
OpenMVG: Open Multiple View Geometry

Pierre Moulon1(B), Pascal Monasse2, Romuald Perrot3, and Renaud Marlet2

1 Zillow Group, Seattle, USA
pierrem@zillowgroup.com

2 LIGM, UMR 8049, École des Ponts, UPE, Champs-sur-Marne, France
{pascal.monasse,renaud.marlet}@enpc.fr

3 Université de Poitiers - Laboratoire XLIM, UMR CNRS 7252, Futuroscope,
Poitiers, France

romuald.perrot@univ-poitiers.fr

Abstract. The OpenMVG C++ library provides a vast collection of
multiple-view geometry tools and algorithms to spread the usage of com-
puter vision and structure-from-motion techniques. Close to the state-
of-the-art in its domain, it provides an easy access to common tools used
in 3D reconstruction from images. Following the credo “Keep it simple,
keep it maintainable” the library is designed as a modular collection of
algorithms, libraries and binaries that can be used independently or as
bricks to build larger systems. Thanks to its strict test driven devel-
opment, the library is packaged with unit-test code samples that make
the library easy to learn, modify and use. Since its first release in 2013
under the MPL2 license, OpenMVG has gathered an active community
of users and contributors from many fields, spanning hobbyists, students,
computer vision experts, and industry members.

Keywords: Reproducible research · Computer vision · Multiple-view
geometry · 3D reconstruction · Structure from Motion · C++ · Open
source

1 Introduction

Computer vision is used extensively nowadays, even by our pocket devices thanks
to our smartphones. Some of the computer visions tasks they perform include
stitching images to create a planar mosaic and a spherical panorama, using
image content-based search retrieval (bar codes, similar product search), and
performing 3D reconstruction from photographs. Moreover, 3D content creation
from images is more and more used: e.g., digitizing our world for offline (survey-
ing, cartography, VFX) or for online applications (gaming, AR/VR), digitizing
dynamic elements for gaming (Kinect), and autonomous navigation of vehicles
are all trendy topics.

Regarding the large scope of applications and the diverse needs of computer
vision techniques relating to 3D reconstruction, it is clear that the community
can have a major gain if a common framework can be used to communicate, make
c© Springer International Publishing AG 2017
B. Kerautret et al. (Eds.): RRPR 2016, LNCS 10214, pp. 60–74, 2017.
DOI: 10.1007/978-3-319-56414-2 5

OpenMVG: Open Multiple View Geometry 61

experiments, and build new prototypes. Often, high level and general purpose
tools like Matlab or Intel IPP1 are used, but they are not the best choice, since
beside being costly they do not have all the needed algorithms implemented.
They include only a subset of the major Multiple-View-Geometry (MVG) algo-
rithms and are not specialized for Structure from Motion (SfM). Other alterna-
tives like OpenCV can be compelling, but again, only partial implementations
exist. Since these alternatives want to cover a large scope of applications they
do not focus on multiple view geometry and 3D reconstruction from images in
an efficient way.

2 Photogrammetry Software Alternatives

Photogrammetry is the science of making measurements from photographs, espe-
cially for recovering the exact positions of surface points. The domain is mature;
as witnessed on the internet2, more than 80 software solutions (commercial, free
or open source) are listed. 3D reconstruction from images knows a second breath
nowadays, since the emergence of UAV is making a true revolution in land survey-
ing, the acquisition of low altitude images being now a cheap and simple task.

We make here a distinction between multiple view geometry (MVG) and mul-
tiple view stereovision (MVS) software. The former is concerned with recovering
camera locations and orientations from the data (images and camera intrinsics);
it delivers also a sparse set of 3D points, built by triangulation from the feature
points observed in the photographs. The latter deals with the dense 3D recon-
struction; its output can be a dense point cloud, a faceted surface (mesh), or a
set of planes, which can be visualized as a realistic 3D rendering of the scene. It
relies on MVG to achieve that.

Commercial Software. The solutions, integrating MVG and MVS in single prod-
ucts, are clustered around the markets they are addressing: UAV land survey-
ing is addressed by the Pix4D products3 and by DroneDeploy software4, while
the large scale close range photogrammetry market is mostly addressed by the
Bentley ContextCapture5 and CapturingReality6 software.

Free Software. Visual SfM (VSfM [13]) is a solution that is largely used. The
main point that eases its usage is due to the fact the software is delivered with
a graphical user interface (GUI) and that it uses multi-threading on CPU and
GPU for high efficiency.

1 Intel Integrated Performance Primitives https://software.intel.com/en-us/intel-
ipp/.

2 https://en.wikipedia.org/wiki/Comparison of photogrammetry software#
Comparison.

3 https://pix4d.com/.
4 https://www.dronedeploy.com/.
5 https://www.bentley.com/en/products/brands/contextcapture.
6 https://www.capturingreality.com/.

https://software.intel.com/en-us/intel-ipp/
https://software.intel.com/en-us/intel-ipp/
https://en.wikipedia.org/wiki/Comparison_of_photogrammetry_software#Comparison
https://en.wikipedia.org/wiki/Comparison_of_photogrammetry_software#Comparison
https://pix4d.com/
https://www.dronedeploy.com/
https://www.bentley.com/en/products/brands/contextcapture
https://www.capturingreality.com/

62 P. Moulon et al.

Open Source Solutions. While some solutions deliver a software program
(Bundler [1], ColMap [39], MicMac [40], PMVS [35], CMVS [34]), others deliver
both a collection of libraries and softwares (MVE [37], OpenMVG, OpenSfM [41],
OpenMVS [42], TheiaSfM [38])7. Combining OpenMVG with OpenMVS or MVE
provides an end-to-end open-source photogrammetry pipeline.

From a user point of view, commercial and freeware solutions are like black
boxes that cannot be tuned or modified for the user needs, while open source
solutions provide complete pipelines and interface to multiple view geometry
algorithms that can be modified and customized.

Regarding the reproducible research side, open-source alternatives are inter-
esting since they deliver a transparent implementation of some algorithms that
anyone can test, use, check, and modify. While it is not easy to implement an
algorithm in the right way, some software guidelines rules can help to provide
transparency and fairness to the respective algorithm or paper implementation.

It is interesting to note that Bundler (more than 2000 citations) and VSfM
(more than 200 citations) projects have helped spreading the usage of Structure
from Motion into the computer vision community. Bundler was released as a
PhD code dump under an open-source license. It caught a lot of attraction since
it offers an easy to use command line software. Unfortunately, it did not receive
any major evolution, cleanup or updates since its initial release. Although also
initially developed during a PhD preparation [2], OpenMVG was designed from
the start with the idea of providing a collection of tools, a test driven high quality
library, a regular support and up to date features.

3 OpenMVG Design

This section gives an overview of OpenMVG8 functionality and design. Open-
MVG goals are multiple, providing the computer vision community with: (i) an
easy access to accurate implementation of multiple view geometry algorithms;
(ii) an understandable source code library; (iii) a set of tools used to build
complete applications such as SfM pipelines. OpenMVG includes functionalities
for image loading and processing, feature detection and matching, multi-view
geometry solvers and provides an easy access to linear algebra and optimiza-
tion frameworks. It delivers a collection of modular core features arranged in
small libraries (Table 1) that can be used independently or as building blocks in
an entire pipeline in order to perform 3D reconstruction from images (SfM) or
localize images into an existing 3D reconstruction.

OpenMVG is written in standard C++11 and uses the CMake build sys-
tem bringing portable builds on x86, x86 64 and ARM targets. It relies on the
Eigen [10] library to perform high performance linear algebra manipulations,
the Ceres-solver [9] to solve large scale non-linear minimization such as bundle
adjustment, and OSI-CLP [14] as a linear programming solver. Thanks to well

7 See https://github.com/openMVG/awesome 3DReconstruction list.
8 https://github.com/openMVG/openMVG/.

https://github.com/openMVG/awesome_3DReconstruction_list
https://github.com/openMVG/openMVG/

OpenMVG: Open Multiple View Geometry 63

documented and transparent interfaces, OpenMVG can be extended or inter-
faced with other software and even use custom data in a few easy steps.

OpenMVG Goals. OpenMVG goals are twofold:

• an educational side: to provide easy to read and accurate implementation of
state of the art “classic algorithms” that the community considers as “common
knowledge”.

• a knowledge diffusion side: to spread the usage of the computer vision tech-
niques to the community by delivering easy to use code, libraries, samples,
and pipelines.

OpenMVG Philosophy. In order to complete its vision in the best way, Open-
MVG follows as guidelines the credo “Keep it simple, keep it maintain-
able”. OpenMVG authors believe that it is more important for the reproducible
research side to have a code that is easy to read and use than a code that is fast
but difficult to edit due to cumbersome optimization.

Beside the readability criteria, algorithm effectiveness must be also demon-
strated. This goal is achieved using Test Driven Development. The main moti-
vations for using unit testing is that it helps:

• to assert that algorithm and code are working as expected;
• to perform non regression tests following code updates;
• to provide usage examples in real context;
• people to implement new things.

Thanks to its large collection of unit test, external users can integrate their
new method, test if it works as expected, and use it later in a larger context
with no new code requirements.

OpenMVG License. OpenMVG is licensed under the MPL2 (Mozilla Public
License 2). The choice has been made to maximize its usage, even by indus-
try partners, but force somehow contribution back to the existing library files.
This license is similar to the well-known LGPL, but it has a file extent: a modifi-
cation or a bug fix inside an existing file must be shared under the same license.
However the license allows a larger work to be released under different terms and
so enables the usage of OpenMVG powered code in a commercial application. As
shown by the number of external contributions, the community is comfortable
with this license (31 contributors, 100 Pull Requests, 500 issues handled).

4 OpenMVG Functionalities

OpenMVG provides algorithms that perform tasks like image loading and
processing, feature detection and matching, multi-view geometry solvers and
an easy access to linear algebra and optimization frameworks. The different
modules/libraries are listed in Table 1.

64 P. Moulon et al.

Table 1. Set of OpenMVG modules

Module name Usage

cameras Abstract camera model

features Abstract region description (point position,
descriptors)

geometry 3D transformation (similarity, 3D pose)

matching Abstract nearest neighbour interface

multiview Multiple view geometry solvers

robust estimation Robust estimation framework

stl C++ STL extensions

tracks Un-ordered feature tracking

exif Exif data parsing

geodesy Geodesy transformation

graph Graph analysis tools

linearProgramming Abstract linear programming interface

matching image collection Abstract interface to match image collection

numeric Linear algebra tools

sfm reconstruction pipeline (SfM & localization)

system Benchmarking tools

4.1 Generic Photogrammetry Data Description

The OpenMVG processing pipeline is articulated around the SfM Data, con-
tainer. It acts as a spine and allows to have a smooth communication between
the tools during the whole process. This data container stores relations between
images and their related data: abstract views (image metadata, IDs to the cam-
era model and pose), abstract camera models, camera poses, structure landmarks
and image observations IDs. Thanks to a generic I/O interface this container can
be saved in binary (for compactness and fast reading/saving) or in JSON/XML
(for easy transfer to third party projects). Thanks to this container an effective
pipeline can be built for different purposes, like 3D reconstruction from images.

4.2 Image Processing

OpenMVG provides a simple image handling module. The generic image class
acts as a 2D template pixel container based on the Eigen matrix structure.
It allows to have all Eigen optimizations available to perform efficient image
processing operations. Built on top of this class, the user can have access to:

• Image I/O (png, jpeg, tiff);
• Image sampling (nearest, linear, cubic, spline) and warping;
• Primitive drawing (line, circle, ellipse);

OpenMVG: Open Multiple View Geometry 65

• Color space conversion;
• Image filtering (gradient computation, linear convolution, non-Linear diffu-

sion [22]).

4.3 Feature Extraction and Description

Detecting distinctive, repeatable image points and descriptors is a fundamental
aspect of computer vision. This is a key step for object detection, image recog-
nition and multi-view stereovision applications. OpenMVG allows to describe
an image by a collection of regions. Since the region concept in OpenMVG is
abstract freely chosen attributes can be embedded in the point description (e.g.,
such as a point location, scale and orientation) and a binary descriptor of arbi-
trary length. The current implementation allows to detect and describe:

• Blob regions (Scale invariant points): SIFT [11] (based on VlFeat [20] and Sift
Anatomy [12]), AKAZE [22].

• Corner regions: FAST keypoints [25].
• Affine invariant regions: Tree-Based Morse Regions (TBMR) [23], Maximally

Stable Extremal Regions (MSER) [24].

4.4 Feature and Image Collection Matching

OpenMVG provides an abstract nearest neighbor search framework that could
be used with any vector dimension. The concrete implementations are: (i) Brute-
Force; (ii) ANN-kD trees [19]; (iii) Cascade hashing [21]. They can be used to
compute nearest 3D points or to find corresponding points of a scene by matching
features across a series of image pairs.

The image collection matching can be customized by: (i) choosing the appro-
priate nearest neighbor method; (ii) sending a custom pair list. Thanks to this
customization the user can control the accuracy vs. time of the retrieval task
or easily configure an exhaustive, a sliding window, a loop matching or even a
custom matching (i.e., selection of pair by similarity search based on vocabulary
tree [33]).

Then the “photo-metric” putatives matches are filtered as geometric coherent
matches using an interface to fit robustly multiple-view geometric models.

In order to better understand and visualize the relationship between the
images and the computed data (features, matches), OpenMVG exports some
SVG data, Fig. 1. Using the SVG format allows to preserve details when zooming
thanks to its vectorial nature; it is really useful to see the pairwise matches, since
the user can click on a match and see the matching features.

4.5 Multiple View Geometry

On top of matching pairs, some multiple view geometric constraints can be
checked. This can, for example, be employed to filter the set of matching fea-
ture points between images. OpenMVG provides various models and solvers,
illustrated Fig. 2:

66 P. Moulon et al.

Fig. 1. OpenMVG SVG files exported during the image collection matching task
(from Left to Right): image collection, computed features, adjacency matrix, visibility
graph [36], pair matches.

Fig. 2. Multiple view geometry model estimation.

– Relative pose from pairs of image-image matching points, such as homog-
raphy (4-point algorithm [6] for transform of planar scene or scene viewed
under pure rotation), fundamental matrix (7/8-point algorithm [6], in case of
ignorance of camera internal parameters), essential matrix (5-point [8], in case
of known camera internal parameters).

– Absolute pose from pairs of 3D-2D matching points by different algorithms,
P3P (Perspective from 3 Points) [16], DLT (Direct Linear Transform) [6]
(6 pairs), ePnP [15] (n pairs).

– Similarity transformation from 3D-3D matching space points, model with
7 degrees of freedom.

– Triangulation of 3D point from two view projections through linear
method [6], non linear, and L∞ distance [7].

– Structure and Motion with L∞ norm [7].

For each model, OpenMVG provides a simple and direct method to com-
pute the resulting pose. For example, estimating the homography between two
corresponding point sets xLeft and xRight can be performed in a few lines of
code:

// Setup l e f t , r i g h t cor re spond ing po in t s and so l v e f o r H
openMVG : : Mat xLeft (2 , 4) , xRight (2 , 4) ;
// I n s t a n t i a t i o n o f homography s o l v e r
using H_Solver=openMVG : : homography : : kernel : : FourPointSolver ;
// Perform model s o l v i n g
std : : vector<openMVG : : Mat3> Hs ; //Multi . s o l . f o r some s o l v e r s
openMVG : : H_Solver : : Solve (xLeft , xRight , &Hs) ;

Multiple View Geometry also deals with motion averaging. It consists in com-
puting global motions from relative motions, that is, putting all viewpoints and

OpenMVG: Open Multiple View Geometry 67

orientations in a common coordinate system. OpenMVG implements rotation
and translation averaging algorithms using various metrics:

– Rotation averaging with L2 norm, non linear L2 and L1 [18].
– Translation averaging with L2 norm [17], L1, and L∞ [5].

4.6 Robust Estimation

Real world data is corrupted by noise and corresponding point pairs may contain
outliers. Therefore it is mandatory to use a robust model estimation method.
OpenMVG proposes various methods to perform robust estimation. Some are
based on user-defined thresholds while the others estimate automatically the
best model based on a statistical balance between the tight fitting of the data to
the model and the number of inlier data. OpenMVG implements these methods:

– Threshold priors through MaxConsensus and RANSAC (RANdom SAmple
Consensus) [26]

– Threshold free with Least Median of Squares and a contrario-RANSAC
[27,28].

Fig. 3. An a contrario-RANSAC unit test example: Automatic threshold adaptivity
for line estimation. On the right: no detected model is hallucinated in pure noise data.

An example of robust line regression to 2D points is illustrated in Fig. 3. The
robust estimation framework uses a kernel concept to keep genericity. The kernel
is a template object that embeds the model solver and the error metrics (i.e., a
measure of the fitting error between the model and the data).

4.7 Camera Models

OpenMVG provides an abstract camera interface that can be used seamlessly
along the library with the following concrete implementations: pure pinhole [6],
pinhole with 1 to 3 radial distortion coefficients [31], pinhole with 5 distortion
coefficients (3 radial + 2 tangential) (aka. Brown-Conrady) [29,30], and fish-
eye [32]. The abstract camera model allows easy computation of bearing vectors
from 2D points, 3D point projection to camera and application or correction of
lens distortion.

68 P. Moulon et al.

4.8 Structure from Motion

Using all previous modules, an incremental [3] and a global [5] 3D-reconstruction
pipelines are implemented in OpenMVG. The first is more adapted for images
with low cross-coverage, but it suffers from drift effects and low scalability due
to its sequential nature. The second is fast for datasets with large image overlap
and offers a good scalability. The two pipelines have been demonstrated to be
very accurate compared to the other existing open solutions [1,13]. Ready to use
Python scripts are delivered with the library in order to ease the usage of this
tool-chain.

Bundle Adjustment. All SfM pipelines rely on a generic bundle adjustment
module that allows to perform non linear refinement of the SfM scene by min-
imizing the structure reprojection in the images (residual error). It consists of
a non-linear minimization in a high-dimensional space. This module provides
a fine grain control of which parameters (intrinsic (principal point, focal, dis-
tortion), extrinsic (rotation, translation), structure landmarks) will be held as
constants or variable during the minimization. This fine grain control interface
is done using bitwise operator that make the code compact and very expres-
sive. An efficient multi-thread concrete implementation is provided through the
Ceres-solver interface [9].

4.9 Localization

This module allows to find the camera pose and orientation of a collection of
images in an existing reconstruction. Such a problem is common in virtual/aug-
mented reality setup where one wants to localize the user in a known 3D world
in order to display virtual elements at the right place, or when one wants to
localize video frames in an existing map/asset for VFX issues (virtual camera
system).

4.10 Geodesy

This module provides tools to use known 3D priors to fit the 3D reconstruction to
a given user Spatial Reference System (SRS), such as ECEF, for geo-localization.
Registration can be performed using Ground Control Points (GCP), and GPS
data (pose center position prior) for (i) rigid transformation or (ii) non rigid
constraints used in the bundle adjustment framework. Pose priors can also be
useful in order to limit the number of pairs to match in a very large image
collection in case of UAV/mobile mapping survey.

5 Reproducible Research

The project tries to follow the best practice of open source software development.
It uses some strict guidelines in order to deliver a high quality code that allows
the community to be involved in any work in progress.

OpenMVG: Open Multiple View Geometry 69

5.1 OpenMVG Infrastructure

In order to build a project for a community it is necessary to maximize its
accessibility and provide tools for feedback about the status of the library. To
do so OpenMVG eco-system relies on free tools that allow to perform online
version control system, continuous integration and documentation. Here is the
list of the different tools used and their purpose:

• Project management: https://github.com/openMVG/openMVG

– Github (version control system) for easy access and collaboration, issue track-
ing, milestones, fork, pull request, code review.

• Documentation:

– reStructuredText for Github integration (visible as a formatted document and
not as code), online doc generation & hosting, http://openmvg.readthedocs.
io/en/latest/.

• Continuous integration:

– Travis-CI for Unix (Linux, OsX).
– AppVeyor for Windows (Visual Studio).
– Docker for container based deployment.

5.2 Development Principles

Updates rely on the simple rule that they must not break any existing code.
Releases are pushed in the master branch with tagging; Each time a new release
is planned, a new branch develop is started. Each new feature development (X)
happens in a new branch. (i) A Github issue is created with a comprehensive
step by step explanation that is required for completion of the feature; (ii) a
branch develop X is created from develop; (iii) each commit is linked to the
Github issue; (iv) once validated, develop X is merged to develop.

Github Pull Request (external contribution) are handled by a code review
from the community (code style, check the code is easy to use, readable and
understandable with comprehensive code comments and paper references), sug-
gestion of an enhanced API or usage of existing functionalities, suggestion of
unit test or samples if missing, suggestion to complete the documentation, con-
tinuous integration test and non regression, merge once tested and validated by
the community to develop branch.

Creation of a new release follows these steps: (i) modify develop branch API
internal version number; (ii) merge from develop to master ; (iii) create a release
tag; (iv) edit the Github release tag with a complete CHANGELOG; (v) adver-
tise the new version and features to the community.

Thanks to this set of rules the quality of any modified line of code OpenMVG
can be followed by the community and open to comments, tests and critics.
People can join effort to develop a feature by using the fork mechanism and
contribute actively.

https://github.com/openMVG/openMVG
http://openmvg.readthedocs.io/en/latest/
http://openmvg.readthedocs.io/en/latest/

70 P. Moulon et al.

5.3 Future Development

The OpenMVG developers hope to continue improving its database of algorithms
to follow the state of the art, extend the scope of its users, provide best in class
“easy to read and use” code, hoping to seduce some real time oriented users to
add some SLAM algorithms.

Another aim could be to build an open format inspired by the modular
SfM Data OpenMVG scene description for 3D photogrammetry purpose, to
seamlessly connect projects between existing and upcoming products.

Beside this project, some OpenMVG authors started a new project called
“Awesome 3DReconstruction list” that collects the papers (tutorials, conference
papers) and open-source resources related to 3D reconstruction from images
(more than 120 references are collected) (see Footnote 7).

6 Community Adoption

One difference to the other existing framework is that OpenMVG is trying to
initiate a real exchange with its community. Some Github statistics give an idea
of the community size:

Project name Year of creation Contributors Watchers Stars Fork

bundler sfm 2008 8 108 530 245

COLMAP 2016 5 14 82 34

MVE 2012 13 61 188 131

OpenMVG 2013 31 156 802 392

THEIASfM 2015 15 43 165 80

Despite it is hard to compare the statistics due to the differing year of creation
of each project, note that OpenMVG has an active community (OpenMVG is
neither the oldest nor the most recent project). Moreover, OpenMVG is used by
professionals and laboratories for real application, for example:

Arc-Team9 (a professional company operating in different branches of archae-
ology, from fieldwork to research, and specialized in the use and development
of open source software and hardware for cultural heritage projects) uses Open-
MVG softwares for 3D archaeological and architectural documentations in dif-
ferent logistical conditions: ordinary excavations, underwater contexts, remote
sensing, underground environments, glacial archaeological researches and abroad
missions, see Fig. 4.

Ebrafol10 provides an independent alternative to judicial expertise and technical
assistance in forensic dentistry and forensic anthropology). It uses OpenMVG
9 http://www.arc-team.com/.

10 Brazilian Team of Forensic Anthropology and Legal Dentistry http://ebrafol.org/.

http://www.arc-team.com/
http://ebrafol.org/

OpenMVG: Open Multiple View Geometry 71

Fig. 4. Arc-Team reconstructions for archaeology.

Fig. 5. EBRAFOL sample usage of OpenMVG reconstruction for skull reconstruction
and accurate animal prothesis reconstruction and printing.

and its connection to multiple view stereo tools to build 3D models of skull for 3D
face reconstruction and to help injured animals by building accurate prostheses,
see Fig. 5.

Digital Humanities Laboratory DHLAB11 (an EPFL laboratory team that
conducts research in historical and geographical information systems. The team
is creating a web based service, through the development of a 3D historic GIS
server, allowing to view, explore and compare SfM, LIDAR and historical hand-
made models). It uses OpenMVG to develop a reliable and powerful SfM pipeline
in order to compute sparse and dense reconstructions of cities (taking advantage
of existing aerial photography database and specific ground-based acquisitions),
see Fig. 6.

The community also uses OpenMVG for non-professional work (Fig. 7).

11 http://dhlab.epfl.ch/.

http://dhlab.epfl.ch/

72 P. Moulon et al.

Fig. 6. DHLAB reconstructions of Paris (1945 historical aerial images, IGN) and Venice
(aerial, UAV + ground-based images, DHLAB).

Fig. 7. Some reconstructions by non-professionals (Romuald Perrot 2016).

7 Conclusion

We presented OpenMVG, a generic library for multiple view geometry aimed
at providing the community with a reference tool. Its insistence on code quality
and readability does not prevent it from aiming at genericity without sacrificing
ease of use and simplicity.

Interesting enhancements would be the addition of algorithms specialized in
SLAM for online 3D odometry and reconstruction.

More generally, OpenMVG developers are willing to attract users that could
eventually participate in its development. For that, they offered tutorials at the
OpenWorld Forum in Paris in 2014, at the CVPR Boston conference in 2015
and at the SFPT Paris meeting in 2016.

Thanks to its strong connection to a state of the art solution for computing
detailed models, the OpenMVS [42] open source project, OpenMVG and Open-
MVS offer together a strong end-to-end collection of open source algorithms to
the community to compute sparse and dense detailed models (see some dense
reconstructions from Fig. 7).

Acknowledgements. The authors thank the Imagine project of École des Ponts
ParisTech, MikrosImage, Foxel, Auxilium entity partners and all the OpenMVG com-
munity for its support and contributions.

References

1. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in
3D. ACM Trans. Graph. (TOG) 25(3), 835–846 (2006)

2. Moulon, P.: Robust and accurate calibration of camera networks. Ph.D., Université
Paris-Est (2014)

OpenMVG: Open Multiple View Geometry 73

3. Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a con-
trario model estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.)
ACCV 2012. LNCS, vol. 7727, pp. 257–270. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37447-0 20

4. Moulon, P., Monasse, P.: Unordered feature tracking made fast and easy. In: CVMP
(2012)

5. Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust,
accurate and scalable structure from motion. In: ICCV (2013)

6. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

7. Kahl, F., Hartley, R.I.: Multiple-view geometry under the L∞-norm. IEEE Trans.
PAMI 30, 1603–1617 (2008)

8. Nistér, D.: An efficient solution to the five-point relative pose problem. In: CVPR
(2003)

9. Agarwal, S., Mierle, K., et al.: Ceres Solver. http://ceres-solver.org
10. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2),

91–110 (2004)
12. Otero, I.R., Delbracio, M.: Anatomy of the SIFT method. Image Process. On Line

(2014). https://doi.org/10.5201/ipol.2014.82
13. Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)
14. Forrest, J., Hall, J. et al.: CLP (coin-or linear programming). https://projects.

coin-or.org/Clp
15. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate o(n) solution to the

PnP problem. IJCV 81, 155 (2009). https://link.springer.com/article/10.1007/
s11263-008-0152-6

16. Kneip, L., Furgale, P.: OpenGV: a unified and generalized approach to real-time
calibrated geometric vision. In: ICRA (2014)

17. Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp.
61–75. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9 5

18. Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging.
In: ICCV (2013)

19. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. In: VISAPP (2009)

20. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision
algorithms. In: Proceedings of the ACM International Conference on Multimedia
(2010)

21. Cheng, J., Leng, C., Wu, J., Cui, H., Lu, H.: Fast and accurate image matching
with cascade hashing for 3D reconstruction. In: CVPR (2014)

22. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated
features in nonlinear scale spaces. BMVC 34(7), 1281–1298 (2013)

23. Xu, Y., Monasse, P., Géraud, T., Najman, L.: Tree-based morse regions: a topo-
logical approach to local feature detection. IEEE Trans. Image Process. 23(12),
5612–5625 (2014)

24. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp.
183–196. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4 14

25. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–
443. Springer, Heidelberg (2006). doi:10.1007/11744023 34

http://dx.doi.org/10.1007/978-3-642-37447-0_20
http://dx.doi.org/10.1007/978-3-642-37447-0_20
http://ceres-solver.org
http://eigen.tuxfamily.org
https://doi.org/10.5201/ipol.2014.82
https://projects.coin-or.org/Clp
https://projects.coin-or.org/Clp
https://link.springer.com/article/10.1007/s11263-008-0152-6
https://link.springer.com/article/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1007/978-3-319-10578-9_5
http://dx.doi.org/10.1007/978-3-540-88688-4_14
http://dx.doi.org/10.1007/11744023_34

74 P. Moulon et al.

26. Fischler, M.A., Bolles, R.C., Consensus, R.S.: A paradigm for model fitting with
applications to image analysis and automated cartography. ACM (1981)

27. Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair
of images, with a contrario elimination of outliers. Image Process. On Line (2012).
http://dx.doi.org/10.5201/ipol.2012.mmm-oh

28. Moisan, L., Moulon, P., Monasse, P.: Fundamental matrix of a stereo pair, with
a contrario elimination of outliers. Image Process. On Line (2016). http://dx.doi.
org/10.5201/ipol.2016.147

29. Brown, D.C.: Decentering distortion of lenses. Photogramm. Eng. 32, 444–462
(1966)

30. Conrady, A.E.: Decentred lens-systems. Mon. Not. R. Astron. Soc. 79, 384–390
(1919)

31. de Villiers, J.-P., Leuschner, F. W., Geldenhuys, R.: Centi-pixel accurate real-time
inverse distortion correction. In: International Symposium on Optomechatronic
Technologies (2008)

32. Sturm, P., Ramalingam, S., Tardif, J.-P., Gasparini, S., Barreto, J.: Camera mod-
els and fundamental concepts used in geometric computer vision. Found. Trends
Comput. Graph. Vis. 6(1–2), 1–183 (2011)

33. Nistér, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR
(2006)

34. Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Towards internet-scale multi-view
stereo. In: CVPR (2010)

35. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In:
PAMI (2010)

36. North, S.C.: Drawing graphs with NEATO. NEATO Users Manual (2004)
37. Fuhrmann, S., Langguth, F., Goesele, M.: MVE - a multi-view reconstruction envi-

ronment. In: Proceedings of the Eurographics Workshop on Graphics and Cultural
Heritage (2014)

38. Sweeney, C., Hollerer, T., Turk, M.: Theia: a fast and scalable structure-from-
motion library. In: Proceedings of the 23rd ACM International Conference on
Multimedia (2015)

39. Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: CVPR
(2016)

40. Deseilligny, M.P., Clery, I.: APERO, an open source bundle adjustment software
for automatic calibration and orientation of set of images. In: ISPRS (2011)

41. Mapillary: OpenSfM (2013). https://github.com/mapillary/OpenSfM
42. Cernea, D.: OpenMVS: open multiple view stereovision (2015). https://github.

com/cdcseacave/openMVS/

http://dx.doi.org/10.5201/ipol.2012.mmm-oh
http://dx.doi.org/10.5201/ipol.2016.147
http://dx.doi.org/10.5201/ipol.2016.147
https://github.com/mapillary/OpenSfM
https://github.com/cdcseacave/openMVS/
https://github.com/cdcseacave/openMVS/

	OpenMVG: Open Multiple View Geometry
	1 Introduction
	2 Photogrammetry Software Alternatives
	3 OpenMVG Design
	4 OpenMVG Functionalities
	4.1 Generic Photogrammetry Data Description
	4.2 Image Processing
	4.3 Feature Extraction and Description
	4.4 Feature and Image Collection Matching
	4.5 Multiple View Geometry
	4.6 Robust Estimation
	4.7 Camera Models
	4.8 Structure from Motion
	4.9 Localization
	4.10 Geodesy

	5 Reproducible Research
	5.1 OpenMVG Infrastructure
	5.2 Development Principles
	5.3 Future Development

	6 Community Adoption
	7 Conclusion
	References

