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Abstract. In this work a stochastic (Stoc) mixed-integer linear programming
(MILP) approach for the coordinated trading of a price-taker thermal (Ther) and
wind power (WP) producer taking part in a day-ahead market (DAM) electricity
market (EMar) is presented. Uncertainty (Uncer) on electricity price (EPr) and
WP is considered through established scenarios. Thermal units (TU) are modelled
by variable costs, start-up (ST-UP) technical operating constraints and costs, such
as: forbidden operating zones, minimum (Min) up/down time limits and ramp up/
down limits. The goal is to obtain the optimal bidding strategy (OBS) and the
maximization of profit (MPro). The wind-Ther coordinated configuration
(CoConf) is modelled and compared with the unCoConf. The CoConf and unCo‐
Conf are compared and relevant conclusions are drawn from a case study.
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1 Introduction

The emissions derived of the use of nonrenewable fuels and the aspiration to attain
independence of energy [1] lead a considerable European countries to promote gener‐
ation of the electricity from renewable (Rnew) resources by adopting some instruments
of support for Rnew energy production, namely investments incentives, green certifi‐
cates, soft balancing costs and feed-in-tariffs [2].

At the end of 2014, 43.70% of all novel Rnew farms were based on WP and was the
7th year consecutively that over 55.0% of added capacity of power in the EU was Rnew
[3]. In the face of the increasing Rnew energy incorporation in the last years, supply of
energy still depending on nonrenewable fuels since more than 60% of the electricity
generated all over the world in 2012 was based on nonrenewable fuel Ther plants [4].

In a restructured EMar, power resources owners’ operate under competition level
due to the nodal variations of EPr [5] in order to obtain the best revenue bidding in the
DAM [6]. For the WP producers (WPP), WP and the market-clearing EPr Uncer are to
be addressed in order to know the amount of energy to produce in order to present optimal
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offers. In absence of conformity, i.e., there is a deviation (Dev), economic penalizations
is due to happen [7]. For Ther power producers, only market-clearing EPr Uncer has to
be addressed.

2 Relationship to Smart Systems

A smart system can be stated as an embedded system that incorporates advanced systems
and provide the inhabitants with sophisticated monitoring and control over how some‐
thing happens in the system [8], for example a wind farm or a TU. Smart systems are
capable of sensing, making diagnosis, describing, qualifying and managing how some‐
thing happens in the system, incorporating both technical intelligence and cognitive
functions. In smart systems, electronic devices will be communicating with software
base system, allowing the user to access information about the functionality of the
system [8]. These systems are highly reliable, often miniaturized, networked, predictive
and energy autonomous [9]. Future power systems should ensure security, reliability
and efficiency in energy management. Using the abilities of smart systems to monitoring
the energy demand and the energy production of other units can play a vital role in what
regards the unit commitment of TU. Particularly, monitoring and high quality real-time
data of the exploitation of Rnew energy sources, namely WP, that usually requires a
certain amount of spinning reserve due to their intermittent nature may represent addi‐
tional information at the moment of unit commitment of TU. With this information, the
Wind-Ther Power Producer (WTPP) can make a more accurate decision concerning the
participation in EMars and therefore foremost revenue [10, 11]. Also, benefits of envi‐
ronmental are predictable with the increase in the capability of discovery offers able to
be satisfied with a high level of being pleased and less needed of spinning reserve, less
TU are needed and less nonrenewable fuel is used.

3 State of the Art

For Ther conversion of energy into electricity, several methods of optimization to
resolve the problem of unit commitment (UC) have been used in the literature, including
a technique of primacies list, classical mathematical programming techniques, like
Lagrangian Relaxation (LR) and dynamic programming (DP) and more newly artificial
intelligence (AI) techniques [12]. Although, requiring small computation time and easy
to implement, the priority list technique does not guarantee an opportune resolution near
the global optimal one, which implies an operation of higher cost [13, 14]. DP methods
are flexible but these methods are characterized by a known limitation by the “curse of
dimensionality”. Although the LR can overcome the previous limitation, does not
necessarily lead to a viable resolution, implying further processing for satisfying the
infringed constraints in order to find a viable resolution, which does not guarantee solu‐
tion optimal. Although, AI techniques based on simulating annealing and ANN have
been applied, the major limitation of the AI techniques concerning with the possibility
to obtain a resolution near the global optimum one is a disadvantage. The MILP method
has been useful with success for solving the problem of UC [15]. MILP is suitable for
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the formulation of bidding strategies due to its rigorousness and extensive capability of
modeling [16]. WPP usually have significant difficulties to predict their power output
accurately. In addition, WPP have to face Uncer on EPr. These Uncer have to be expe‐
diently considered, i.e., treated into the variables of the problems [17] to be addressed
by a WPP in order to know how much to produce and the price for bidding. The technical
literature presents methods for WP bidding strategies solving using different approaches:
the first one is the use of WP with technologies of storage of energy [18]; the use of
economic options as a tool for WPP to hedge against WP Uncer [19]; another approach
is the design of Stoc models in order to obtain OBS for WPP participating in an EMar
[20], without the aforementioned policies. The 3rd line of action is a Stoc formulation
explicitly modelling the Uncer faced by a WPP [21], using indeterminate measures and
an established of scenarios built by WP forecast and market-clearing EPr forecast [22]
requests.

Hence, this paper provides an effective approach based on Stoc MILP to find out the
optimal bidding strategies of a single entity having to manage a coordinated wind-Ther
system, so as to maximize the expected revenue in the Iberian day-ahead EMar.

4 Problem Formulation

4.1 WPP

Considering the variability and intermittent nature of WP the physical delivering usually
differs from the offer submitted by WPP to the DAM. The revenue RVh of a WPP
proposing a power of Eoffer

h
, but actually producing Eact

h
 for period h is stated as:

RVh = 𝜋
D

h
E

offer

h
+ ICh (1)

In (1), the DAM price is 𝜋D
h
, the imbalance (Imb) cost is ICh. The total Dev for period

h is stated as:

Dh = Eact

h
− E

offer

h (2)

The price that WPP will pay for excess of production is 𝜋+

h
, the price to be charged

for deficit of production is 𝜋−

t
. The Imb prices can be given by means of price ratios

stated as:

pr+
h
=

𝜋
+

h

𝜋
D
h

, pr+
h
≤ 1 and pr−

h
=

𝜋
−

h

𝜋
D
h

, pr−
h
≥ 1 (3)

In (3), the 𝜋+

h
 is never greater than 1. The 𝜋−

t
 is never lower than 1.

The power producer
The operating cost, Ts i h, for a TU can is stated as:

Ts i h = B
i
b

si h
+ g

s i h
+ u

s i h
+ A

i
z

s i h
∀s, ∀i, ∀h (4)
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In (4), the fixed production cost is B
i
, the added variable cost is g

s i h
, the ST-UP and

shut-down (Sh-Down) costs are u
s i h

 and A
i
, of the unit. The last three costs are in general

described by nonlinear function (Func) and worse than that some of the functions are
non-convex and non-differentiable functions, but some kind of smoothness is expected
and required to use MILP, for instance, as being sub differentiable functions.

The ST-UP and Sh-Down costs of units in (4) are considered to be such that is
possible to approximate those Func by a piecewise linear. Hence, the g

s i h
, is:

g
s i h =

L∑

l=1

T l

i
Δ l

s i h ∀s, ∀i, ∀h (5)

E
s i h = Emin

i
b

s i h +
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Δ l

s i h ∀s, ∀i, ∀h (6)

(M 1
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)j 1

s i h ≤ Δ 1
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Δ 1
s i h ≤ (M 1

i
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i
)b

s i h ∀s, ∀i, ∀h (8)

(M l

i
− M l−1

i
)jl

s i h ≤ Δ l

s i h ∀s, ∀i, ∀h, ∀l = 2,… , L − 1 (9)

Δ l

s i h ≤ (M l

i
− M l−1

i
)j l−1

s i h ∀s, ∀i, ∀h, ∀l = 2,… , L − 1 (10)

0 ≤ ΔL

s i h ≤ (Emax
i

− ML−1
s i h) jL−1

s i h ∀s, ∀i, ∀h (11)

In (5), the slope of each segment is T l
i
, the segment power is Δ l

s i h
. In (6), the binary

variable bs i h guarantee that the power production is equal to 0 if the unit is in the state
offline. In (7), if the binary variable j l

s i h
 has a null value, then the segment power Δ 1

s i h

can be lower than the segment 1 maximum power (MaxPow); otherwise and in conjunc‐
tion with (8), if the unit is in the state on, then Δ 1

s i h
 is equal to the segment 1 MaxPow.

In (9), if the binary variable j l
si h

 has a null value, then the segment power Δ l
si h

 can be
lower than the segment l MaxPow; otherwise and in conjunction with (10), if the unit
is in the state on, then Δ l

s i h
 is equal to the segment l MaxPow. The exponential nature

of the ST-UP costs functions, u
s i h

 is approached by a linear formulation [21] is:

u
s i h ≥ K 𝛼

i

(
b

s i h −

𝛼∑

r=1

b
si h−r

)
∀s, ∀i, ∀h (12)

The constraints to limit the power produced by the unit are:

Emin
i

b
s i h

≤ E
s i h ≤ Emax

s i h
∀s, ∀i, ∀h (13)

Emax
s i h

≤ Emax
i

(b
s i h

− z
s i h+1) + SD z

si h+1 ∀s, ∀i, ∀h (14)
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Emax
s i h

≤ Emax
s i h−1 + RU b

s i h−1 + SU y
s i h

∀s, ∀i, ∀h (15)

E
s i h−1 − E

s i h ≤ RD b
si h + SD z

s i h ∀s, ∀i, ∀h (16)

In (13) and (14), the upper bound of Emax
s i h

 is established, which is the maximum
available power of the unit. The minimum down time (MDT) constraint is imposed by
a formulation:

Fi∑

h=1

b
s i h = 0 ∀s, ∀i (17)

k+DHi−1∑

h=k

(1 − b
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Fi = min{H, (DHi − t
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The MUT constraint is also imposed:
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(1 − b
s i h) = 0 ∀s, ∀i (20)
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b
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H∑

h=k

(b
si h − z

s i h) ≥ 0 ∀s, ∀i, ∀k = H − UHi + 2 … H (22)

Ni = min{H, (UHi − U
s i 0) b

s i 0}

The relation between the binary variables to identify start-up, shutdown and
forbidden operating zones is:

y
s i h − z

s i h = t
s i h − b

s i h−1 ∀s, ∀i, ∀h (23)

y
s i h + z

s i h ≤ 1 ∀s, ∀i, ∀h (24)

The total power produced by the TU is:

Eg

st
=

I∑

i=1

E
s i h ∀s, ∀h (25)
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Objective function: The total offer is:

E
offer

s h
= Eth

s h
+ ED

s h
∀s, ∀h (26)

The physical delivering is:
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In (27), Eg
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 is the physical delivering by the TU and E𝜔d
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 is the physical delivering

by the wind farm for scenario s. The expected revenue of the GNCO is:
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The maximum Ther generation is:

EM

s h
=

I∑

i=1

Emax
si h + EWmax ∀s , ∀h (33)

An additional constraint for (28) appears:

(E
offer

s h − E
offer

s′ h )(𝜋 D

s h − 𝜋
D

s′ h) ≥ 0 ∀s, s′, ∀h (34)

5 Case Study

The case study is from a GNCO with a WTPP, with 1440 MW of installed capacity. The
used data is available in [6]. The energy prices are from the Iberic Market of electricity
and available in [23], considering 10 days of June. The EPr and the energy generated
from wind are displayed in Fig. 1.
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Fig. 1. Market Iberic: June 2014; left: EPr, energy from wind: right.

The energy generated is obtained using the total energy generated from the wind
farm having 360 MW of rated power. The expected revenue for CoConf and unCoConf
are displayed in Table 1.

Table 1. Expected revenue for CoConf and uncoordinated configurations

Case Expected revenue
Wind uncoordinated (€) 119 200
Ther uncoordinated (€) 516 848
Coordinated Wind and Ther (€) 642 326
Gain (%) 0,99

The non-decreasing energy bid for the unCoConf approach is displayed in Fig. 2.
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Fig. 2. Bids of energy.

In Fig. 2 the CoConf permits for a Min value of offered power upper than the one
offered in the unCoConf and permits for a lesser price of the offering, which is a possible
operation benefit.
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6 Conclusion

Smart Systems can play an important role for a Ther and WP producer since the operation
till the bidding in day-ahead EMars. The ability to provide real-time data from the wind
production may result in foremost decisions for the decision-maker and therefore higher
revenues. As result of the proposed approach for uncoordinated and coordinated oper‐
ations optimal schedule of the TU and the short-term bidding strategies are obtained.
The presented approach is appropriate for the GNCO involvement with TU and a wind
farm. The offer coordinated of Ther with WP power permits providing foremost
outcomes than the sum of the lonely offers. The Uncer are modelled using established
scenarios for the prices of the energy and power production. In the literature of all trading
problems and management involving production by wind prove to be optimization
problems under Uncer.
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