
Algorithms and Implementation
for Segmenting Tree Log Surface Defects

Van-Tho Nguyen1, Bertrand Kerautret2(B), Isabelle Debled-Rennesson2,
Francis Colin1, Alexandre Piboule3, and Thiéry Constant1

1 LERFOB, AgroParisTech, INRA, 54000 Nancy, France
2 LORIA, UMR CNRS 7503, Université de Lorraine,

54506 Vandœuvre-lés-Nancy, France
bertrand.kerautret@loria.fr

3 ONF, RDI, 5 Rue Girardet, 54000 Nancy, France

Abstract. This paper focuses on the algorithms and implementation
details of a published segmentation method defined to identify the defects
of tree log surface. Such a method overcomes the difficulty of the high
variability of the tree log surface and allows to segment the defects from
the tree bark. All the algorithms used in this method are described in
link to their source code which guarantees a full reproducible method
associated to an online demonstration.

1 Overview of the Segmentation of Defects on Log
Surface

In the computer imagery domain, the tubular objects are present in various
applications of which segmentation and analysis are of most importance like in
medicine (with the blood vessel segmentation [9,12]), biology (with the wood
knot detections [11]) or industry [4,7]. In this work, we focus on the problem
of wood quality estimation in relation to the presence of internal wood knots
(Fig. 1). Since the latters have a structural link with defects on the surface of
the trunk, the non destructive Terrestrial Laser Scanning (TLS) can be used to
obtain an estimation of the wood quality. As described in previous work [14],
different approaches were proposed following this strategy with for instance the
fitting of primitive such as cylinder [10,17,18] or circle [19,20]. However, the
existing approaches are not fully satisfactory in regards to the specificity of
some species [20,21] or for the automation of the method [10,17,18]. Another
limitation is the implementation details which are often missing and limit the
reproduction of the methods.

A generic method to segment automatically defects on tree log surface that
is robust to various tree species is still missing. In [14], we presented a novel
approach to segment defects on tree logs from TLS data that is robust to different
tested tree species in regard to bark roughness, longitudinal flexuosity or cross-
sectional ovality. However, being limited on the number of pages, we were not
able to provide enough details about algorithms, implementations and also how
c© Springer International Publishing AG 2017
B. Kerautret et al. (Eds.): RRPR 2016, LNCS 10214, pp. 150–166, 2017.
DOI: 10.1007/978-3-319-56414-2 11



Algorithms and Implementation for Segmenting Tree Log Surface Defects 151

(b) (c)

(a) (d) (e)

Fig. 1. (a) Defects on a standing tree in forest. (b,c) A Chinese mustache and its
corresponding mesh. (d,e) A small defect in ellipse shape and its corresponding mesh.

to reproduce the best results. As a complement of [14], this paper aims to provide
the implementation details of the main algorithms and to discuss the choice of
parameter values and the reader can also access to the source code and other
resources to reproduce the published results.

Our approach to segment tree log surface defects consists of four main steps
(see Fig. 2(a)). In the first step, we compute the centerline of the tree log by the
accumulation of surface normal vectors. In the second step, based on this center-
line, we can compute the distance to the centerline and then convert the point
cloud from the cartesian coordinate system to cylindrical coordinate system. The
third step concerns the computation of the reference distance to the centerline
using a patch of neighbouring points. Finally, in the fourth step we compute the
difference between the reference and the real distances to the centerline before
applying an automatic threshold to binarize the point cloud according to the
statistical distribution of the values.

The following section describes the details and implementations of our algo-
rithms. The Sect. 3 describes the steps to reproduce the results. We discuss how
to choose the best values of the most important parameters and show some
limitations of our method in the Sect. 4.

2 Algorithms and Implementations

In this section, we describe in detail our algorithms and its implementations. The
program is written in C++ using libraries DGtal [1] for the normal accumulation
and the visualization, PCL [16] for the kd-tree, GNU Scientific Library (GSL)
[6] for the smoothing and interpolation of the centerline by cubic Spline. Figure 3
shows main classes and methods that will be described in detail in this section.



152 V.-T. Nguyen et al.

Mesh of log surface 1. Compute centerline

2. Convert to cylin-
drical coordinates

3. Compute reference
distance to the centerline

4. Thresholding

Defects

)b()a(

Fig. 2. (a) Overview of the algorithm. (b) Illustration of a patch Pρ in blue which
is used to estimate the reference distance to the centerline for the orange point.
(Color figure online)

By convenience, our source files have the same name as class names. For example
the class Centerline is implemented in the file Centerline.h and Centerline.cpp.

2.1 Compute Centerline

In the proposed method, the centerline plays an important role because the key
variable is its distance to the input points. Thus, the centerline must be precisely
assessed. Our method to compute the centerline is based on the surface normal
accumulation proposed in [7] with modifications optimized to tree log data. The
implementation of this method is simple (Fig. 4(a)) and consists of four steps:
(i) accumulation of surface normal vector, (ii) tracking of the centerline, (iii)
optimization by elastic forces (see Algorithm 1) and (iv) BSpline interpolation.

(i) Accumulation of surface normal vectors. This step consists in compu-
tation of a volumetric image of which voxel value stores score of the accumulation
(Fig. 4(b)) which is computed as follows. Starting from a mesh face fi with its
normal vector −→ni and applying a normal oriented directional scan along a dis-
tance dacc (oriented toward the object interior). During this scan, we increase
by one all voxels of the digitized space which are crossed by the 3D line defined
from the face center and from the direction −→ni (see Fig. 4(a,b)) and Algorithm 1
of [7] for more details).



Algorithms and Implementation for Segmenting Tree Log Surface Defects 153

Fig. 3. Diagram class of our implementation.

C

)c()b()a(

Fig. 4. Illustrations of the main ideas of the centerline method based on surface normal
accumulation: (a) scan from mesh faces along a distance dacc, (b) resulting accumula-
tion score. (c) illustrates the step of elastic force optimization.

(ii) Tracking the centerline. Based on the result
of previous algorithm, the centerline curve is obtained
by a simple tracking process by looking at the local
maxima accumulation points Ci of 2D patch image
resulting from the projection in the

−→
dk direction (see

following figure). This direction
−→
dk is computed from



154 V.-T. Nguyen et al.

all the points which are at the origin of the accumulation value (see Algorithm 2
of [7] for more details).

(iii) Elastic force optimization. Due to the digital space and the mesh qual-
ity, the normal vectors may not be perfectly convergent and some irregularities
on the resulting centerline can appear. As suggested in [7], we improve this step
by using an optimization Algorithm1. The main idea is to minimize the error
Es(C) defined as the sum of the squared difference between the mean radius R̄
of the log and the norm of the projection vector formed by log center Ci and its
associated input mesh points Mi onto the plane perpendicular to the direction
vector

−→
di (see Fig. 4(c)).

(iv) Spline Interpolation. The purpose of the interpolation is to obtain a
smoother centerline. We firstly choose eight points on the centerline based on
the curvature. The points with a too strong curvature change are eliminated
by testing the angle φ defined by the considered point, and its two immediate
neighbors on both sides along the centerline. If φ is smaller than 3π/4 then
the point is eliminated. Finally, a cubic spline interpolation is applied to these
chosen points. Our implementation of this step is based on cubic spline which is
implemented in GNU scientific library [6]. Figure 5(a) shows the final result of a
computed centerline.

2.2 Convert to Cylindrical Coordinates

The purpose of this conversion is to simplify the search of neighbors. Firstly,
we divide the point cloud into slices by the centerline segment computed in
the previous section. Each point in the point cloud belongs to only one slice
(Algorithm 2). As shown in [14], we define a local coordinate system Oixiyizi

for each slice (see Algorithm 4) where {−→ui , −→vi , −→wi} are basis vectors with the
origin Oi (i.e. the first point on the segment of the centerline corresponding to
the slice). −→wi is defined as the segment CiCi+1. The axis O0y0 can be arbitrary
and we choose O0y0 = Oy. With i > 0, −→vi is computed as follows. Let −→ni be the
normal vector of the plane formed by −→wi and −→vi-1: −→ni = −→wi × −→vi-1; i ∈ [1,m − 1].−→vi is the cross product of −→wi and −→ni . And finally, −→ui is computed by the cross
product of −→vi and −→wi. Figure 5(b) shows the computation of coordinate system
for a point from its Cartesian coordinates.

2.3 Compute Reference Distance to the Centerline

To compute the reference distance to the centerline of the point ρ, we need to
query a narrow patch Pρ containing the neighbors of ρ (see Fig. 2(b)). The patch
size is defined by two parameters ϕ and τ with ϕ = l/r̄ where τ (resp. l) is the
length (resp. arc length) of the patch and r̄ is the mean of the distance to the
centerline of all points. More formally the patch Pρ can be defined as:

Pρ = {ρj | ∣
∣θρj

− θρ

∣
∣ ≤ ϕ

2
,
∣
∣zρj

− zρ

∣
∣ ≤ τ

2
} (1)



Algorithms and Implementation for Segmenting Tree Log Surface Defects 155

Algorithm 1. elasticForcesOptimisation: Optimize the centerline by
elastic forces

Data: rawCenterline // Raw centerline, output of Algorithm2 of [7]
Data: mesh // Input mesh to recover faces associated to centerline points
Output : optimizedCenterline
Variable: epsilon //Error

1 //store associated faces in the 2D patches
2 mapFaces = emptyMap()
3 sumradii=0
4 foreach point in rawCenterline do
5 faces = get2DpatchImage(point, mesh)
6 mapFaces[point] = faces
7 foreach face in faces do
8 centerPoint = face.center()
9 vectorNormal = face.getVectorNormal()

10 vectorRadial = centerPoint - point
11 sumradii = vectorRadial.norm()

12 meanRadii = sumradii / mesh.nbFaces()
13 DeltaError = infinity
14 previousTotalError
15 first=true
16 while DeltaError > epsilon do
17 totalError = 0.0
18 for i = 0 to rawCenterline.size() - 1 do
19 point = optimizedCenterline[i]
20 faces = mapFaces[point]
21 sumForce = {0,0,0}
22 count=0
23 foreach face in faces do
24 centerPoint = face.center()
25 vectorNormal = face.getVectorNormal()
26 radialVector = centerPoint - point
27 alpha = anglebetween(vectorNormal, radialVector)

28 if alpha ¿
π

6
then

29 continue

30 forceMagnitude = radialVector.norm() - meanRadii
31 force = radialVector.normalized()*forceMagnitude
32 totalError += forceMagnitude*forceMagnitude
33 sumForce += force
34 count++

35 //project of sumForces to normal vector
36 direction = dirImage[rawCenterline[i]].normalized()
37 sumForcesDir = direction.dot(sumForces)/vectDir.norm()/vectDir.norm()*vectDir;
38 radialForces = sumForces - sumForcesDir;
39 if count > 0 then
40 optimizedCenterline[i] += radialForces/count

41 if first then
42 DeltaError = totalError first = false
43 else
44 DeltaError = abs(totalError - previousTotalError)

45 previousTotalError = totalError - previousTotalError

46 return optimizedCenterline

47 .



156 V.-T. Nguyen et al.

Fig. 5. (a) Centerline of a Beech log. (b) Computation of the coordinate system
ρ(r, θ, z) from the point P with z is the red line. (Color figure online)

Algorithm 2. computePlanes: Compute normal vector of planes that
divide the log into slices

Data: Centerline C = {C0, C1, . . . , Cm}
Result: List of normal vector m

1 m = emptySet()

2 m[0] =

−−−→
C0C1
∥
∥
∥
−−−→
C0C1

∥
∥
∥

3 for i = 1 to m − 1 do

4 m[i] =

−−−−−→
Ci−1Ci +

−−−−−→
CiCi+1

∥
∥
∥
−−−−−→
Ci−1Ci +

−−−−−→
CiCi+1

∥
∥
∥

5 end

6 return m

Because the number of points may be large, we use a kd-tree to speedup
the query. We use the kd-tree implemented in the Flann library [3,13] which is
included in the PCL library [16]. This library provides a range base query, so



Algorithms and Implementation for Segmenting Tree Log Surface Defects 157

Algorithm 3. getSegmentId: Compute the corresponding segment of a
point

Data: Point P
Data: Centerline C = {C0, C1, . . . , Cm}
Result: segmentId

1 lastSign ← 1
2 for i = 1 to m do

3 sign =
−−→
CiP.

−−→
ns[i];

4 if sign * lastSign ¡= 0 then
5 return i - 1;
6 end
7 lastSign = sign;

8 end

9 return m -1

Algorithm 4. convertToCcs: Convert the point cloud to cylindrical coor-
dinate system

Data: Point cloud Pd = {P0, P1, . . . , Pn}
Data: Centerline C = {C0, C1, . . . , Cm}
Data: Local coordinate systems L = {O0x0y0z0, O1x1y1z1, . . . , Om−1xm−1ym−1zm−1}
Result: Point cloud in cylindrical coordinate system

1 for i = 1 to n do
2 s = getSegmentId(Pi) //Algorithm2

3
−→
d =

−−−−−→
CsCs+1
∥
∥
∥
−−−−−→
CsCs+1

∥
∥
∥

//projection of Pi onto segment s of the centerline

4 P ′ =
−→
d .

−−−→
CsPi;

5 ri =
∥
∥
∥

−−−→
P ′Pi

∥
∥
∥

6 if s ¿ 0 then

7 zi =
s∑

j=1

∥
∥
∥
−−−−−→
Cj−1Cj

∥
∥
∥+

−−−→
CjPi.

−→
d

8 else

9 zi =
−−−→
CjPi.

−→
d

10 end

11 θ =
arccos

−−→
P ′P.−→vs

∥
∥
∥

−−→
P ′P

∥
∥
∥

12 //correction of angle

13
−→
t = −→vs × −→

d

14 if
−→
t .

−−→
P ′P < 0 then

15 θ = 2π − θ;
16 end

17 end

that at the point ρ, we query all the neighbors located inside the sphere of center
ρ and radius =

τ

2
:

Qρ = {ρj | ∣
∣zρj

− zρ

∣
∣ ≤ τ

2
} (2)

The return must be refined to get the patch:

Pρ = {ρj ∈ Q | ∣
∣θρj

− θρ

∣
∣ ≤ ϕ

2
} (3)



158 V.-T. Nguyen et al.

Note that the query of patch can be improved by using a kd-tree for the θ and
z coordinates in the cylindrical coordinate system with a regard of the circular
problem of θ.

To compute the reference distance to the centerline (denoted r̂) of the point
i, we consider the profile of r by z and then compute a RANSAC [5] based linear
regression (i.e. r̂ = az + b, see Fig. 6).

Fig. 6. Computation of the reference distance to the centerline for a given point.

2.4 Thresholding

After computing the reference distance to the centerline of points in the point
cloud, we use the unimodal thresholding method proposed by Rosin in [15] to
binarize the point cloud. Firstly, at each point ρ, we compute the difference
between the distance to the centerline r and the reference distance to the cen-
terline r̂ for all points (δρ = rρ − r̂ρ).

Then, we compute the histogram of δρ of all points in the cloud. The algo-
rithm firstly finds the bin with maxima frequence (B1) and then finds the first
null bin (B2) at the right size of the histogram. Finally, the algorithm loops
over the bins situated between B1 and B2 and chooses the bin that maximizes
the distance to the line B1B2 (Fig. 7). The Algorithm 5 shows the details of the
implementation.



Algorithms and Implementation for Segmenting Tree Log Surface Defects 159

Algorithm 5. threshold: Compute threshold by the Rosin method
Data: D = {δ0, δ1, . . . , δn}
Data: binSize
Result: threshold T

1 nbBins =
max(D) − min(D)

binSize
2 histogram = array[nbBins]
3 for i = 1 to n do

4 binId =
ρi − min(D)

binSize
5 histogram[binId]++

6 end
7 maxFrequence = max(histogram)
8 maxFrequenceIndex = indexOf(maxFrequence)
9 nullFrequenceIndex = nbBins -1

10 for i = maxFrequenceIndex to nbBins do
11 if histogram[i] == 0 then
12 nullFrequenceIndex = i
13 break

14 end

15 end
16 bestDist = 0
17 bestDistIndex = maxFrequenceIndex
18 for i = maxFrequenceIndex to nullFrequenceIndex do
19 AB = line({maxFrequenceIndex, maxFrequence}, {nullFrequenceIndex, 0})
20 if distance(i, histogram[i], AB) ¿ bestDist then
21 bestDist= distance(i, histogram[i], AB)
22 bestDistIndex = i

23 end

24 end

25 return T = bestDistIndex ∗ binSize + min(D)

Fig. 7. Computation of the threshold T . Due to the different scales on the two axis,
the two perpendicular lines are not shown correctly.

3 Reproducing the Results

The source code used to generate the present results is given at the following
GitHub repository:

https://github.com/vanthonguyen/treelogdefectsegmentation

and an online demonstration is available at the following url:

https://github.com/vanthonguyen/treelogdefectsegmentation


160 V.-T. Nguyen et al.

http://ipol-geometry.loria.fr/∼kerautre/ipol demo/TDD IPOLDemo/

The command to reproduce the results is:

The program accepts the following parameters:

– voxelSize: the voxel size which is related to the resolution of the point cloud.
In our experiments, the density of the point cloud is about 25 points per cm2,
we have chosen the voxel size as the squared root of the density which is 5.

– accRadius: the radius of the normal accumulation which should be greater
than the real radius of the log.

– trackStep: the distance between two points in the tracking of the centerline.
– patchWidth, patchHeight: the width and height of the patch in the search

of neighbors. The choice of the patch size must guarantee that the height is
several time greater than the width and that the width is enough large to avoid
an empty patch. In our experiments, we fixed the width equals to 25 mm and
the height equals to 100 mm.

– binWidth: the width of histogram bins used to compute the threshold by the
Rosin method.

– invertNormal: used when the direction of normal vectors is outside of the
object.

– output: the prefix of output files. The program writes the output on some
files: (1) output mesh with highlighted defects in green (prefix-defect.off ), (2)
the distance map of δ (prefix-error.off ), (3) the face ids of defects (prefix-def-
faces.id) which can be used with the tool colorizeMesh (included in source
code), (4) the point ids of defects (prefix-defect.id) which can be used to com-
pare with the ground truth. The format of these two last files are simply a list
of integers separated by newlines.

The results obtained on different tree species including ground truth error
measures were already presented in previous work [14]. We focus in this part
on the reproduction of the previous results and in the experimental stability
measure of the different parameters.

Reproducing results on various species. From the previous command line,
the method can be applied directly to different species without the need to
change the default parameters. The Fig. 8 presents some results generated from
the example directory of the GitHub repository. All the results were gener-
ated with the same default parameters: voxelSize= 5 mm, accRadius is cho-
sen by 1.5 time the maximum radius of the log (by default set to 200), the
patchWidth= 25 mm, patchHeight= 100 mm. Note that the similar results are
available on the demo site [2] with other examples.

Reproducing ground-truth comparisons. The Fig. 9 illustrates the compar-
isons of the previous results with the ground truth constructed by INRA experts

http://ipol-geometry.loria.fr/~kerautre/ipol_demo/TDD_IPOLDemo/


Algorithms and Implementation for Segmenting Tree Log Surface Defects 161

Fig. 8. Visualization of the distance map of δ (column (a)) and defects (column
(b)) obtained on various species with the same default parameters (voxelSize= 5,
accRadius= 200, trackStep= 20, patchWidth= 25, patchHeight= 100, binWidth=
0.01). The execution time were obtained on a MacOS 2,5 GHz Intel Core i7.

built from logs of different tree species and diameters, with a one meter length.
Such comparisons can also be reproduced from the following command line:

To ensure reproducibility the ground-truth files are also given in the GitHub
repository.



162 V.-T. Nguyen et al.

Fig. 9. Segmentation results of the proposed method for some logs: the detected zones,
overlaying the ground truth are in yellow, non overlaying zones are in green, and the
non-detected zones are in red. (Color figure online)

Influence of the parameters. We experimented the influence of some para-
meters in order to measure their impact towards the result quality. First, we
measure the influence of the patch size when the recommended criteria are not
observed. In the experiments of Fig. 10, the patch size has been changed with
various values and the results appear visually robust. The most significant qual-
ity variations are visible only when using not recommended values (cases of too
small (resp. big) size (images (f) resp. (d) of Fig. 10) or in case of bad orienta-
tions of the patch (images (e) of Fig. 10)). In a second time, the robustness of
the Rosin automatic thresholding method [15] was experimented by changing
its inside parameters (binWidth). As shown on the experiments of the Fig. 11,
the change of this parameter is not very sensitive (see images (a–d)). Finally,
the change of multiple default parameters also show small quality variations (see
Fig. 11(e,f)).

4 Discussions

The previous results show that our method can precisely segment the defects
and seems to be robust to different tree species or to geometrical variations.
It must be preferred to the cylindrical-based method. The actual limitations
appear when protruding branches are present on the log surface. To overcome
this configuration, we envisage to use an additional method to segment branches
before applying the proposed algorithms.



Algorithms and Implementation for Segmenting Tree Log Surface Defects 163

Fig. 10. Experimentation of the method stability towards the patch size parameters
(patchWidth, patchHeight).



164 V.-T. Nguyen et al.

Fig. 11. Illustration of the influence of the binWidth parameter (a–d). Images (e,f)
illustrate the stability by changing several parameter values.

We have also observed some limit cases for the tracking algorithm used to
compute the centerline which could be sensible to the voxel size and to the nois-
iness of the input mesh. In particular, if the voxel size is too large or if the input
mesh is too noisy, during the tracking process, a point of the centerline might
be located in an empty voxel (voxel with null accumulation) and the tracking
process may be terminated prematurely. Even if this case can be resolved by a
local search of non null accumulation, in future work we plane to use the tracking
method based on the confidence of accumulation [8]. As presented in the previ-
ous section, the choice of voxelSize is crucial. If the voxel size is smaller than the
resolution of the data, the program may require more memory and time with no
better result.

The width of bin used in the thresholding method (binWidth) should be
small for a more precise threshold especially when one want to detect the small
defects. For this reason, in our experimentations, the binWidth was fixed to
0.01 mm.

The choice of the patch size must guarantee that the height is several times
greater than the width and enough large to avoid empty patch. Moreover the
patch height should be greater than the largest defect height. In our experimen-
tations, we fixed the width equals to 25 mm and the height equals to 100 mm.

5 Conclusion

This paper has presented the implementation details of our novel algorithms
to segment the defects on the surface of tree logs from Terrestrial Laser Scan-
ning data. The proposed method consists in algorithms to precisely compute



Algorithms and Implementation for Segmenting Tree Log Surface Defects 165

the centerline of tree logs and algorithms to compute the reference distance to
the centerline and to threshold the point cloud. The experiments showed that
the method could precisely segment defects with complex shape like the Chinese
mustaches and small defects. The actual limit case are the logs with very promi-
nent defects like a living branch for which the proposed method did not have a
good performance. All the results presented in this paper are reproducible both
from the source code or from the online demonstration.

Acknowledgment. This work was supported by the French National Research
Agency through the Laboratory of Excellence ARBRE (ANR-12- LABXARBRE-01)
and by the Lorraine French Region.

References

1. DGtal: Digital Geometry tools and algorithms library. http://dgtal.org
2. Online demonstration. http://ipol-geometry.loria.fr/∼kerautre/ipol demo/

TrunkDefaultMeasure
3. Flann library, October 2016
4. Bauer, U., Polthier, K.: Generating parametric models of tubes from laser scans.

Comput. Aided Des. 41(10), 719–729 (2009)
5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

6. Gough, B.: GNU Scientific Library Reference Manual. Network Theory Ltd.,
London (2009)

7. Kerautret, B., Krähenbühl, A., Debled-Rennesson, I., Lachaud, J.-O.: 3D geometric
analysis of tubular objects based on surface normal accumulation. In: Murino,
V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 319–331. Springer, Cham
(2015). doi:10.1007/978-3-319-23231-7 29

8. Kerautret, B., Krahenbl, A., Debled Rennesson, I., Lachaud, J.O.: Centerline detec-
tion on partial mesh scans by confidence vote in accumulation map. In: Proceedings
of ICPR 2016 (2016). To appear

9. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms.
CSUR 36(2), 81–121 (2004)

10. Kretschmer, U., Kirchner, N., Morhart, C., Spiecker, H.: A new approach to assess-
ing tree stem quality characteristics using terrestrial laser scans. Silva Fenn 47, 14
(2013)

11. Krhenbhl, A., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.:
Knot segmentation in 3D CT images of wet wood. Pattern Recogn. 47(12), 3852–
3869 (2014)

12. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen
segmentation techniques: models, features and extraction schemes. Med. Image
Anal. 13(6), 819–845 (2009)

13. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

14. Nguyen, V.T., Kerautret, B., Debled-Rennesson, I., Colin, F., Pipoule, A.,
Constant, T.: Segmentation of defects on log surface from terrestrial lidar data. In:
Proceedings of ICPR 2016 (2016). To appear

http://dgtal.org
http://ipol-geometry.loria.fr/~kerautre/ipol_demo/TrunkDefaultMeasure
http://ipol-geometry.loria.fr/~kerautre/ipol_demo/TrunkDefaultMeasure
http://dx.doi.org/10.1007/978-3-319-23231-7_29


166 V.-T. Nguyen et al.

15. Rosin, P.L.: Unimodal thresholding. Pattern Recogn. 34(11), 2083–2096 (2001)
16. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE Inter-

national Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13
May 2011

17. Schütt, C., Aschoff, T., Winterhalder, D., Thies, M., Kretschmer, U., Spiecker, H.:
Approaches for recognition of wood quality of standing trees based on terrestrial
laserscanner data. ISPRS 36, 179–182 (2004)

18. Stängle, S.M., Brüchert, F., Kretschmer, U., Spiecker, H., Sauter, U.H.: Clear wood
content in standing trees predicted from branch scar measurements with terrestrial
lidar and verified with X-ray computed tomography 1. Can. J. For. Res. 44(2),
145–153 (2013)

19. Thomas, L., Mili, L.: A robust GM-estimator for the automated detection of exter-
nal defects on barked hardwood logs and stems. IEEE Trans. Signal Process. 55(7),
3568–3576 (2007)

20. Thomas, L., Shaffer, C.A., Mili, L., Thomas, E.: Automated detection of severe
surface defects on barked hardwood logs. For. Prod. J. 57(4), 50 (2007)

21. Thomas, L., Thomas, R.E.: A graphical automated detection system to locate
hardwood log surface defects using high-resolution three-dimensional laser scan
data. In: 17th Central Hardwood Forest Conference. vol. 78, p. 92 (2010)


	Algorithms and Implementation for Segmenting Tree Log Surface Defects
	1 Overview of the Segmentation of Defects on Log Surface
	2 Algorithms and Implementations
	2.1 Compute Centerline
	2.2 Convert to Cylindrical Coordinates
	2.3 Compute Reference Distance to the Centerline
	2.4 Thresholding

	3 Reproducing the Results
	4 Discussions
	5 Conclusion
	References


