
On the Implementation of Centerline Extraction
Based on Confidence Vote in Accumulation Map

Bertrand Kerautret1,2(B), Adrien Krähenbühl4, Isabelle Debled-Rennesson1,2,
and Jacques-Olivier Lachaud3

1 Université de Lorraine, LORIA, UMR 7503, 54506 Vandoeuvre-lès-Nancy, France
{bertrand.kerautret,isabelle.debled-rennesson}@loria.fr

2 CNRS, LORIA, UMR 7503, 54506 Vandoeuvre-lès-Nancy, France
3 LAMA (UMR CNRS 5127), Université Savoie Mont Blanc,

73376 Chambéry, France
jacques-olivier.lachaud@univ-savoie.fr

4 LaBRI (UMR CNRS 5800), 351, Cours de la Libération,
33405 Talence Cedex, France
adrien.krahenbuhl@labri.fr

Abstract. This paper focuses on the implementation details of a recent
method which extracts the centerline of 3D shapes using solely partial
mesh scans of these shapes. This method [9] extracts the shape center-
line by constructing an accumulation map from input points and normal
vectors and by filtering it with a confidence vote. This paper presents in
details all the algorithms of the method and describes the implementa-
tion and development choices. Some experiments test the robustness to
the parameter variability and show the current limitations allowing to
consider further improvements.

1 Introduction

Extracting the centerline of a shape is a classical problem in geometry processing
and in image analysis. It can be seen as a special case of skeleton extraction for
shapes with local approximate cylindrical symmetry. This problem has been
addressed many times in the literature, one can refer to Tagliasacchi et al. [18]
and Saha et al. [15] for recent surveys. As mentioned in the first survey, the
wide deployment of such methods in many relevant applications is still missing
[18]. In order to make easier the concrete deployment of academic centerline
extraction methods in industrial applications, we present in details a recent
method specialized for the extraction of centerlines of approximately tubular
shapes with possibly branching [9] and we provide its complete implementation.
This method presents several advantages: it can process partial mesh scans,
it is robust to perturbations and relatively independent to parameters, it is
not difficult to reproduce and implement. For instance, the replication of the

J.-O. Lachaud—This work was partially supported by the ANR grants DigitalSnow
ANR-11-BS02-009.

c© Springer International Publishing AG 2017
B. Kerautret et al. (Eds.): RRPR 2016, LNCS 10214, pp. 116–130, 2017.
DOI: 10.1007/978-3-319-56414-2 9



On the Implementation of Centerline Extraction 117

(a) (b) (c) (d)

source mesh repaired mesh repaired mesh (bis) re-meshed
187 638 faces 188 976 faces 188 994 faces 9 996 faces

(e) closeup view on the left tube extremity

time: 5.96 sec time: 5.46 sec time: 5.31 sec time: 0.31 sec
(f) result of the skeleton extraction

Fig. 1. Measure of the sensibility of the skeleton extraction method of [17] on data
with different qualities: (a) raw data extracted directly from the scanner, (b) repaired
mesh with hole closure, (c) mesh (b) + face intersection removal, (d) new re-meshing
by keeping 5000 points.

method (in the meaning of Goodman’s definition [8]) was demonstrated with
its integration in an industrial framework by a company manufacturing tubular
shapes for aircraft cabins.

The originality of this new method compared to existing works was already
presented in the latter reference [9], and is not the main topic of this paper. Nev-
ertheless we examine the sensibility with respect to input data quality of a recent
method [17] publicly available in theCGAL library [1]. Figure 1 displays the differ-
ent results obtained by running this method respectively on raw mesh scans (col-
umn (a)), on mesh repaired by hole closure (column (b)), on mesh (b) repaired by
face intersection (column (c)), and finally after a complete re-meshing and keeping
a reduced number of faces (column (d)). Such repairing processes were obtained
using the geogram library [3,4], which proposes a complete set of re-meshing tools
based on different methods [11,12,19]. It appears that the quality of output cen-
terlines depends directly of the mesh quality. In particular, for the source mesh
(column (a) of Fig. 1), the resulting skeleton appears really noisy. Its quality is
then significantly improved with mesh repaired and re-meshed (columns (b) to
(d)). We will see in the following that the proposed method is far less sensitive to
the quality of the input data, and even does not use their topology.



118 B. Kerautret et al.

The rest of the paper is organized as follows: in Sect. 2, the main idea and
algorithms of method [9] (confidence vote in accumulation map) are introduced,
together with a short description of a former method [10] at the origin of this
new one. Implementation details and source code are described in Sect. 3. Then
the way to reproduce experiments and results are presented in Sect. 4 before
concluding with some open problems and perspectives.

2 Centerline Extraction from Confidence Map

We describe first the notion of accumulation map, which was the main idea of
a preliminary work for centerline extraction [10]. In a second stage, we describe
how the new method introduced in [9] has built upon this work in order to get a
much more robust centerline as output. The main idea of this second work was
to add a confidence vote to filter the accumulation map.

Single accumulation map. The preliminary proposed approach to extract the
centerline was built an accumulation map from the set of input points and their
associated normal vectors. The principle of accumulation map is illustrated in
Fig. 2. Starting from a point, taken for example as the center of a mesh face fk,
and the corresponding normal vector −→nk (see Fig. 2(a)), the algorithm adds one
to the score of each voxel intersected by the ray of length dacc, starting from the
considered point and directed toward vector −→nk. Voxels located on such rays are
illustrated with different colors in Fig. 2(b).

From the resulting accumulation map (see Fig. 2(c)), the centerline points
are tracked by moving from the peaks of this map in the direction orthogonal
to intersecting rays. This approach is robust enough to handle a simple shape
without branching. The algorithm was successfully exploited and reproduced in
a concrete application dealing with the detection of wood trunk defects [13].
However such an application is not adapted to deal with a branched centerline.

Fig. 2. Main steps of the preliminary approach [10]. The image (a) shows how digital
rays are casted from input data to define the accumulation map. The voxels intersected
by the same ray are displayed in the same color on image (b). The resulting accumu-
lation map, stored as an image, is illustrated in image (c), where the red (resp. blue)
color corresponds to a high (resp. low) accumulation. (Color figure online)



On the Implementation of Centerline Extraction 119

Fig. 3. Construction of the confidence map from the accumulation map. (Color figure
online)

Therefore a new notion of confidence in the accumulation value was proposed to
extend the centerline detection method to branched tubular objects.

Notion of confidence in accumulation. The centerline extraction was sig-
nificantly improved by adding a confidence value in the vote that represent the
accumulation scores [9]. The main idea is to define a confidence map (imConf),
which is deduced from the accumulation map (imAcc) with a maximality princi-
ple. More precisely, let v be a voxel and let vacc be the number of rays traversing
it, then vmax is defined as the number of rays passing trough v and for which
vacc is a strict maximum value along the whole ray. Figure 3(b) illustrates this
maximality principle where red values are maximal accumulation values for at
least one ray. Then, from these vmax values, the confidence value vconf is simply
defined as the ratio between values vmax and vacc:

vconf =
vmax

vacc

As illustrated in Fig. 3, the confidence scores appear to be more concentrated
near the center of the circular shape than the accumulation map scores. Such
quality was already analyzed in a previous work by computing the number of
connected components resulting of different confidence/accumulation thresholds
(see Fig. 5 in [9]). These analysis were obtained on a single class of shapes. The
analysis Fig. 4 complete it on meshes with various quality levels. The better
behavior of the confidence map with respect to the sole accumulation map is
also well visible: even if we consider partial data, voxels located near the center
of the shape are well identified in the confidence map even for very different
thresholds, while this is not the case for the accumulation map. The measures
can be reproduced from the compAccFromMesh program (see Sect. 3) and for
instance the experiments presented in Fig. 4(a) are obtained with the command
lines in Code 1.1 (and by using the minimum threshold parameter (-m 25)).



120 B. Kerautret et al.

ac
cu

m
ul

at
io

n
co

nfi
de

nc
e

(a) t = 0.2 t = 0.5 t = 0.8 t = 0.9

ac
cu

m
ul

at
io

n
co

nfi
de

nc
e

(b) t = 0.2 t = 0.5 t = 0.8 t = 0.9

ac
cu

m
ul

at
io

n
co

nfi
de

nc
e

(c) t = 0.2 t = 0.5 t = 0.8 t = 0.9

ac
cu

m
ul

at
io

n
co

nfi
de

nc
e

(d) t = 0.2 t = 0.5 t = 0.8 t = 0.9

Fig. 4. Experimental comparisons of sensitivity to thresholding between the accumu-
lation map and the confidence map. Thresholds were set between 0 (min accumula-
tion/confidence value) and 1 (max accumulation/confidence value) on all meshes. Note
that the parameter t for the accumulation was rescaled according the the maximal
value of accumulation. The same maximal radius parameters R = 7 was used in all
experiments.



On the Implementation of Centerline Extraction 121

Code 1.1. Command lines to compute and display the confidence map, used to gen-
erate the experiments presented in the second line in Fig. 4(a). Replace
confidence.longvol by accumulation.longvol to obtain the accumulation map com-
puted at the first line.
$ ./bin/compAccFromMesh -i ../ SamplesIllustration/sectionATube1.off -r 7
$ longvol2vol -i confidence.longvol -o confidence.vol
$ 3dImageViewer -i confidence.vol -m 25 -M 255 -t 120 \

--displayMesh ../ SamplesIllustration/sectionATube1.off \
--colorMesh 127 127 127 100

All detailed algorithms are given in the appendix: the global process
(Algorithm 1) computes the accumulation map with (Algorithm 2) before using
it as an input parameter in the algorithm computing the confidence map
(Algorithm 3).

Fig. 5. Points resulting
from a thresholding on
confidence map.

Centerline extraction from confidence map.
Since the confidence map locates centerline points in
a more accurate and stable way, the former center-
line extraction algorithm from [10] can be redefined
to handle branchings. In particular, as illustrated in
side Fig. 5, a simple threshold on the confidence map
gives a set of voxels that is almost a connected path. A
geodesic-based graph extraction was proposed in [9] to
track it and is detailed in Algorithm4. This algorithm
consists in first applying a dilation on the thresholded
confidence map before tracking center points accord-
ing to a the geodesic distance map of imConf , com-
puted from an initial point Pinit. The geodesic map
is divided in a set regions corresponding to connected
components at a specific geodesic distance from Pinit,
then a representative point of each region is selected
and the graph is reconstructed by linking the repre-
sentative points of connected regions.

Following this overview of the proposed method, the next section details the
implementation of the different algorithms and describes the potential influence
of the different parameters.

3 Implementation Description

The source code of the proposed implementation is available on Github:

https://github.com/kerautret/CDCVAM

The proposed implementation is written in C++ and is based on the DGtal
library [2]. The algorithms computing accumulation and confidence maps can
easily be implemented in another language. The only part of DGtal specifically
exploited concerns the geodesic graph extraction method, which uses DGtal
implementation of the Fast Marching Method [16]. This algorithm is used in
Algorithm 4 both to compute the dilation and the geodesic images. Of course
other strategies to reconstruct the graph can be defined like for instance the

https://github.com/kerautret/CDCVAM


122 B. Kerautret et al.

use of a metric graph algorithm [7]. Moreover, the implementation only deals
with meshes as input but the first step consists to extract the point list and the
normal vector field. It is really easy to create another wrappers allowing to deal
with other entries without changing the core functions.

Sources organization. The main algorithms are implemented in the src direc-
tory, and organized into classes: the classes NormalAccumulator and Geodesic-
GraphComputer implement respectively Algorithms 2 and 4. This directory also
contains helper classes and functions with different purposes: adaptation of
input data to accumulation map and confidence map algorithms (Accumu-
latorHelper), optimization of the center line position (CenterLineHelper) as
described in [10]. The main programs used for experiments are located in the
bin directory (like the program of Code 1.1). Other programs which generate the
figures and plots of [9] are also given in this directory. Finally the tests direc-
tory gives various programs to display and control the main key features of our
method: accumulation map, confidence map, geodesic graph extraction.

Implementation choices. For the accumulation map algorithm, we chose to
store the scores in a 3D image with bounds corresponding to the mesh bounding
box. In the proposed implementation the choice of the grid size is automatically
set to 1. The mesh can be scaled in order to have enough precision in the accu-
mulation process, by using for instance the mean distance between input points.
The influence of the grid size parameter is experimented in the next section.

The choice to use a 3D image is a first handy solution. For large shapes, this
approach can induce a large memory cost. It should then be adapted to another
image structure.

Handling other types of data. In the previous work [9] the experiments were
exclusively defined on partial mesh scans. However since the proposed method
takes as input only a set of points with normal vectors, it can process other types
of data like set of points, digital objects and height maps. To process these other
types of data one has only to estimate the normal vector at each point and then
import these data in the main program GeodesicGraphComputer.

It is also useful to provide tools for processing
shapes presenting long rectangular faces like in the
image on the side. Such meshes are typically built by
geometric modeling software when modeling tubular
shapes. In this case, the centerline graph extraction
algorithm outputs a disconnected set of voxels. We thus adapt this algorithm
by exploiting clusters of confident voxels and by using the main local direction
estimated from the voting vectors (note that accumulation and confidence map
algorithms remain the same). This case can however be adapted by exploiting
clusters of confident voxels and by using the main local direction estimated from
the voting vectors. The floating figure on the side illustrates the result that we
obtain when using Code 1.1 with this particular type of mesh. All the voxels
identifying a common tubular section are well detected and can be exploited for
the reconstruction.



On the Implementation of Centerline Extraction 123

Optimizations not described in the algorithms. The proposed implemen-
tation of Algorithm4 contains some optimizations which are not described in
this paper for sake of clarity. In particular connected components are obtained
with an union-find algorithm during the FMM extension. More details are given
in the source files GeodesicGraphComputer(.h/.cpp).

4 Reproducing the Results and Influence of Parameters

Fig. 6. Result obtained
with Code 1.2.

The reproduction of the results is straightforward from
the programs provided in the bin directory of the
GitHub repository. Results can be inspected with the
visualisation tools coming from the DGtal companion
repositories (DGtalTools [5] and DGtalTools-Contrib
[6]). All command line tools provide a full description
of their options. For instance, Code 1.2 shows a typical
usage for centerline extraction, which builds the result
displayed in Fig. 6.

Code 1.2. Command lines to extract and display the centerline of a given shape.
$ ./bin/centerLineGeodesicGraph -i ../ Samples/tube3.off -R 6 -g 6
$ graphViewer -v resultVertex.sdp -e resultEdges.sdp \

-m ../ Samples/tube3.off --meshColor 250 100 100 25 -b 2

In order to integrate the proposed method in other frameworks you can use
the code snippet given in Code 1.3. It shows how to compute the centerline
of an arbitrary mesh stored as an OFF file. The computation itself is done in
two main stages: (i) computation of the accumulation and confidence maps, (ii)
threshold on the confidence map followed by graph reconstruction. Note that by
importing normal vectors, you can adapt these code sample to process voxels or
point clouds. For instance the tool compAccFromSDP extracts the centerline of
a point cloud and uses the PCL library [14] to estimate normal vectors.

Code 1.3. Compute the centerline of a mesh given as the OFF file “example.off”.
// Preliminary: read input off file:
DGtal::Mesh <P3d > aMesh; aMesh <<"example.off";

// Step i): compute the accumulation and confidence (with dacc =7)
NormalAccumulator acc (7);
acc.initFromMesh(aMesh);
acc.computeAccumulation ();
acc.computeConfidence ();
Image3Dd imConf = acc.getConfidenceImage ();

// Step ii): apply the centerline extraction from confidence map.
GeodesicGraphComputer:: TSet aConfidenceSet(imConf.domain ());
// ii. a) Thresholding the confidence map:
for (auto const &p: imConf.domain ())

if(imConf(p)>= 0.5)
aConfidenceSet.insert(p);

P3d p0 = acc.getMaxAccumulationPoint ();
// ii. b) Computing the graph:
GeodesicGraphComputer gg(4, aConfidenceSet , 3, acc.getDomain(), p0);
gg.computeGraphFromGeodesic ();



124 B. Kerautret et al.

dacc = 1 dacc = 2 dacc = 5 dacc = 10 dacc = 20

t = 0.1 t = 0.2 t = 0.3 t = 0.6 t = 0.8

r = 1 r = 2 r = 4 r = 6 r = 8

dg = 1 dg = 2 dg = 3 dg = 6 dg = 8

scale = 0.25 scale = 0.5 scale = 1 scale = 2 scale = 4

Fig. 7. Influence of parameters when extracting the centerline of playmobil tree. For
all experiments (expect for the scale) the other parameters were set to their default
values (dg = 3, r = 2, t = 0.5, dacc = 6). For the scale parameter experiment, default
parameters were scaled accordingly.



On the Implementation of Centerline Extraction 125

dacc = 1 dacc = 2 dacc = 5 dacc = 10 dacc = 20

t = 0.1 t = 0.2 t = 0.3 t = 0.6 t = 0.8

r = 1 r = 2 r = 4 r = 6 r = 8

dg = 1 dg = 2 dg = 3 dg = 6 dg = 8

scale = 0.25 scale = 0.5 scale = 1 scale = 2 scale = 4

Fig. 8. Influence of parameters when extracting the centerline of a tube shape. For
all experiments (expect for the scale) the other parameters were set to their default
values (dg = 3, r = 2, t = 0.5, dacc = 6). For the scale parameter experiment, default
parameters were scaled accordingly.

Influence of Parameters. The proposed method is tuned by several parame-
ters which can be set according to properties of the shape under study. The first
stage of the algorithm has two parameters: the maximal distance of accumula-
tion (dacc) and the threshold on the confidence score (t). As illustrated in Figs. 7
and 8, the method is not very sensitive to these two parameters and they can be
chosen arbitrarily in a wide range of values. Significant changes are only visible
in the output if we choose a too small distance of accumulation (dacc = 1) or
a too high threshold on confidence map (t = 0.8). The latter disconnects some
branches of the playmobil tree. A rule of the thumb is to choose for parameter
dacc a value greater than the maximal possible radius, and to set t = 0.5.

In the same way the parameters of the second stage of the algorithm, which
are the dilatation radius (dr) and the geodesic step distance (dg) have not a
significant influence (if we omit extremal values). Finally, we have measured the
effect of a scale change in the input mesh (equivalent to change the grid resolution
during the accumulation process, i.e. to reduce the input point density). As
expected, increasing the scale makes the computation time longer (with the



126 B. Kerautret et al.

(a ) 47% ( 118821 faces) (b) (c) 16% ( 40465 faces) (d)

(e) 31% (58 983 faces) (f) (g) 6% (11 360 faces) (h)

Fig. 9. Experiments on reduced scans by applying the centerline extraction on mesh
with a very limited selection of faces. Images (a,e) show the result obtained with reduced
scan parts (in red). Images (b,f) display the selected faces (isolated in images (c,g)),
and the extracted centerlines are shown in images (d,h). (Color figure online)

increase of size of the accumulation digital space) but the resulting centerline is
smoother and more accurate, and presents more details.

Robustness to missing parts in mesh scans. To conclude this section, the
sensitivity to partial data in meshes was tested. Even if experiments of partial
scans of real objects were given in the previous publication, we measure here
extreme cases for the method with a major removal of information: first on a
partial scan obtained by filtering the normal direction (see Fig. 9(a to d)), and
second on a thin portion of the original mesh to measure the limitations of the
method (see Fig. 9(e to h)). In both cases, the confidence map is remarkably
stable, and the algorithm is able to approach the centerline located inside the
original shape, with a slight loss in accuracy in the second experiment. Note
that the optimization process was not included here but it could potentially
significantly increase the quality of the result.

5 Conclusion and Discussions

We have presented in full details a method for centerline extraction from meshes.
Algorithms, code organization, tools and dependencies were described, and the
complete source code is available online. Reproducibility was demonstrated with
complementary experiments, and a particular attention was devoted to the sen-
sibity of the method to parameter tuning. The method was presented here only
on triangulated mesh data type, but the method can easily be tailored to other



On the Implementation of Centerline Extraction 127

data types (like point clouds or digitized objects) from the provided source codes.
The extension of the confidence map method to process volumetric grayscale
images is a future challenging task and would have many applications in the
medical imaging domain, with for instance the extraction of 3d vascular vessels
or bronchial trees.

A Appendix

In this section we present in details the different algorithms that were mentioned
in the method description. These algorithms were implemented almost as is in
our C++ code. They are already proposed in another manner in the paper [9].

Algorithm 1. Global process that computes the normal vector accumulation
image imAcc and the corresponding confidence image imConf from an input
set of points and the corresponding normal filed.

procedure GlobalProcess

Input
List<Point3D> sp � List of surface points
List<Vector3D> nv � Normal vectors of sp
Int dacc � Accumulation distance
Double r � Morphological dilatation radius
Double dgeo � Geodesic step distance
Double tconf � Threshold on imConf, in [0, 1]

Output
Graph graph � Resulting centerline

Begin
Image3D<Int> imAcc = ComputeAcc( sp, nv, d ) � Accumulation image
Image3D<Double> imConf = ComputeConf( sp, nv, imAcc, dacc )

� Confidence image
Image3D<Double> imConfT = threshold( imConf, tconf )
graph = ComputeGraph( imAcc, imConfT , r, dgeo )
return graph

End



128 B. Kerautret et al.

Algorithm 2. Compute the accumulation image imAcc from a normal vector
field nv with an accumulation distance d.

procedure ComputeAcc

Input
List<Point3D> sp � Surface points
List<Vector3D> nv � Normal vectors
Int dacc � Accumulation distance

Output
Image3D<Int> imAcc � Accumulation image

Begin
for i : 0 → nv.size()−1 do

Vector 3D norm = nv[i]
Point3D orig = sp[i]
Point3D pos = orig
while orig.distanceTo(pos) < dacc do

imAcc(pos)++
pos.translate(norm)

return imAcc
End

Algorithm 3. Compute the confidence map imConf for each accumulation value
of imAcc from each normal vector of nv contributing to this accumulation value.
1: procedure ComputeConf

2: Input
3: List<Point3D> sp � Surface points
4: List<Vector3D> nv � Normal vectors
5: Image3D<Int> imAcc � Accumulation map
6: Int dacc � Accumulation distance

7: Output
8: Image3D<Double> imConf � Confidence map

9: Begin
10: for i : 0 → nv.size() - 1 do
11: Vector3D norm = nv[i]
12: Point3D orig, pos, maxPos = sp[i]
13: Int maxAcc = 0
14: while orig.distanceTo(pos) < dacc do
15: if imAcc(pos) > maxAcc then
16: maxAcc = imAcc(pos)
17: maxPos = pos

18: pos.translate(norm)

19: imConf(maxPos)++

20: for all pos ∈ imConf .domain() do
21: imConf(pos) = imConf(pos) ÷ imAcc(pos)

22: return imConf
23: End



On the Implementation of Centerline Extraction 129

Algorithm 4. Compute the geodesic graph from an accumulation map imAcc
and a thresholded confidence map imConfT .

procedure ComputeGraph

Input
Image3D<Int> imAcc � Accumulation map
Image3D<Double> imConfT � Thresholded confidence map
Double r � Dilatation radius
Double dgeo � Geodesic step distance

Output
Graph graph � Resulting graph

Begin
Image3D<Bool> imConfB = binarize(imConfT ,0)
Image3D<Bool> imConfD = dilate(imConfB ,r)
Point3D Pinit = maximumCoordinates(imAcc)
Image3D<Double> imGeo = geodesicDistanceTransform(imConfD,Pinit)
Map<Int,Vector<Point3D>> regions � Geodesic regions
for all pos ∈ imGeo.domain() do

regions[floor(imGeo(pos)/dgeo)].push( pos )

Map<Int,List<Vector<Point3D>>> regionCCs � Connected components
for all key, region ∈ regions do

List<Vector<Point3D>> CCs = splitIntoCCs(region)
regionCCs[key].push( CCs )

for all key, CCList ∈ regionCCs do � Graph building
for all CC ∈ CCList do

Point3D bary = barycenter(CC)
graph.addVertex(bary)
for all childCC ∈ regionCC[key + 1] do � key+1 repr. the next region

if areConnected(CC,childCC) then
graph.addEdge( bary, barycenter(childCC) )

return graph
End

References

1. CGal: release 4.8. http://www.cgal.org
2. DGtal: digital Geometry tools and algorithms library. http://dgtal.org
3. Geogram: release 1.0.0. http://alice.loria.fr/software/geogram/doc/html/index.

html
4. Geogram vorpaview: online demonstration. http://webloria.loria.fr/levy/

GEOGRAM/vorpaview.html
5. Dgtaltools: companion repository of DGtal library (2016). https://github.com/

DGtal-team/DGtalTools
6. Dgtaltools-contrib: companion repository of DGtal library (2016). https://github.

com/DGtal-team/DGtalTools-contrib
7. Aanjaneya, M., Chazal, F., Chen, D., Glisse, M., Guibas, L., Morozov, D.: Metric

graph reconstruction fron noisy data. Int. J. Comput. Geom. Appl. 22(04), 305–325
(2012). http://www.worldscientific.com/doi/abs/10.1142/S0218195912600072

http://www.cgal.org
http://dgtal.org
http://alice.loria.fr/software/geogram/doc/html/index.html
http://alice.loria.fr/software/geogram/doc/html/index.html
http://webloria.loria.fr/levy/GEOGRAM/vorpaview.html
http://webloria.loria.fr/levy/GEOGRAM/vorpaview.html
https://github.com/DGtal-team/DGtalTools
https://github.com/DGtal-team/DGtalTools
https://github.com/DGtal-team/DGtalTools-contrib
https://github.com/DGtal-team/DGtalTools-contrib
http://www.worldscientific.com/doi/abs/10.1142/S0218195912600072


130 B. Kerautret et al.

8. Goodman, S.N., Fanelli, D., Ioannidis, J.P.: What does research
reproducibility mean? Sci. Transl. Med. 8(341), 341ps12 (2016).
http://stm.sciencemag.org/content/8/341/341ps12

9. Kerautret, B., Krahenbül, A., Debled Rennesson, I., Lachaud, J.O.: Centerline
detection on partial mesh scans by confidence vote in accumulation map. In: The
proceedings of ICPR 2016 (2016, to appear)

10. Kerautret, B., Krähenbühl, A., Debled-Rennesson, I., Lachaud, J.-O.: 3D geometric
analysis of tubular objects based on surface normal accumulation. In: Murino,
V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 319–331. Springer, Cham
(2015). doi:10.1007/978-3-319-23231-7 29

11. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal
voronoi tessellation - energy smoothness and fast computation. ACM Trans. Graph.
28(4), 32 (2009). Article No. 101, Presented at SIGGRAPH 2010

12. Lévy, B., Bonneel, N.: Variational anisotropic surface meshing with voronoi par-
allel linear enumeration. In: Jiao, X., Weill, J.C. (eds.) Proceedings of the 21st
International Meshing Roundtable, pp. 349–366. Springer, Heidelberg (2012)

13. Nguyen, V.T., Kerautret, B., Debled Rennesson, I., Colin, F., Piboule, A., Con-
stant, T.: Segmentation of defects on log surface from terrestrial Lidar data. In:
soumis à ICPR 2016 (2016)

14. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13
May 2011

15. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms
and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

16. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999).
http://epubs.siam.org/doi/abs/10.1137/S0036144598347059

17. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean cur-
vature skeletons. Comp. Graph. Forum 31(5), 1735–1744 (2012).
http://dx.doi.org/10.1111/j.1467-8659.2012.03178.x

18. Tagliasacchi, A., Delamé, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons:
a state-of-the-art report. Comput. Graph. Forum 35(2), 573–597 (2016)

19. Yan, D., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and
exact computation of restricted voronoi diagram. In: ACM/EG Symposium on
Geometry Processing/Computer Graphics Forum (2009)

http://stm.sciencemag.org/content/8/341/341ps12
http://dx.doi.org/10.1007/978-3-319-23231-7_29
http://epubs.siam.org/doi/abs/10.1137/S0036144598347059
http://dx.doi.org/10.1111/j.1467-8659.2012.03178.x

	On the Implementation of Centerline Extraction Based on Confidence Vote in Accumulation Map
	1 Introduction
	2 Centerline Extraction from Confidence Map
	3 Implementation Description
	4 Reproducing the Results and Influence of Parameters
	5 Conclusion and Discussions
	A  Appendix
	References


