Skip to main content

Landslide in Sensitive Clays – From Research to Implementation

  • Chapter
  • First Online:
Landslides in Sensitive Clays

Abstract

Sensitive clays, when provoked by manmade or natural causes, have led to several landslide disasters throughout history. This has been reminded by the recent catastrophic landslides at e.g. St. Jude (2010), Lyngen (2010), Kattmarka (2009), Byneset (2012), Skjeggestad landslide (2015) and Sørum (2016). In the last 40 years there has been approximately 1 or 2 slides per decade with a volume ≥ 500,000 m3 (Thakur et al. 2014). Alone, the collapse of Skjeggestad bridge in Norway in 2015 resulted in damages for over several millions of dollars and was associated to a landslide in sensitive clay. Since landslides in sensitive clays possess huge destructive capabilities, there is a need for accurate assessment and prediction of landslide potential in such materials. However, this is not a straightforward task due to the complexity associated with characterization, identification, mapping and testing of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anschütz H, Bazin S, Pfaffhuber AA (2014) AEM method description & project examples. Norwegian Geotechnical Institute, Report 20130058–02-R_ENG, Oslo

    Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7:637–650

    Article  Google Scholar 

  • Bjerrum L (1967) Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique 17(2):83–118

    Article  Google Scholar 

  • Broms BB, Stål T (1980) Landslides in sensitive clays. In: Proceedings of the international symposium on landslides, vol 2. New Delhi, pp 39–66

    Google Scholar 

  • Demers D, Robitaille D, Locat P, Potvin J (2014) Inventory of large landslides in sensitive clays in the province of Quebec, Canada: preliminary analysis. Natural hazards book: advances in natural and technological hazards research, ISSN: 1878–9897 (Print) pp 2213–6959 (Online), pp 77–89

    Google Scholar 

  • Geertsema M., L’Heureux JS (2014) Controls on the dimensions of landslides in sensitive clays. Advances in natural and technological hazards research, ISSN: 1878–9897 (Print) 2213–6959 (Online), pp 105–117

    Google Scholar 

  • Gylland AS, Jostad HP, Nordal S (2014) Experimental study of strain localization in sensitive clays. Acta Geotech 9:227–240

    Article  Google Scholar 

  • Helle TE, Nordal S, Aagaard P et al (2016) Long-term effect of potassium chloride treatment on improving the soil behavior of highly sensitive clay — Ulvensplitten, Norway. Can Geotech J 53(3):410–422. doi:10.1139/cgj-2015-0077

    Article  Google Scholar 

  • Johansson J, Løvolt F, Andersen KH, Madshus C, Aabøe R (2013) Impact of blast vibrations on the release of quick clay slides. In Proceedings of the 18th ICSMGE, Paris

    Google Scholar 

  • Jostad HP, Andresen L, Thakur V (2006) Calculation of shear band thickness in sensitive clays. In: Conference of the 6th numerical methods in geotechnical engineering, At Graz, vol 1

    Google Scholar 

  • L’Heureux JS (2012) A study of the retrogressive behaviour and mobility of Norwegian quick clay landslides. In: Proceedings of the 11th INASL, Banff, Canada, vol. 1, pp 981–988

    Google Scholar 

  • L’Heureux JS, Locat A, Leroueil S, Demers D, Locat J (2014) Landslides in sensitive clays: from geosciences to risk management, Advances in natural and technological hazards research 36. Springer, Dordrecht. doi:10.1007/978-94-007-7079-9_1

    Book  Google Scholar 

  • Lacasse S (2017) 55th Rankine lecture. Hazard, risk and reliability in geotechnical practice. Paper submitted to Geotechnique

    Google Scholar 

  • Le Bihan JP, Leroueil S (1981) The fall cone and the behaviour of remoulded clay. Terratech Ltd. Research Report, Montreal

    Google Scholar 

  • Lebuis J, Rissmann P (1979) Les coulées argileuses dans le région de Québec et de Shawinigan. In: Argiles sensibles, pentes instables, mesures correctives et coulées des régions de Québec et Shawinigan. Geo. Assoc. of Canada Guidebook, pp 19–40

    Google Scholar 

  • Leroueil, S, Locat, J, and Vaunat J (1996) Geotechnical characterisation of slope movements. In: Proceedings of the 7th international symposium on landslides, pp 53–74

    Google Scholar 

  • Locat J, Demers D (1988) Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Can Geotech J 25(4):799–806. doi:10.1139/t88-088

    Article  Google Scholar 

  • Locat J, Lee HJ (2005) Subaqueous debris flow. Debris-flow hazards and related phenomena. Springer, Berlin/New York, pp 203–246. ISBN:3-540-20726-0

    Google Scholar 

  • Locat J, Lee H (2009) Submarine mass movements and their consequences: an overview landslides – disaster risk reduction. Springer, 115–142 http://link.springer.com/chapter/10.1007/978-3-540-69970-5_6

  • Locat P, Leroueil S, Locat J (2008) Remaniement et mobilité des débris de glissements de terrain dans les argiles sensible de l’est du Canada. In: Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec, pp 97–106

    Google Scholar 

  • Locat A, Leroueil S, Bernander S, Demers D, Jostad HP, Ouehb L (2011) Progressive failures in eastern Canadian and Scandinavian sensitive clays. Can Geotech J 48(11):1696–1712

    Article  Google Scholar 

  • Lunne T, Berre T, Strandvik S (1997) Sample disturbance effects in soft low plastic Norwegian clay. In: Proceedings of the symposium on recent development in soil and pavement mechanical, Rio de Janeiro, Brazil, pp 81–102

    Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airbone laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • Mitchell RJ, Markell AR (1974) Flow slides in sensitive soils. Can Geotech J 11(1):11–31

    Article  Google Scholar 

  • Mora OE, Liu JK, Lenzano MG, Toth CK, Grejner-Brzezinska DA (2014) Small landslide susceptibility and hazard assessment based on airbone lidar data. Photogramm Eng Remote Sens 81:239–247

    Article  Google Scholar 

  • Moum J, Løken T, Torrance JK (1971) A geochemical investigation of the sensitivity of a normally consolidated clay from Drammen, Norway. Géotechnique 21(4):329–340

    Article  Google Scholar 

  • Norsk Geoteknisk Forening (NGF) (1974) Retningslinjer for presentasjon av geotekniske undersøkelser. Oslo, 16 p (In Norwegian)

    Google Scholar 

  • Oset F, Thakur V, Dolva BK, Aunaas K, Sæter MB, Robsrud A, Viklund M, Nyheim T, Lyche E, Jensen OA (2014) Regulatory framework for road and railway construction on the sensitive clays of Norway. 1st IWSLC, Québec. In: L’Heureux JS et al (eds) Landslides in sensitive clays: from geosciences to risk management, Advances in natural and technological hazards research 36. Springer, Dordrecht, pp 343–352. doi:10.1007/978-94-007-7079-9_27

    Chapter  Google Scholar 

  • Perret D, Mompin R, Bossé F, Demers D (2011) Stop 2-5B: the Binette road earth fl ow induced by the June 23rd, 2010 Val-des-Bois earthquake. In: Russell HAJ, Brooks GR, Cummins DI (eds) Deglacial history of the Champlain Sea basin and implications for urbanization. Joint annual meeting GAC-MAC-SEG-SGA, Ottawa, Ontario, May 25–27, 2011, Field Guide Book, pp 72–74. Geological Survey of Canada, Open File 6947

    Google Scholar 

  • Rosenqvist IT (1953) Consideration on the sensitivity of Norwegian quick-clays. Geotechnique 3:195–200

    Article  Google Scholar 

  • Skempton AW, Northey RD (1952) Sensitivity of clays. Geotechnique 3(1):40–51

    Google Scholar 

  • Skempton AW, Sowa VA (1963) The behaviour of saturated clays during sampling and testing. Géotechnique 13(4):269–290

    Article  Google Scholar 

  • Tavenas F, Flon P, Lerouil S et al (1983) Remolding energy and risk of slide retrogression in sensitive clays. In: Proceedings of the symposium slopes on soft clays, Linköping, Sweden, pp 423–454

    Google Scholar 

  • Thakur V (2007) Strain localization in soft sensitive clays. PhD thesis. Norwegian University of Science and Technology, NTNU, Trondheim, Norway

    Google Scholar 

  • Thakur V (2011) Numerically observed shear bands in soft sensitive clays. J Geomech Geoeng 6:131–146

    Article  Google Scholar 

  • Thakur V, Degago SA (2012) Quickness of sensitive clays. Géotechnique Lett 2(3):87–95

    Article  Google Scholar 

  • Thakur V, Degago SA (2013) Disintegration energy of sensitive clays. Géotechnique Lett 3:21–25

    Article  Google Scholar 

  • Thakur V, Grimstad G, Nordal S (2006) Instability in soft sensitive clays. In: Proceedings of the ECI conference on geohazards, Lillehammer, Norway Eds. Nadim, Pöttler, Einstein, Klapperich and Kramer

    Google Scholar 

  • Thakur V, Degago SA, Oset F, Dolva BK, Aabøe R, Aunaas K, Nyheim T, Lyche E, Jensen OA, Viklund M, Sæter MB, Robsrud A, Nigguise D, L’Heureux JS (2014) Characterization of post-failure movements of landslides in soft sensitive clays. Natural hazards book: advances in natural and technological hazards research, ISSN: 1878–9897 (Print) pp 2213–6959 (Online), pp 91–104

    Google Scholar 

  • Thakur, V, Degago SA, Oset F, Gylland SA, Sandven R (2015) In-situ measurement of remoulding energy of sensitive clay. In: 68th Canadian geotechnical conference, GeoQuebec, Quebec

    Google Scholar 

  • Thakur V, Fauskerud OA, Gjelsvik V, Christensen S, Oset F, Viklund M, Strand SA, Nordal S (2016) A procedure for the assessment of undrained shear strength profile in soft clays. In: Proceedings of the 17th nordic geotechnical meeting, Iceland, pp 533–546

    Google Scholar 

  • Thakur, V, Nordal S, Viggiani, G, Charrier P (2017) Plane strain testing on Norwegian quick clays. Submitted to Canadian Geotechnical Journal

    Google Scholar 

  • Torrance JK (1983) Towards a general model of quick clay development. Sedimentology 30:547–555

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moeyerson J, Nyssen J, van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363

    Article  Google Scholar 

  • Vaunat J, Leroueil S (2002) Analysis of post-failure slope movements within the framework of hazard and risk analysis. Nat Hazards 26:83–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thakur, V., L’Heureux, JS., Locat, A. (2017). Landslide in Sensitive Clays – From Research to Implementation. In: Thakur, V., L'Heureux, JS., Locat, A. (eds) Landslides in Sensitive Clays. Advances in Natural and Technological Hazards Research, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-56487-6_1

Download citation

Publish with us

Policies and ethics