 3 we show β′(n) ≤ 1
2n5 . We have

β′(n) = Pr
[

∃qu ∈ QS′ : O(qu) �= ˜O(qu)
]

≤ 2nϑ+1 × 1
n8ϑ

≤ 1
2n5

;

the first inequality is obtained by applying Lemma 5 and a union bound. ��
We now describe the main lemma and tools we need to prove Lemma 5.

Lemma 6. For any (O,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, ˜O) ∈
TvarsO(PK) all the following hold: (1) for any h ∈ {g, e} if (〈h, q〉, ans) ∈
Freq, then h(q) = ˜h(q) = ans; (2) if g(sk) �= g̃(sk) for some sk then
(〈g, sk〉, ∗) ∈ Qs; (3) if e(pk, b, r) �= ẽ(pk, b, r) for some pk, b and r then
either (a) (〈e, (pk, b, r)〉, ∗) ∈ Qc or (b) for some c: (〈e, (pk, ∗, ∗)〉, c) ∈ Qc and
u(pk, c) = (b, r).

We require the following standard result [32].

Theorem 4. (A Chernoff-Hoeffding bound) Let x1, . . . , xnt be independent
boolean random variables all identically distributed to x, and suppose Pr[x =
1] = p. Then for xav = (x1 + · · · + xnt)/nt

Pr[|xav − p| ≥ 1
nk

] ≤ 1
22nt−2k . (8)

We defer the proof of Lemma 5 to the full version.

5.3 Proof of Lemma 4

Proof. Let α(n) be as in the lemma. To bound α(n), suppose T(PK,

C1, . . . , Cn) = ⊥ and D
˜O(SK ′, C1 . . . Cn) = S. Then by Step 5 of T’s com-

putation it must hold

QPub �⊆ EmbedPub ∪ FreqPub. (9)

Thus,
α(n) ≤ Pr

Env,T
[QPub �⊆ EmbedPub ∪ FreqPub)], (10)

where Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n). We show whenever Eq. 9
holds we can forge a public key in the sense of Lemma 2. Specifically, our forger B,
provided with random oracles (O,u,w), samples all the variables pertaining to
T by itself and checks whether Eq. 9 holds. Details follow.

The adversary BO,u,w(1n) works as follows:

1. B samples S ← {0, 1}n and runs GO(S) to get (SK,PK), and for any
query/response (〈g, ∗〉, pk) made, it adds pk to EmbedPub.

2. B samples Freq ← FreqQueO,u(PK,n23ϑ) and then samples (SK ′,Qs,Qc) by
running ConsOrc(PK,Freq).

Toward a Separation of Circular Security and Semantic Security 583

3. B forms FreqPub = {pk | (〈g, ∗〉, pk) ∈ Freq} and QPub = {pk | (〈g, ∗〉, pk) ∈
Qs and w(pk) = �}. If there is pk ∈ QPub\(EmbedPub∪FreqPub), B returns
pk; else it returns pk ← {0, 1}5n.

Let Que be the set of all query/response pairs that B makes and note that
|Que| is poly-bounded. To analyze B’s success probability, note that for all pk:
pk ∈ EmbedPub∪FreqPub iff (〈g, ∗〉, pk) ∈ Que. Also, by definition if pk ∈ QPub
then w(pk) = �. Thus, from Eq. 10, B’s success probability is at least α(n).
Applying Lemma 2 the desired bound for α(n) follows. ��

5.4 T Does Not Break the CPA Security of the Base Scheme

Theorem 5. Suppose A is a CPA adversary with access to oracles O = (g, e,d)
and T that makes at most 2n/8 queries. We have

Pr
O,T,b,sk,c

[Ag,e,d,T(1n, pk, c) = b] ≤ 1
2

+
1

2n/4
, (11)

where O = (g, e,d,u,w) ← Ψ , b ← {0, 1}, sk ← {0, 1}n, pk = g(sk) and
c ← e(pk, b).

The following lemma is used in the proof of Theorem 5: it shows how to simulate
responses to queries to ˜O via oracle access to (O,u,w).

Lemma 7. Fix (g, e,d,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, g̃, ẽ, ˜d) ∈
TvarsO(PK). Assuming Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)}
let W = {(pki, ci) : 1 ≤ i ≤ p} and W′ = {(pki, e(pki, bi, ri)) : 1 ≤ i ≤ p}. Then

(a) Both g̃ and ẽ can be computed efficiently (on all points) given access to
oracles O = (g, e,d) and having Qs and Qc as input.

(b) For any (sk, c), if (〈g, sk〉, ∗) /∈ Qs, the value ˜d(sk, c) can be efficiently com-
puted given access to oracle O and having Qc as input.

(c) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs for some pk and that (pk, c) /∈
W ∪ W′, then ˜d(sk, c) can be determined as follows: if u(pk, c) = (b, ∗) �= ⊥
then ˜d(sk, c) = b; otherwise, ˜d(sk, c) = ⊥.

(d) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) ∈
W′ \ W, then ˜d(sk, c) = ⊥.

(e) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) =
(pki, ci) for some i ≤ p, then ˜d(sk, c) = bi.

Proof sketch of Theorem 5. As in Sect. 4 the idea is to give an adversary
B, where BO(1n, pk, c) can simulate responses to T queries of AO,T(1n, pk, c),
without calling 〈u, (pk, c)〉. Let Tqu = 〈T, (1n, PK,C1, . . . , Cn)〉 be an A’s query.
As per T’s computation, B first samples Freq ← FreqQueO,u(PK,n23ϑ). This
may seem problematic since this step involves making u queries. By inspecting
Definition 6, however, we can see for any query 〈u, (pk′, ∗)〉 that needs to be
made, B already knows g−1(pk′). Finally, let FreqPub contain any pk′ such that

584 M. Hajiabadi and B.M. Kapron

(〈g, ∗〉, pk′) ∈ Freq, and assume w.l.o.g. pk /∈ FreqPub (because otherwise B has
already found g−1(pk).)

Next, B samples (SK ′,Qs,Qc, ˜O) as in T’s execution and starts simulat-
ing D

˜O(SK ′, C1 . . . , Cn). Again the idea is to see if (〈g, ∗〉, pk) ∈ Qs or not. If
(〈g, ∗〉, pk) /∈ Qs: by Lemma 7 we can see B can handle all ˜O queries. In particu-
lar, B will never need to call 〈u, (pk, ∗)〉. After the decryption B performs Step 5
of T’s computation, which B can efficiently do, since no u queries are involved.

If, however, (〈g, ∗〉, pk) ∈ Qs, assuming Sout = D
˜O(SK ′, C1 . . . , Cn), since

pk /∈ FreqPub, the answer to Tqu is ⊥ unless (〈g, ∗〉, pk) occurs during GO(Sout).
Now as before the idea is to show B can find S0 and S1 s.t. Sout ∈ {S0, S1}.
To this end B starts simulating D

˜O(SK ′, C1 . . . , Cn). By Lemma 7 all g̃ and ẽ
queries can be handled. Let the sets W and W′ be formed based on Qc as in
Lemma 7. For ˜d queries: B will be unable to simulate the answer to a query
qu = ˜d(sk′, c′) only if (〈g, sk′〉, pk) ∈ Qs, c′ = c and (pk, c) /∈ W∪W′ (Case (c) of
Lemma 7): in this case, knowing that the answer is the challenge bit b, B starts
two branches of simulation, where it replies to qu with 0 on one branch and with
1 on the other. As before, we need to make sure B provides a consistent reply on
either branch if the same query shows up in the future. The two strings decoded
on the two branches at the end satisfy the above claim. ��

5.5 Putting All Together

We may now use our two main established results to obtain our main result.

Theorem 6. There exists no fully-blackbox construction of 1-seed-circular-
secure bit-encryption schemes from CPA-secure encryption schemes.

5.6 Extensions of the Separation Result

We briefly discuss why our separation holds even if E is a (c log n)-bit encryption
scheme and where our separation fails if E is allowed to be full length.

Remark 1. We first sketch how to adjust T to make our separation work for the
case that (G,E,D) is an η-bit PKE, for η = c log n. To this end, we need to
change Definition 6 (i.e., the procedure FreqQue), so that instead of encrypting
0 and 1 many times (as in the bit encryption case), it encrypts all messages m ∈
{0, 1}η, each many times. The total number of queries still remains polynomial.
The description of the oracle T remains unchanged except that in the first step
we call this new version of FreqQue. We can now prove the exact same version
as Lemma 5, by changing M to have n copies of each string z ∈ {0, 1}η (instead
of having n copies of 0 and n of 1 as in the bit-encryption case). Now the proofs
of the rest of the lemmas that lead up to Theorem 2, as well as the proof of
Theorem 5, remain unchanged.

Finally, note that the above extension heavily relies on the fact that the
message size is O(log n), and so it does not apply if the constructed scheme is
full-length, as expected.

Toward a Separation of Circular Security and Semantic Security 585

6 Bit t-seed-circular Security �⇒ Full-Length
(t + 1)-seed-circular Security

In this section we present our results for separating full-length (t + 1)-seed-
circular security from bit t-seed-circular security. To this end we define a weak-
ening oracle Tt+1, for a fixed candidate construction (G,E,D), generalizing a
similar oracle given in Subsect. 4.2. Throughout this section note that (G,E,D)
has the same plaintext and seed space. Mots of the tools underlying Tt+1 have
been presented before, but we need the following extension of Definition 6.

Definition 9. We define the following probabilistic procedure, ExtFreqQue.

– Oracles: O = (g, e,d,u)
– Input: A security parameter 1n (left implicit), public key PK and p ∈ N.
– Output: A set Freq formed as follows.

• Do the following independently p times and add the symbolic versions of
all query/response pairs to Freq: Sample S ← {0, 1}n, and run GO(S) and
EO(1n, PK, S).

• Finally, for any (〈d, (sk, c)〉, ∗) ∈ Freq if u(g(sk), c) = (b, r) �= ⊥ add
(〈e, (pk, b, r)〉, c) to Freq.

Remark 2. Throughout the remaining sections we continue to use Assumption 1.
In particular, since our focus right now is on schemes (G,E,D) with plaintext
space {0, 1}n (i.e., the same as the seed space) we assume that E on any plaintext
m ∈ {0, 1}n makes exactly nϑ queries.

Description of Tt+1: We present the oracle Tt+1. This new oracle shares many
aspects with the oracle T, and so we leave out details whenever appropriate.
Notation. Let t0 be such that t ≤ nt0 .
Oracles: O = (g, e,d,u,w). Denote O = (g, e,d).
Input: (1n, PK1, . . . , PKt+1, C1, . . . , Ct+1)

1. Learning heavy queries: For i ≤ t + 1 let Freqi ← ExtFreqQueO,u

(PKi, n
23ϑ+4t0), and let FreqPubi be the set of public keys pk s.t. (〈g, ∗〉, pk) ∈

Freqi.
2. Sampling consistent oracles/secret-keys: For i ≤ t + 1 sample

(˜SKi,Q
i
s,Q

i
c) ← ConsOrc(PKi,Freqi), (12)

and let QPubi contain any pk such that w(pk) = � and (〈g, ∗〉, pk) ∈ Qi
s.

3. If for some distinct i, j ∈ [t + 1] (QPubi ∩ QPubj) \ (FreqPubi ∪ FreqPubj) �= ∅
halt and return ⊥.

4. Defining intermediate oracles: For i ≤ t + 1 define

(eimp,i,dimp,i) = EncImpose(g, e,d,Qi
c)

(g̃i, ˜di) = KeyImpose(g, eimp,i,dimp,i,Q
i
s).

Let ẽi = eimp,i, and ˜Oi = (g̃i, ẽi, ˜di).

586 M. Hajiabadi and B.M. Kapron

5. Decrypting the ciphertexts: Set S1
out = DÕt+1(S̃Kt+1, Ct+1) and for 2 ≤

i ≤ t + 1 set Si
out = DÕi−1(S̃Ki−1, Ci−1).

6. Forming the output. For i ≤ t+1 run GO(Si
out) and let EmbedPubi contain

any pk such that the query/response (〈g, ∗〉, pk) is made during the execution.
If for all i ≤ t+1, QPubi ⊆ EmbedPubi∪FreqPubi, then return S1

out; otherwise,
return ⊥.

To state the main results we define the following environment, specifying a
random choice of (O,u,w) plus those underlying an honest input to Tt+1.

Environment: Envt(n): Output

(O,u,w, S1, . . . , St, PK1, . . . , PKt, E
O(PK1, S2), . . . , EO(PKt, S1)),

where (g, e,d,u,w) ← Ψ , O = (g, e,d), Si ← {0, 1}n and (SKi, PKi) =
GO(Si), for 1 ≤ i ≤ t.

We now state the two main results leading to our claimed separation.

Theorem 7. It holds that

Pr
Env,Tt+1

[Tt+1(PK1, . . . , PKt+1, C1, . . . , Ct+1) = S1] ≥ 1 − 1
n5

, (13)

where

Env = (O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, C1, . . . , Ct+1) ← Envt+1(n).

Theorem 8. Suppose A is a t-seed circular security adversary with access to
oracles O = (g, e,d) and T that makes at most 2n/8 queries. We have

Pr
O,T,b,sk1,...,skt

[AO,T(1n, pk1, . . . , pkt, e(pk1, sk2), . . . , e(pkt, sk1), e(pk1, b)) = b] ≤ 1

2
+

1

2n/4
,

where O = (O,u,w) ← Ψ , b ← {0, 1}, sk1, . . . , skt ← {0, 1}n and pki = g(ski)
for i ≤ t.

By combining the above two theorems we have the following.

Theorem 9. There exists no fully-blackbox construction of full-length (t + 1)-
seed-circular secure encryption from t-seed-circular secure bit encryption.

7 Constructions Based on Circular Security

We show how our results on seed-circular security extend to rule out a class of
constructions for circular security that we call key-isolating constructions. To
define this class we first define it in a related model we call the canonical model,
and then we define it in the standard model. We start with some definitions.

Canonical-Form (CF) PKE. We call O = (gs,gp, e,d) a CF PKE if
the domain of gp (excluding 1n) is the range of gs and (g, e,d), where

Toward a Separation of Circular Security and Semantic Security 587

g(s) = (gs(s),gp(gs(s))), is a PKE. That is, the key-generation algorithm of
a CF scheme first deterministically maps a seed to a secret key, and then deter-
ministically maps the secret key to a public key.

CF-based blackbox model. A blackbox construction in the CF model is a
tuple of oracle algorithms (GS,GP,E,D) s.t. for any CF PKE O = (gs,gp, e,d),
(GSO, GPO, EO,DO) is a CF PKE. Proving a syntactically-unrestricted impos-
sibility result in the CF model implies one in the standard model, since any
CPA-secure CF PKE can be turned into a CPA-secure standard PKE and that
any circular-secure standard PKE can be put into a circular-secure CF PKE.

CF Key-isolating constructions. We call (GS,GP,E,D) key-isolating if GS
never calls gp of the base scheme, i.e., GS only has access to (gs, e,d).

Ruling-out key-isolating constructions. Our earlier results extend to rule
out CF key-isolating constructions for circular security. To do this, we first need
to change the distribution of Ψ , by replacing g with (gs,gp), for gsn : {0, 1}n →
{0, 1}3n and gpn : {0, 1}3n → {0, 1}5n. As for T, which now takes as input a
public key and an encryption of a PK’s secret key, all we need to change is that
in Step 5 of T’s description the set EmbedPub should be formed by executing
GPO on the intermediate, decrypted string (which is now a secret key). All our
proofs about T not breaking the semantic security of the base scheme go through
with only making obvious modifications. The proofs about T being helpful in
breaking the circular security of the constructed scheme follow by noting that all
access to gp during key generation is only made by GP . This fact only becomes
essential in the proof of Lemma 4, and is the reason behind the above way of
defining EmbedPub. Other lemmas follow by making only obvious changes.

Interpretation w.r.t. standard constructions. Our above result also rules
out standard key-isolating constructions. To define this notion for a standard
construction (G,E,D) we first need to slightly change the standard model so
that (G,E,D) takes as oracles a CF PKE. Again, as explained above this is
w.l.o.g. Now we call E = (G,E,D) a standard key-isolating construction if E
admits a key-isolating CF counterpart in the following sense: there exists algo-
rithms GS and GP s.t. (GS,GP,E,D) is key-isolating and (GS,GP) induces
the same distribution as G, i.e., for any O = (gs,gp, e,d) it holds that
(SK,PK) is identically distributed to (SK ′, PK ′), where (SK,PK) ← GO(1n),
SK ′ ← GSgs,e,d(1n) and PK ′ = GPO(SK ′). Now the impossibility of CF key-
isolating constructions extends to standard ones, by how the notion counterpart
is defined.

Examples. Any standard construction E = (G,E,D) under which seeds
and secret keys are the same is key-isolating: defining GS(S) = S and
GP gs,gp,e,d(S) = Ggs,gp,e,d

2 (S), where G2 is the algorithm corresponding to the
public-key output of G, the construction (GS,GP,E,D) is the CF-counterpart of
(G,E,D) and is key-isolating since GS makes no oracle calls at all. The class of
key-isolating constructions is larger than this; we only wanted to give a concrete
example.

We leave a more comprehensive and formal discussion to the full version.

588 M. Hajiabadi and B.M. Kapron

8 Discussion Related to Impossibility for Circular
Security

In this section we briefly explain why we were not able to fully extend our
results to the circular-security case. For simplicity, we highlight the difficulties
encountered w.r.t. the simple type of constructions discussed in Sect. 4. In what
follows all mentions of the oracle T for the seed-circular-security case refers to
the oracle T defined in Sect. 4.

As discussed previously, the main challenge in designing an appropriate Ora-
cle T is to make sure that responses to queries to T do not leak information
about the challenge secrets of a CPA adversary A against O = (g, e,d). We
proved this for the seed-circular-security case by providing a CCA2 adversary B
in such a way that BO,u,w(pk, c) is able to simulate AO,T(pk, c).

Roughly speaking, the only part of the execution of T(PK,C1, . . . , Cn) that
is not simulatable by a CCA2-adversary BO,u,w(pk, c) is when during the compu-
tation of D

˜d(SK ′, C1 . . . Cn) a query ˜d(sk′, c) shows up and (〈g, sk′〉, pk) ∈ Qs.
We fixed this non-simulatability problem by adding an extra check at the end of
T’s computation that ensures the following: either the value of g−1(pk) is embed-
ded in Sout (i.e., the query/response pair (〈g, ∗〉, pk) shows up during Gg(Sout))
or the answer to the underlying T query is ⊥.

To define a circular-security weakening oracle T we may be tempted to
proceed as before: T accepts inputs of the form (PK,C1, . . . , Cn), where now
C1, . . . , Cn are (supposedly) bit-wise encryption of a PK’s secret key under
PK itself. (For simplicity, assume that the length of the secret key is n.)
Then, everything remain unchanged, as in T in Sect. 4, until T obtains Sout =
D
˜d(SK ′, C1 . . . Cn), which now is supposedly a PK’s matching secret key. Now

in order to make sure that the oracle T is simulatable (i.e., it does not leak
non-simulatable information to a CPA adversary against O) it seems that, as
before, we need to make sure that g−1(Qpub) is “embedded” in Sout, before
releasing Sout. (Recall the definition of Qpub from T’s definition in Sect. 4.) But
this “embedding condition” seems hard to check. This check was easy for the
seed-circular-security case since we can simply run Gg(Sout) and monitor all
sk′ for which we observe a query/response (〈g, sk′〉, ∗). For the circular-security
case one idea is to run Dd(Sout, ·) on many random encryptions produced as
C ← Ee(PK, b;R) for randomly chosen b and R, and record in a set EmbedSec
all sk′ for which we encounter a query 〈d, (sk′, ∗)〉. We then return Sout if
Qpub ⊆ g(EmbedSec); otherwise, we return ⊥. While this check makes the oracle
T simulatable, it makes T unfortunately too weak in that we cannot anymore
guarantee in general that T(PK,C1 . . . Cn) will return SK with non-negligible
probability, for (SK,PK) ← Gg(1n) and (C1, . . . , Cn) ← Ee(PK,SK), i.e., T
is not useful in general for breaking circular security. (Contrived constructions
(G,E,D) for which this is the case can be given.)

Acknowledgements. We would like to thank Mohammad Mahmoody for useful con-
versations in an early stage of this work.

Toward a Separation of Circular Security and Semantic Security 589

References

1. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle
length from (Ring-)LWE. In: Robshaw and Katz [37], pp. 659–680

2. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. J. Cryptol. 27(3), 429–451 (2014)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 35

4. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and
functional encryption. In: Guruswami, V. (ed.) FOCS 2015, pp. 191–209. IEEE
Computer Society (2015)

5. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 16

6. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 32

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 7

8. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
FOCS 2008, pp. 283–292. IEEE Computer Society (2008)

9. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 1

10. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of
zero-knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC
2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19571-6 34

11. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 19

12. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 540–557. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 32

13. Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.): PKC 2016, (II).
LNCS, vol. 9615. Springer, Heidelberg (2016)

14. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78524-8 24

15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC 1991, pp. 542–552 (1991)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC 2009, pp. 169–178. ACM (2009)

http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-42033-7_16
http://dx.doi.org/10.1007/978-3-662-48800-3_32
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-642-14623-7_1
http://dx.doi.org/10.1007/978-3-642-19571-6_34
http://dx.doi.org/10.1007/978-3-642-19571-6_34
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-642-30057-8_32
http://dx.doi.org/10.1007/978-3-540-78524-8_24

590 M. Hajiabadi and B.M. Kapron

17. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: FOCS 2000, pp.
325–335. IEEE Computer Society (2000)

18. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 24

19. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: FOCS 2001, pp. 126–135. IEEE Computer
Society (2001)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

21. Haitner, I., Holenstein, T.: On the (Im)Possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00457-5 13

22. Hajiabadi, M., Kapron, B.M.: Reproducible circularly-secure bit encryption:
applications and realizations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 224–243. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 11

23. Hajiabadi, M., Kapron, B.M., Srinivasan, V.: On generic constructions of
circularly-secure, leakage-resilient public-key encryption schemes. In: Cheng
et al.[13], pp. 129–158

24. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 6

25. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Johnson, D.S. (ed.) STOC 1989, pp. 44–61. ACM (1989)

26. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Proceedings of the Thirty-Eighth Annual ACM Sympo-
sium on Theory of Computing, pp. 99–108. ACM (2006)

27. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles
from LWE. In: Robshaw and Katz [37], pp. 681–700

28. Mahmoody, M., Mohammed, A.: On the power of hierarchical identity-based
encryption. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 243–272. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 9

29. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on
the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-32009-5 41

30. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public
key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4 28

31. Marcedone, A., Pass, R., Shelat, A.: Bounded KDM security from iO and OWF.
In: Zikas, V., Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 571–586. Springer,
Cham (2016). doi:10.1007/978-3-319-44618-9 30

32. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

33. Myers, S., Shelat, A.: Bit encryption is complete. In: Foundations of Computer
Science, 2009, FOCS 2009, pp. 607–616. IEEE (2009)

http://dx.doi.org/10.1007/978-3-540-70936-7_24
http://dx.doi.org/10.1007/978-3-642-00457-5_13
http://dx.doi.org/10.1007/978-3-662-47989-6_11
http://dx.doi.org/10.1007/978-3-662-47989-6_11
http://dx.doi.org/10.1007/978-3-540-28628-8_6
http://dx.doi.org/10.1007/978-3-662-49896-5_9
http://dx.doi.org/10.1007/978-3-642-32009-5_41
http://dx.doi.org/10.1007/978-3-642-20465-4_28
http://dx.doi.org/10.1007/978-3-642-20465-4_28
http://dx.doi.org/10.1007/978-3-319-44618-9_30

Toward a Separation of Circular Security and Semantic Security 591

34. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the Twenty-Second Annual ACM Sympo-
sium on Theory of Computing, pp. 427–437. ACM (1990)

35. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO
2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). doi:10.1007/
11818175 16

36. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 1

37. Robshaw, M., Katz, J. (eds.): CRYPTO 2016 (II). LNCS, vol. 9815. Springer,
Heidelberg (2016)

38. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J.
Comput. 39(7), 3058–3088 (2010)

39. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 32

40. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998). doi:10.1007/BFb0054137

41. Vahlis, Y.: Two is a crowd? a black-box separation of one-wayness and security
under correlated inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
165–182. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 11

42. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 2

43. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng
et al. [13], pp. 159–179

http://dx.doi.org/10.1007/11818175_16
http://dx.doi.org/10.1007/11818175_16
http://dx.doi.org/10.1007/978-3-540-24638-1_1
http://dx.doi.org/10.1007/978-3-642-36594-2_32
http://dx.doi.org/10.1007/978-3-642-36594-2_32
http://dx.doi.org/10.1007/BFb0054137
http://dx.doi.org/10.1007/978-3-642-11799-2_11
http://dx.doi.org/10.1007/978-3-642-13190-5_2

	Toward Fine-Grained Blackbox Separations Between Semantic and Circular-Security Notions
	1 Introduction
	1.1 Our Contributions and Discussion

	2 Preliminaries
	3 PKE Oracle Distribution
	4 General Overview of Techniques
	4.1 CPA Security Bit 1-seed-circular Security
	4.2 Bit t-seed-circular Security Full-Length (t+1)-seed-circular Security

	5 CPA Security Bit 1-seed-circular Security: General
	5.1 T Breaks 1-seed-circular Security of (G,E, D)
	5.2 Proof of Lemma 3
	5.3 Proof of Lemma 4
	5.4 T Does Not Break the CPA Security of the Base Scheme
	5.5 Putting All Together
	5.6 Extensions of the Separation Result

	6 Bit t-seed-circular Security Full-Length (t+1)-seed-circular Security
	7 Constructions Based on Circular Security
	8 Discussion Related to Impossibility for Circular Security
	References

