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Abstract. Edwin H. Land and John J. McCann introduced the Retinex
model as a computational theory of color vision. However, they specified
the details of Retinex rather algorithmically and not mathematically and
this opened the way to a multitude of different interpretations of their
model, many times even contradicting ones. The aim of this paper is to
present a systematic and self-contained overview about these different
interpretations and the corresponding mathematical formalizations in
terms of variational principles and partial differential equations.

1 Introduction

The most popular paper about the original Retinex formulation is [19]. Retinex
stands for ‘Retina plus Cortex’, which refers to the fact that the mechanisms
underlying human color vision depend both on the retinal photoreceptors catches
and on the cortex interpretation of this signals. The original Retinex is a com-
putational model with the aim of finding a perceptual correlate of reflectance,
called ‘lightness’ by Land, to be tested with psychophysical measurements.

Through a series of groundbreaking experiments, mostly performed with the
famous ‘Mondrian tableaux’, Land and McCann proved that human perception
of a surface’s color is much more influenced by the spatial distribution of the
surrounding surfaces than by the spectral distribution of the light used to illu-
minate the Mondrian tableau. As underlined by McCann in many papers and
conference speeches, spatial locality of color perception is the central concept in
the whole Retinex theory. Thus, at least in its original form, the aim of Retinex
is not to discard illumination and recover the intrinsic reflectance of surfaces,
as several authors claim in their paper even nowadays, but to quantify how the
points of the spatial surround cooperate to modify color perception.

In spite of their innovative and important experimental achievements, neither
Land nor McCann ‘carved their model into stone’ through a rigorous mathemat-
ical formulation. In this paper, we are going to discuss the two major classes
of Retinex that can be found in the literature: ratio-reset Retinex and Horn’s
Retinex [11]. We will underline how profound is the difference between these two
interpretations thanks to variational principles and partial differential equations.
c© Springer International Publishing AG 2017
S. Bianco et al. (Eds.): CCIW 2017, LNCS 10213, pp. 55–67, 2017.
DOI: 10.1007/978-3-319-56010-6 5



56 E. Provenzi

Before entering in the mathematical details of variational formulations, it
is worth introducing, in the following section, the basic formalization of the
original Retinex formula developed in [25]. This will help us fix the ideas and
the notation about many concepts and notations that will be discussed in the
following sections.

2 Land and McCann’s Original Retinex Model

As previously commented, the original Retinex model of Land and McCann [19]
is based on the assumption that the HVS operates with three retinal-cortical
systems, each processing independently the low, middle and high wavelengths of
the visible electromagnetic spectrum. Every independent process forms a sepa-
rate image determining a quantity that they called lightness and denoted with
L. Land and McCann found a computational way to reproduce lightness for their
Mondrian tableaux by introducing spatial comparisons among intensities, cal-
culated over paths. The comparison is performed through a multiplicative chain
of ratios, subjected to these non-linear operations: Threshold mechanism: if the
ratio does not differ from 1 more than a fixed threshold value, then it is set to
be unitary; Reset mechanism: if the cumulated product of ratios overcomes the
value 1 in a certain point of the path, then it is forced to 1, so that the computa-
tion restarts from it. In this way, this point becomes a local white reference, so
hat the reset mechanism is responsible for the white-patch behavior of Retinex.

Let us now present the mathematical formalization of Land and McCann
ratio-threshold-reset Retinex computation provided in [25]. Given a discrete
digital image function with normalized range, I : Ω ⊂ Z

2 → [0, 1], consider
a collection of N oriented paths γ = {γ1, . . . , γN} composed by ordered chains
of pixels starting in yk and ending in x, k = 1, . . . , N . Let nk be the number
of pixels traveled by the path γk and let tk = 1, . . . , nk be its parameter, i.e.
γk : {1, . . . , nk} → Ω ⊂ R

2, γk(1) = yk and γk(nk) = x. Write, for simplicity,
two subsequent pixels of the path as γk(tk) = ytk and γk(tk + 1) = ytk+1, for
tk = 1, . . . , nk − 1. Consider, in every fixed chromatic channel c ∈ {R,G,B},
their intensities I(ytk), I(ytk+1) and then compute the ratio Rtk = I(ytk+1)

I(ytk
) with

the initial condition R0 = 1.
With this notation in mind, the value of lightness provided by the ratio-

threshold-reset Retinex algorithm for a generic pixel x ∈ Ω, in every fixed chro-
matic channel c (that we avoid specifying for the same of a clearer notation), is
given by:

Lε,γ(x) =
1
N

N∑

k=1

nk−1∏

tk=1

δk(Rtk) (1)

where δk : R+ → R
+, k = 1, . . . , N , are functions defined in this way: δk(R0) = 1

and, for tk = 1, . . . , nk − 1,
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δk(Rtk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rtk if 0 < Rtk ≤ 1 − ε
1 if 1 − ε < Rtk < 1 + ε
Rtk if 1 + ε ≤ Rtk ≤ 1+ε

∏tk−1
mk=0 δk(Rmk

)
1

∏tk−1
mk=0 δk(Rmk

)
if Rtk > 1+ε

∏tk−1
mk=0 δk(Rmk

)

(2)

being ε > 0 a fixed threshold. The second option is the mathematical imple-
mentation of the threshold mechanism while the fourth implements the reset
mechanism (and so the white patch behavior) of the algorithm.

It is useful to write the contribution of the single path γk to Lε,γ(x) as:

Lε,γk
(x) =

nk−1∏

tk=1

δk(Rtk), (3)

so that formula (1) reduces simply to the average of these contributions, i.e.

Lε,γ(x) = 1
N

N∑
k=1

Lε,γk
(x).

2.1 The Limit Behavior ε → 0

The analytical formula to describe the ratio-threshold-reset Retinex algorithm
just introduced allowed making predictions about the model. As explained in
[25], this can be done if the threshold mechanism is disregarded, or, equivalently,
by considering the case ε → 0.

As ε → 0, the functions δk become much simpler:

δk(Rtk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rtk if 0 < Rtk

tk−1∏
mk=0

δk(Rmk
) ≤ 1

1
tk−1∏

mk=0
δk(Rmk

)

if Rtk

tk−1∏
mk=0

δk(Rmk
) > 1

(4)

hence, when ε → 0, δk behaves either as the identity or the reset function.
In [25] it was proven that this implies the following formula:

L0,γ(x) =
1
N

N∑

k=1

I(x)
I(yHk

)
, (5)

where yHk
is the pixel with highest intensity traveled by γk. From now on, we

will refer to formula (5) as describing the ‘ratio-reset Retinex algorithm’.
Notice that he presence of paths makes the ratio-reset Retinex a local algo-

rithm, where locality is intrinsically represented by the geometry of paths used.
However, when nk → |Ω| or N → ∞, the ratio-reset Retinex loses its local prop-
erties and reduces, see [25], to the global diagonal von Kries model [16]. On the
other hand, if we use small values of nk or N , the resulting lightness images are
affected by a lot of noise, see again [25].
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Finally, it is important to underline that, since intensity values are normal-
ized, 0 < I(yHk

) ≤ 1 for every k = 1, . . . , N and then
∑N

k=1
1

I(yHk
) ≥ N . It

follows that L(x) ≥ I(x) for every pixel i and this proves that an image filtered
with the ratio-reset Retinex is always brighter or equal to the original one. This
shows an important limitation of this algorithm: an over-exposed picture can
only be worsened by the application of the ratio-reset Retinex used as a color
corrector.

2.2 From Paths to Pixel Sprays: RSR and Related Algorithms

The information obtain thanks to the mathematical formulation of Retinex has
important consequences on the structure of Px(Ω), the set of paths embedded
in the image domain Ω and ending in the point x. After formula (5), on this set
it is natural to define the following equivalence relation: given γ, η ∈ Px(Ω),

γ ∼ η ⇔ max
y∈γ∗{I(y)} = max

y∈η∗{I(y)} (6)

where γ∗ and η∗ are the co-domains of the paths, i.e. the collections of pixels
traveled by γ and η, respectively.

Paths belonging to different equivalence classes give different contributions
to the lightness computation, while every path in a given equivalence class gives
rise to the same value of L0,γk

(x). It follows immediately that Px(Ω) contains
redundant paths and that the correct set of paths to consider is given by the
quotient set Px(Ω)/∼, whose elements are the equivalence classes of paths with
respect to the equivalence relation defined in (6).

In each equivalence class one can choose a single representative path to com-
pute L0,γk

(x), in particular, the more efficient one is the two-points path whose
co-domain is simply given by {yHk

, x}. Thus, the ordering operations needed to
generate the paths are totally unnecessary for the final lightness computation.
Moreover, by a mathematical point of view, paths are topological manifolds of
dimension 1 embedded in the image, which is a topological manifold of dimension
2, so paths do not really scan local neighborhoods of a pixel, rather particular
directions in these neighborhoods. This directional extraction of information can
lead to halos or artifacts in the filtered image, see e.g. [7].

These considerations led the authors of [26] to consider 2-dimensional objects
such as areas instead of 1-dimensional paths to analyze image locality for an
efficient color correction. Roughly speaking, their idea is to implement spatial
locality by selecting a fraction of pixels from these areas with a density sample
that changes according to a given function of their distance with respect to the
target pixel x. Each function generates a different kind of pixel selection around
x, leading to different kind of ‘sprays’, each of which shows different local filtering
properties. The new implementation of the ratio-reset Retinex that follows this
idea is called RSR for ‘Random Sprays Retinex’.
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In RSR the role of a path γk traveling nk pixels and ending in the target x is
played by Sk(x), a spray with nk pixels centered in x. Actually, once the number
of points per spray is chosen, there is no need to vary it with k, hence, from now
on, we will write n instead of nk to denote the number of pixels per spray. The
ratio-reset operation along a path is substituted by the search of the pixel with
highest intensity in the whole spray. The functional expression of formula (5)
to compute the lightness remains exactly the same in both algorithms, so the
ratio-reset Retinex and RSR share the same intrinsic properties.

In [1,2] two techniques have been proposed to reduce noise generation also
decreasing the computational time of RSR.

In [27] the spray technique was used to fuse RSR with ACE [28], another
perceptually-inspired color correction algorithm that makes use of the gray-world
hypothesis [5]. The hybrid algorithm is called RACE and it is able to color correct
both under and over exposed images.

A more recent proposal to fuse WP and GW features in a single algorithm
is that presented in [15] and called STRESS for Spatio-Temporal Retinex-like
Envelope with Stochastic Sampling. As Retinex, STRESS computes, for each
pixel, the local white reference, but also the black reference in each chromatic
channel. This is done through calculating the maximum and minimum envelope
functions, denoted as Emax(x) and Emin(x), respectively.

Finally, let us mention that, in [9], the RSR sampling technique has been
studied from a probabilistic point of view, resulting in the algorithm QBRIX
and, in [10], further comparisons among Retinex models are discussed.

3 A Variational Framework for the Ratio-Reset Retinex

The similarities between the ACE formula [28] and the gradient descent equa-
tions for histogram equalization obtained in [29], led to the discovery of a vari-
ational interpretation of ACE in the paper [4]. The framework were further
extended in [23] and, finally, in [3] a variational framework for (an anti-symmetric
version of the) ratio-reset Retinex has been discussed. In order to understand
how this is possible, let us come back to the lightness formula (5).

Land and McCann proposed a further Retinex mechanism, the scaling, imple-
mented via a strictly increasing function f : (0, 1] → (0, 1] such that f(r) ≥ r

for all r ∈ (0, 1] applied to the ratio r = I(x)
I(yHk

) , so that the Retinex lightness
formula becomes:

L0,γ,f (x) =
1
N

N∑

k=1

f

(
I(x)

I(yHk
)

)
. (7)

The reset mechanism of Retinex and the scaling operation can be merged: in
fact, we can extend f to (0,+∞) preserving its continuity by defining

f̂(r) =

{
f(r) if r ∈ (0, 1]
1 if r ∈ [1,+∞).
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It is clear that applying this new scaling function f̂ to the ratios I(x)/I(y),
with x fixed and y that varies in Ω, jointly implements the scaling and the reset
mechanism.

Now we have all the elements to introduce the continuous version of the
Retinex algorithm presented in [3] under the name ‘Kernel-Based Retinex’, or
KBR for short. Given x ∈ Ω, let Yw,x be the random variable modeling the
selection of a pixel in the neighborhood of x according to the density w(x, y).

The output LKBR
w (x) of the KBR algorithm at the pixel x is defined as the

conditional expectation of f̂
(

I(x)
I(Yw,x)

)
with respect to the distribution w of pixels

around x, i.e.

LKBR
w (x) = EYw,x

[
f̂

(
I(x)

I(Yw,x)

)]
. (8)

This formula is used independently for each color channel and can be written
more explicitly as

LKBR
w (x) =

∑

{y∈Ω:I(y)≥I(x)}
w(x, y) f

(
I(x)
I(y)

)
+

∑

{y∈Ω:I(y)<I(x)}
w(x, y). (9)

All the basic properties of the ratio-reset Retinex are faithfully implemented
in (9): KBR is founded on the propagation of a two-pixel ratio comparison
between the fixed target x and the generic pixel y that runs across the image;
these comparisons are then subjected to the reset and scaling performed by f̂
and, finally, locally averaged with weight w, in order to produce the value of
LKBR

w (x).
To study the action of KBR of pixel intensities, it is useful to rewrite (9)

introducing the functions

sign+(ξ) :=

⎧
⎨

⎩

1 if ξ > 0,
1
2 if ξ = 0,
0 if ξ < 0,

sign−(ξ) = 1 − sign+(ξ),

so that Eq. (9) can be re-written as

LKBR
w (x) =

∑

y∈Ω

w(x, y) f

(
I(x)

I(y)

)
sign+(I(y) − I(x)) +

∑

y∈Ω

w(x, y) sign−(I(y) − I(x)).

(10)

Thanks to Eq. (10) we can verify that KBR always increases brightness as the
original Retinex implementation. In fact, since f(r) ≥ r for all r ∈ (0, 1], then
f

(
I(x)
I(y)

)
≥ I(x)

I(y) ≥ I(x), so

LKBR
w (x) ≥

∑

y∈Ω

w(x, y) I(x) sign+(I(y) − I(x)) +
∑

y∈Ω

w(x, y) sign−(I(y) − I(x)) (11)
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moreover, being I(x) ≤ 1, we can write

LKBR
w (x) ≥

∑

y∈Ω

w(x, y) I(x) sign+(I(y) − I(x)) +
∑

y∈Ω

w(x, y) I(x) sign−(I(y) − I(x))

= I(x)
∑

y∈Ω

w(x, y)
[
sign+(I(y) − I(x)) + sign−(I(y) − I(x))

]

= I(x)
∑

y∈Ω

w(x, y) = I(x), (12)

having used the fact that the kernel is normalized. As in the original formulation,
this property implies that over-exposed pictures could not be enhanced with
Retinex unless we use a post-processing stage and that further iterations of
Retinex keep on increasing the intensity until a white image is reached.

This equation of KBR does not correspond to the minimization of
an energy functional. However, let us consider the sum of the function
f

(
I(x)
I(y)

)
sign+(I(y)−I(x)) and of its the anti-symmetrized version on the region

{x ∈ Ω : I(y) ≤ I(x)}, i.e.

LaKBR
w (x) =

∑

y∈Ω

w(x, y) f

(
I(x)
I(y)

)
sign+(I(y) − I(x))

−
∑

y∈Ω

w(x, y) f

(
I(y)
I(x)

)
sign−(I(y) − I(x))

(13)

where aKBR stands for anti-symmetrized KBR.
In [3] it was proven that the right-hand side of the previous equation can be

interpreted as the minimization of the energy functional given by:

Cf
w(I) =

∑

x∈Ω

∑

y∈Ω

w(x, y)f
(

min(I(x), I(y))
max(I(x), I(y))

)
. (14)

Minimizing Cf
w(I) corresponds to maximizing the contrast in a local (due to

the presence of the weight w) and non linear way (due to the ratio and to the
presence of f). This explained in a quantitative and qualitative way how and why
the somewhat involved ratio-reset mechanism of Retinex allows for a unilateral
contrast enhancement, always directed towards the highest intensity.

KBR, ACE, RACE and STRESS corrected this unilateral behavior. In [24]
the spatially-based variational framework was translated into a wavelet-based
setting.

4 Retinex: A ‘melody’ that Everyone Plays Differently

In image processing it is hard to find a model whose name has been interpreted
in so many different ways as ‘Retinex’. In this section, we present a synthetic
description of the evolution of the Retinex interpretation.
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Path-wise Retinex share a local WP nature and mostly differ from each other
by the path geometry used to explore spatial locality: Land and McCann used
piecewise linear paths in [19]. In [6], [21], and [30] those paths were substituted
by double spirals, Brownian paths and traces of a specialized swarm of termites,
respectively.

Center/surround Retinex are local GW algorithms originated from [18],
where Land noticed that he could reproduce Mach bands originated by a spinning
white square on a black background by using a different Retinex formulation.
Precisely, for every image point, the intensity of the center x is replaced by the
ratio between I(x) and the average value of the surround, sampled with a den-
sity that decays as the inverse of the square distance from the center. Writing
with LCS this ‘center/surround lightness’, we have: LCS(x) = I(x)/<{I(y), y ∈
Surround}>, where < · > represents the average operator. Comparing this last
formula with (5), it can be seen that there is a fundamental difference between
this formulation and the original one: there the ratio is performed over the pixel
with highest intensity, while in this formulation it is implemented over the mean
value of the surround. In practice, this last formulation can be seen as a gray-
world method to remove the illuminant component of the image [5].

In 1997, Johbson, Rahman and Woodell [13] re-elaborated Land’s idea pre-
sented in [18]: they worked with logarithmic data, approximating the average
of the surround by convolving the image function I with a normalized kernel
function F , usually a Gaussian. If we use again, for simplicity, the symbol LCS,
we can write this model as follows: LCS(x) = log(I(x))− log((F ∗I)(x)), ∀x ∈ Ω.

Multilevel Retinex algorithms were pioneered by Frankle and McCann in [7]
and further refined in [8]. In these works a multilevel version of the original local
WP Retinex is presented, the authors abandon paths and consider a computation
that takes into account all pixels. The input image is progressively sub-sampled
averaging a number of pixel that grows as increasing powers of 2. On each sub-
sample level a ratio-reset computation (without threshold) is operated a certain
number of times, from the coarser sub-sample level to the finest one. Because of
the sub-sampling, as we go far from the target pixel, we do not consider actual
pixel values, but average values of macroareas of increasing size. A rigorous
mathematical formulation of these multilevel algorithms is still lacking.

Based on this idea, Marini, Rizzi and De Carli [21] constructed a local WP
multilevel version of Brownian path Retinex that reduced the amount of noise
in the output images. A different multilevel proposal has been pointed out by
Johbson, Rahman and Woodell in [12]: they introduced a certain number S of
scales where performing the convolutions with normalized Gaussian functions
Fs, s = 1, . . . , S. Each scale is associated to a suitable weight ws, which gives
more importance to finer scales than to coarser ones.

Finally there are WP Retinex versions based on solving a Poisson equation.
They rely on a work of Horn [11], in which he remarkably pointed out, for the first
time, the need for a spatially isotropic two-dimensional version of Retinex. Horn
considered, as Land, only Mondrian tableaux illuminated by a smoothly varying
light. However, differently from Land, he explicitly tackled the ill-posed problem
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of inverting the equation Ic(x) = Sc(x)Lc(x), c ∈ {R,G,B}, with respect to
Sc(x), the reflectance of the point x, knowing only the image intensity Ic(x)
and not the illumination Lc(x). If we pass to logarithmic values, i.e. log Ic(x) =
log Sc(x) + log Lc or, equivalently, log Sc(x) = log Ic(x) − log Lc and we apply a
differential operator D to both sides, then D(log Lc(x)) will be small but finite
everywhere, while D(log Sc(x)) will be different from zero only if x is close to
sharp edges.

If we apply a threshold operator δT defined as follows:

δT (s) =

{
s if |s| > T

0 elsewhere,

for all s ∈ R and if the threshold T > 0 is small enough, then we obtain
D(log Sc(x)) = δT (D(log Ic(x))). Horn insisted on the choice of the Laplacian for
D instead of the gradient, arguing that first order derivatives are one-dimensional,
while the second order derivatives involved in the Laplacian are isotropic and thus
more suited for the topology of an image. By substituting D with the Laplacian
operator Δ, the last formula becomes a Poisson equation:

Δ(log Sc(x)) = δT (Δ(log Ic(x))), (15)

whose solution allows to recover the logarithmic reflectance log Sc(x). It is clear
that Horn’s method is based on quite restrictive hypotheses: smoothness of illu-
mination (violated by scenes with deep shadows, for instance) and a Mondrian-
like world (violated each time edges are not sharp).

5 Mathematical Formalizations of Horn’s Interpretation

Besides the variational framework described in Sect. 3, in the literature there
exist alternative variational models of Retinex-like algorithms and also formal-
izations based on partial differential equations (PDE). The aim of this section
is not to give an exhaustive list, rather to discuss the main features of the
most famous alternative mathematical formalizations of Retinex-like algorithms
present in the literature.

The first authors to embed a Retinex-like algorithm in a variational frame-
work were Kimmel and colleagues in [14]. They did not considered the orig-
inal Land’s ratio-threshold-reset Retinex, but Horn’s interpretation. In fact,
they started from the logarithmic equation log Ic(x) = log Sc(x) + log Lc(x),
c ∈ {R,G,B} and tried to solve it with respect to log Lc(x) by imposing the
hypothesis of smoothness on the illuminant part of the logarithmic image. Once
obtained an estimation of the illumination, they could infer the reflectance infor-
mation Sc(x). This one then undergoes suitable transformations and gives an
illuminant-invariant version of the original image.

It is important to underline a fundamental difference between this variational
technique and the one presented in the previous sections: here contrast enhance-
ment of the original image log Ic(x) is obtained by decreasing the contrast of the
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illuminant image log Lc(x). In fact, log Ic(x) is measured by the camera and so
it is a fixed data, log Lc(x) is estimated by using a smoothness prior, thus the
estimated reflectance log Sc(x) = log Ic(x) − log Lc(x), or Sc(x) = Ic(x)/Lc(x)
is forced to have a stronger contrast than the original image data. Instead, the
variational principles previously discussed act directly on the contrast of the orig-
inal image, without taking into account the separation between reflectance and
illuminant and related approximations and priors.

Avoiding the subscript c, the functional proposed in [14], with the notations
of this paper, can be expressed as follows:

Eα,β(log L) =
∑

x∈Ω

[|∇ log L(x)|2 + α(log L(x) − log I(x))2 + β|∇(log L(x) − log I(x))|2]

(16)
with the constraints log L(x) ≥ log I(x), because the reflectance S(x) is always
between 0 and 1, and the boundary condition 〈∇ log L,n〉 = 0 on ∂Ω, i.e. log L
orthogonal to the normal n to the boundary ∂Ω of Ω.

The first term of the functional forces spatial smoothness on the illumination
L. The authors chose that particular analytical form because the Euler-Lagrange
equation associated to

∑
x∈Ω |∇ log L(x)|2 is the Laplace PDE Δ log L = 0,

whose steepest descent solution is equivalent to a Gaussian smoothing. The
second penalty term forces a proximity between log L and log I, so that their
difference log S, the logarithmic reflectance, tends to 0, i.e. the reflectance R
tends to 1, or white. The authors declare that the principal objective of this
term is to regularize the problem, so that it is better conditioned in view of a
numerical solution and they set the constant α to a very small value not to force
too much log L towards log I. The third term represents a Bayesian penalty,
which forces reflectance gradients to be smooth. The authors declared to have
introduced it to force R to be visually pleasing, without abrupt variations.

Morel, Petro and Sbert [22] analyzed Land’s original Retinex model [17]
without the reset mechanism. They showed that, if the Retinex paths are inter-
preted as symmetric random walks, then Retinex is equivalent to the following
Neumann problem for a Poisson equation:

{
−ΔL(x) = F (x) x ∈ Ω
∂L(x)

∂n = 0 x ∈ ∂Ω,

where F is a suitable scalar field, see [22] page 2830.
Let us now consider the algorithm STRESS. We recall that the basic informa-

tion needed by STRESS is given by the two envelope functions Emin and Emax

which, in the original formulation, are computed through the same random spray
technique of RSR [26]. To avoid the typical noise problems related to this tech-
nique, in [31], the authors proposed to compute the envelope functions via the
minimization of a functional based on the total variation, instead of using the
random spray technique. For this reason the corresponding algorithm is called
STRETV and corresponds to the minimization of the following functional for E
(in this case E denotes the envelope and not the energy functional):
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∑

x∈Ω

[
|∇E(x)| +

λ

2
|E(x) − I(x)|2

]
(17)

subjected to E(x) ≥ I(x) to compute Emax and to E(x) ≤ I(x) for Emin.
The minimization of the first (total variation) term, assures the spatial

smoothness of the envelope functions, the second term is a fidelity term used
not to depart too much from the original image values. The authors declare that
the coefficient λ must be �1 for good results. The authors do not specify if they
consider a spatial kernel to localize their computation or not.

The last variational formalization that we discuss here is that presented in
[20] relative to the termite Retinex. Here an energy functional is taken into
account to determine the geometry of the paths used by Retinex. Fixed a pixel
x ∈ Ω, the authors search for the path γ : [0, 1] → Ω, γ(0) = x, the minimizes
the energy functional defined by:

E(γ) =
∫ 1

0

[
1

1 + (D2 − ‖x − γ(s)‖2)‖∇I(γ(s))‖2 + θ(γ(s))
]

ds, (18)

where D is the diagonal of Ω and 1 is introduced to avoid singularities in the case
the denominator is 0. The paths that minimize E(γ) are those which balance
the fact to remain as close to x as possible and, simultaneously, to explore image
areas with high values of the gradient. Both features maximize the denominator
of the first term. If x lies in an area with a high density of edges, γ will not
go too far from x, instead, if x lies in a rather homogeneous area, γ will be
forced to explore the image points far away from x to find the important edge
information. θ(γ(s)), the so-called ‘poison term’, is set to zero at the beginning,
and it increases each time a path has been traveled, to prevent from exploring
the same image area all the time. Once a set of N path has been selected, the
intensity I(x) of the pixel x in each separate chromatic channel is modified with
the Retinex formula 5.

6 Conclusions

In the past fifteen years, variational methods have been used to formalize color
correction algorithms. This permitted to point out similarities and differences
among several models that were difficult to detect just looking at their direct
equations. In this paper we have described, in a self-contained way, both the
direct and the variational versions of several color enhancement algorithms
inspired by the seminal Retinex theory of color vision. A particular emphasis
has been put in highlighting the very different variational formulations of the
original Retinex of Land and McCann and those referring to Horn’s interpreta-
tion, which are often misleadingly mixed in the literature.
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2. Banić, N., Lončarić, S.: Smart light random memory sprays Retinex: a fast Retinex
implementation for high-quality brightness adjustment and color correction. JOSA
A 32(11), 2136–2147 (2015)

3. Bertalmı́o, M., Caselles, V., Provenzi, E.: Issues about the Retinex theory and
contrast enhancement. Int. J. Comput. Vis. 83, 101–119 (2009)

4. Bertalmı́o, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction
through variational techniques. IEEE Trans. Image Process. 16, 1058–1072 (2007)

5. Buchsbaum, G.: A spatial processor model for object colour perception. J. Frankl.
Inst. 310, 337–350 (1980)

6. Cooper, T.J., Baqai, F.A.: Analysis and extensions of the Frankle-McCann Retinex
algorithm. J. Electron. Imaging 13, 85–92 (2004)

7. Frankle, J., McCann, J.J.: Method and apparatus for lightness imaging. US Patent
4,348,336 (1983)

8. Funt, B., Ciurea, F., McCann, J.J.: Retinex in MATLAB. J. Electron. Imaging
13(1), 48–57 (2004)

9. Gianini, G., Manenti, A., Rizzi, A.: QBRIX: a quantile-based approach to Retinex.
JOSA A 31(12), 2663–2673 (2014)

10. Gianini, G., Rizzi, A., Damiani, E.: A Retinex model based on absorbing Markov
chains. Inf. Sci. 327(10), 149–174 (2016)

11. Horn, B.: Determining lightness from an image. Comput. Graph. Image Process.
3, 277–299 (1974)

12. Jobson, D., Rahman, Z., Woodell, G.: A multiscale Retinex for bridging the gap
between color images and the human observation of scenes. IEEE Trans. Image
Process, 6(7), 965–976 (1997)

13. Jobson, D., Rahman, Z., Woodell, G.: Properties and performance of a cen-
ter/surround Retinex. IEEE Trans. image process. 6(3), 451–462 (1997)

14. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework
for Retinex. Int. J. Comput. Vis. 52, 07–23 (2003)

15. Kol̊as, Ø., Farup, I., Rizzi, A.: Spatio-temporal Retinex-inspired envelope with sto-
chastic sampling: a framework for spatial color algorithms. J. Imaging Sci. Technol.
55(4), 40503-1 (2011)

16. von Kries, J.: Chromatic adaptation. Festschrift der Albrecht-Ludwigs-Universität,
pp. 145–158 (1902)

17. Land, E.: The Retinex. Am. Sci. 52(2), 247–264 (1964)
18. Land, E.: An alternative technique for the computation of the designator in the

Retinex theory of color vision. Proc. Acad. Sci. 83, 3078–3080 (1986)
19. Land, E., McCann, J.: Lightness and Retinex theory. J. Opt. Soc. Am. 61(1), 1–11

(1971)
20. Lecca, M., Rizzi, A., Gianini, G.: Energy-driven path search for termite Retinex.

JOSA A 33(1), 31–39 (2016)
21. Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image

Vis. Comput. 18, 1005–1014 (2000)
22. Morel, J., Petro, A., Sbert, C.: A PDE formalization of Retinex theory. IEEE

Trans. Image Process. 19(11), 2825–2837 (2010)
23. Palma-Amestoy, R., Provenzi, E., Bertalmı́o, M., Caselles, V.: A perceptually

inspired variational framework for color enhancement. IEEE Trans. Pattern Anal.
Mach. Intell. 31(3), 458–474 (2009)



Similarities and Differences in the Mathematical Formalizations 67

24. Provenzi, E., Caselles, V.: A wavelet perspective on variational perceptually-
inspired color enhancement. IJCV 106, 153–171 (2014)

25. Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analy-
sis of the Retinex algorithm. J. Opt. Soc. Am. A 22(12), 2613–2621 (2005)

26. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random
spray Retinex: a new Retinex implementation to investigate the local properties of
the model. IEEE Trans. Image Process. 16, 162–171 (2007)

27. Provenzi, E., Gatta, C., Fierro, M., Rizzi, A.: Spatially variant white patch and
gray world method for color image enhancement driven by local contrast. IEEE
Trans. Pattern Anal. Mach. Intell. 30, 1757 (2008)

28. Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local
color correction. Pattern Recogn. Lett. 24, 1663–1677 (2003)

29. Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Differ.
Equ. 135, 238–266 (1997)

30. Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite Retinex: a
new implementation based on a colony of intelligent agents. J. Electron. Imaging
23(1), 013006 (2014)

31. Simone, G., Farup, I.: Spatio-temporal Retinex-like envelope with total variation.
In: Conference on Colour in Graphics, Imaging, and Vision, vol. 2012, pp. 176–181.
Society for Imaging Science and Technology (2012)


	Similarities and Differences in the Mathematical Formalizations of the Retinex Model and Its Variants
	1 Introduction
	2 Land and McCann's Original Retinex Model
	2.1 The Limit Behavior 0
	2.2 From Paths to Pixel Sprays: RSR and Related Algorithms

	3 A Variational Framework for the Ratio-Reset Retinex
	4 Retinex: A `melody' that Everyone Plays Differently
	5 Mathematical Formalizations of Horn's Interpretation
	6 Conclusions
	References


