
Chapter 9
Are Soil Carbon Stocks in Mountain
Grasslands Compromised by Land-Use
Changes?
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Marc Taull, Pere Rovira and Pere Casals

Abstract Mountain grasslands are generally rich in soil organic C, but the typical
high spatial variability of mountain environments, together with the different
management systems, makes their soil C content particularly variable. Socio-
economic changes of the past decades have caused a progressive abandonment of
the traditional use for grazing of some areas, while grazing pressure at easily
accessible grasslands have increased. Here, we analyse the effect of these land-use
changes on the factors regulating the soil C accumulation and stocks. Overgrazing
generally leads to a reduction above- and below-ground litter inputs and a decrease
in soil C stocks, affecting some soil physicochemical and biological properties.
Additionally, the labile C inputs coming from animal faeces may accelerate the
mineralisation of organic matter. Grazing abandonment causes a reduction of
aboveground productivity, but the lack of consumption causes a short-term accu-
mulation of organic matter. Its effect on belowground biomass and productivity is
less clear. At longer term, grazing abandonment causes a change in the plant
community composition, having the shrub encroachment the strongest effect on C
storage. The low biochemical quality of shrub litter delays its decomposition and
allows higher organic matter accumulation in the topsoil. But the effect of shrub
proliferation at the deeper soil is less clear. The low root turnover of shrubs
compared to grasses may reduce the C inputs to the soil. But, at the same time, the
reduction of the root exudates may also reduce the microbial activity and the
organic matter mineralisation.
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9.1 Introduction

Soil organic matter plays essential roles in terrestrial ecosystems. It maintains the
soil structure, favours water infiltration and reduces the risk of soil erosion. It also
increases the water holding capacity of soils and, through its decomposition by soil
biota, provides nutrients to the plants.

Carbon (C) comprises about 45% of the mass of soil organic matter. Plant
photosynthetic activity produces organic matter using atmospheric CO2, which is
then accumulated in soil mainly by incorporating plant residues into the soil
organic matter. Although this is the primary pathway by which atmospheric CO2–C
is incorporated into the soil, some additional atmospheric CO2–C can also be
sequestered in soil in inorganic forms by rock weathering and precipitation of Ca-
and Mg-carbonates. Then, the oxidation of organic matter by soil microorganisms
is the main process causing a release of carbon as CO2 to the atmosphere, leaving
less decomposable organic compounds, which are accumulated in the soil.
Together with this biotic process, a significant amount of soil C can also be
exported from the soil by leaching. Overall soil C sequestration results from the
balance between the C flux from the atmosphere into the soil and the C release back
to the atmosphere through microbial decomposition. This balance determines if soil
behaves as a net sink for removing CO2 from the atmosphere or a net source that
contributes to rising atmospheric CO2.

Soils represent the main compartment of organic C in most terrestrial ecosys-
tems, containing globally about 1550 Pg C (1 Pg = 1015 g), which roughly is twice
the amount of C in the atmosphere (760 Pg C) and three times the amount in the
biomass (550 Pg C) (Lal 2008). Given the large magnitude of these soil C stocks,
potential reductions as little as 10% of the soil C content would equal to the
anthropogenic CO2 emitted over 30 years (Kirschbaum 2000), meaning significant
changes in the atmospheric CO2 concentrations and the reinforcement of the current
global warming trend. So, there is a strong interest in avoiding C losses from soils
and, if possible, to promote the C sequestration to mitigate the current greenhouse
gases (GHG) emissions.

In this chapter, we summarise the special features of mountain alpine soils that
contribute to explaining the organic C content and explore the challenges for soil C
conservation due to changes in land management and use.

9.2 Mountain Soils and Their C Stocks

Mountain soils are generally steep, shallow, with relatively high erosion rates and
influenced by harsh climatic conditions. Despite mountain ecosystems have much
in common with those in high latitude, mountain soils are markedly different. These
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differences originate from both climate and soil formation processes. High-altitude
mountain ranges generally receive much higher rainfall, both in quantity and
intensity (high torrentiality) than lowlands. Moreover, sunshine incidence in
mountain slopes is usually higher than in high latitudes and largely depends on the
aspect. In south-facing slopes solar radiation is high, even in winter time, thus
reducing the snow cover and the chance of frost layers. In mountain ranges of
temperate areas, even on north-facing slopes, winter temperatures are warmer than
in high latitude areas and because of the higher precipitation the snow cover is
thicker. Consequently, mountain soils are better insulated, with high solar radiation
and thus their frost layer is less thick and not permanent in most cases. The
reduction or lack of permafrost of the mountain soils contributes to their general
good drainage and thus wet soils (i.e. peatlands) in mountain landscapes are mainly
confined to bottom areas and depressions, and they are not widespread. Conversely,
in mountain slopes high rainfall and good drainage speeds up soil formation pro-
cesses. However, natural disturbances also linked to the slopes such as soil erosion,
rock fall, landslides, avalanches and snow ablation play an important role in
rejuvenating mountain soils. As a result of these complex interactions and because
of its diverse geomorphology mountain landscapes hold a large spatial variability
that is depicted in both soils and vegetation.

Soils of mountain areas tend to be young and highly influenced by their bedrock
and physiographic properties. The wide range of soil types occurring in mountain
regions is driven by microtopography, slope and aspect which, as stated above,
define the snowpack and melting patterns that influence soil temperature, nutrient
leaching and soil moisture (Stöhr 2007). Young mountain soils occur in
well-drained areas and are classified as Leptosols or Regosols. Leptosols are thin
soils, extremely gravelly and/or stony and with strong limitations to rooting.
Regosols are weakly developed mineral soils in unconsolidated materials that occur
in less stony areas and are typically highly erodible. On calcareous areas Rendzic or
Chromic Leptosols dominate. Rendzic leptosols have a surface layer with high
accumulation of organic matter and calcium carbonate. Chromic leptosols have a
red surface layer and low or no calcium carbonate content. On siliceous bedrock,
Regosols and the extremely thin Lithic leptosols are commonly found. But in stable
and well-drained surfaces soils are often more developed, being common Dystric
Cambisols and different types of Podzols. These latter two soil types show a thick
and well-developed acidic horizon, but Podzols contain a subsurface horizon with
illuvial amorphous organic matter and/or Al and Fe oxides. Finally, Histosols occur
in poorly drained areas. These last soils evolve from incompletely decomposed
plant remains and thus their features are quite independent of the bedrock type
(IUSS Working Group WRB 2015).

Mountain soils in temperate areas usually have a high organic matter content, as
shown in some regional soil C maps (Baritz et al. 2010; Doblas-Miranda et al.
2013). Although plant biomass in alpine grasslands is much lower than in forests,
their soil C stocks are also generally high (Table 9.1) and comparable to forested
areas (Berninger et al. 2015). The large amount of soil C in alpine environments is
related to the high residence time of organic matter in the soil compared to the
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Table 9.1 Some examples of soil organic C stocks in grasslands of the European mountains

Mountains C stocks
(Mg ha−1)

n Altitude
(m a.s.l.)

Annual mean air
temperature (°C)

Plant
formation

References

Iberian
Central
System

72–324 5 1653–2051 6.5–7.0 Mesic
grasslands

(1)

Pyrenees 45–365 16 1704–2092 3.2–6.1 Mesic
grasslands

(1)

Pyrenees 65–300 35 1845–2900 −0.7 to 5.0 Alpine and
subalpine
grasslands

(2)

Austrian
Alps

260 and
130

2 1700 and 1900 2.1a Alpine
grassland,
pine bushes
and shrubs

(3)

Swiss
Alps

53–116 8 810–2200 0.9–8.9 Grasslands (4)

Tatra
Mountains

20–250 25 1725–2368 −2.0 to 1.6 Alpine
meadows

(5)

Eastern
Swiss
Alps

100 6 2616–2674 −2.6 Alpine
tundra with
permafrost

(6)

Eastern
Swiss
Alps

150 6 2577–2695 −2.6 Alpine
tundra
without
permafrost

(6)

(1) Montané et al. (2007); (2) Garcia-Pausas et al. (2007); (3) Djukic et al. (2010); (4) Leifeld et al.
(2009); (5) Kopáček et al. (2006); (6) Zollinger et al. (2013)
aAnnual mean air temperature at 2277 m a.s.l.

living biomass (Körner 2003). This fact is caused by the harsh climatic conditions
of the alpine environments that slow down the degradation of organic matter. Also,
while forest soils receive large amounts of organic matter coming from above-
ground biomass, in grasslands the primary organic matter inputs to the soil mainly
come from root turnover and deposition. Consequently, the vertical distribution of
organic C along the soil profile is typically shallower in forest soils than in
grasslands (Jobbágy and Jackson 2000).

Mountain soils show a great variability in their characteristics. Thus, far from
being evenly distributed, soil organic C content in mountain areas is particularly
variable. Not only temperature reduces and precipitation increases with the eleva-
tion, but also the significant differences in solar radiation between north- and
south-facing slopes, create environments that can be highly variable over relatively
short distances. This feature, together with the high variability of soil depth and the
natural diversity of substrates in mountain areas, makes the alpine landscapes a
mosaic of different local conditions to the development of plant growth. This
variability results in a considerable heterogeneity in plant community composition
and structure, which in turn shape the distribution patterns of other organisms such
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as arthropods, fungi and soil bacterial communities. Different land management
practices (e.g. various grazing pressures in pasturelands, timber removal in sub-
alpine forests, etc.) is another source of variation that affects the C cycling and
storage. All these factors result in soils with a highly heterogeneous amount of
stored C, making difficult the prediction of current stocks and its response to the
expected climate and land-use changes.

9.3 Factors Controlling Soil Organic C Stocks
in Mountain Grasslands

The development of soil is a complex and continuous process, driven by parent
material, climate and soil biota. In the mountains, the topography also plays an
important role modifying the climate and creating different landforms for soil
development. All these factors determine the physical, chemical and biological
properties of soils and control their capacity to accumulate organic C.

9.3.1 Bedrock Type

Mountain areas are often geologically complex, as a result of past volcanism,
compression and tension faults, plate subduction and uplift. The parental material
from which a soil develops determines many hydrological, ecological and pedo-
genic processes, having implications for the capacity of soils to store C, the C
accumulation rates and its persistence in the soil. Differences in the lithology
determine the differences in the mineral composition of soils and influence their
texture, chemistry and weathering processes. Changes in plant composition and
structure are also frequently associated with changes in the bedrock type through its
effect on nutrient status and physical characteristics of the soil.

Soil texture is the most relevant characteristic that is determined by the bedrock
type. For instance, soils developed on sandstones or granites usually have coarser
textures than those developed on limestones or slates. Soil texture is particularly
relevant for organic matter accumulation in soils, as organic matter is stabilised in
soil through its interaction with the finest mineral particles. Indeed, organic matter
associated with the finest particles (i.e. fine silt and clay) is usually older
(Eusterhues et al. 2003) and has longer residence times (Balesdent 1996) than the
organic matter in the coarser fractions. In the Pyrenees, although C and N avail-
ability were more important explaining topsoil basal respiration, soils developed
on granites showed high rates of basal respiration (Garcia-Pausas et al. 2008),
suggesting that they may contain a higher proportion of non-stabilised organic
matter.
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9.3.2 Climate

Carbon stocks are the result of the net balance between C inputs through primary
production and C outputs through microbial mineralisation as well as leaching and
erosion (Fig. 9.1).

In alpine areas, both primary production and microbial mineralisation are con-
strained by low temperatures, particularly during wintertime. Given that soils in the
mountain areas have a relatively high amount of organic C, it can be suspected that
microbial mineralisation might be more strongly limited by climate than primary
production. However, there is some evidence that the maximum soil C stocks are
found in the subalpine belt and that from that point upwards the soil organic C
stocks tend to reduce with the elevation (Djukic et al. 2010), reaching close-to-zero
levels at unvegetated substrates of extreme altitudes (Körner 2003). This reduction
of C stocks is due to the reduced plant cover and productivity, reduced rooting
depth, and also because soils are generally younger at high altitudes (Fig. 9.2). This
general trend is expected to differ between the north- and south-facing slopes.
Indeed, in the Pyrenees Garcia-Pausas et al. (2007) observed that the reduction in C
stocks with altitude was sharper at the north-facing slopes, probably because at high
altitudes the environmental conditions on the south-facing slopes are more
favourable for plant growth (Fig. 9.3).

The microclimate environment also determines the characteristics of the soil
organic matter and thus its turnover. There is an indirect effect mediated by climate-
driven changes in the plant community composition and structure (see below), but
also a direct effect of climatic conditions on organicmatter quality. Soils developed on
high altitudes are usually rich in labile and particulate organic C (Leifeld et al. 2009;
Budge et al. 2011). As occurs with altitude, the severe conditions at the north-facing
soils also cause a higher accumulation of poorly degraded organic matter than at
south-facing slopes (Egli et al. 2015). These C pools appear to have long residence
times, as shown by radiocarbon dating (Leifeld et al. 2009; Budge et al. 2011), which

Fig. 9.1 Driving variables
and processes involved in soil
organic matter dynamics and
stocks
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Fig. 9.2 Altitude is the primary factor of climatic heterogeneity in mountain landscapes, with
high-altitude areas having generally low (−) temperatures and high (+) precipitation compared to
low-altitude areas. It causes short growing seasons, low plant productivity and low soil C
mineralisation rates (downwards arrows) in high-altitude sites compared to the bottom of the
valleys. Photo: J. Garcia-Pausas

Fig. 9.3 Predicted soil
organic C stocks (SOCS) as a
function of altitude and aspect
in the Pyrenean subalpine and
alpine grasslands. From
Garcia-Pausas et al. (2007)
with permission of Springer
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is attributed to the harsh conditions for residue decomposition, the low soil pH and
nutrient limitations. However, in areas where environmental conditions are unfa-
vourable for decomposition, the degree of physicochemical stabilisation of organic
matter, as measured by incubation under standard conditions, is lower (Garcia-Pausas
et al. 2008). This feature could make these C pools particularly vulnerable to future
climate and land-use changes.

The temperature variations in altitude and aspect, as well as the microtopography
and the predominant wind direction largely determine the distribution and duration
of the snowpack cover. The duration of the snowpack cover has important impli-
cations for the soil organic C dynamics, as it determines not only the temperature
and moisture of the underlying soil but also the length of the plant growing season,
the plant community composition, the microbial activity and nutrient dynamics.
Indeed, snow cover maintains soil temperature relatively high compared to the air
temperatures during winter, allowing the maintenance of unfrozen conditions
(Edwards et al. 2007). This isolation is because of the low thermal conductivity of
the snow, particularly when it is fresh and non-compacted (Körner 2003).
Consequently, topsoil temperature under the snow is usually stable around 0 °C,
even when air temperatures are far below zero. This allows the microbial processes
to continue in winter (Schmidt and Lipson 2004), causing an increase in the winter
CO2 efflux (Walker et al. 1999) and also a faster decomposition of the leaf litter
(Baptist et al. 2010; Saccone et al. 2013) under the snow than in non-covered soils.
However, when the snowpack melts in late winter and before the snowfall in late
autumn, soils are usually exposed to temperatures well below 0 °C, undergoing
frequent episodes of freezing and thawing.

Soil frost does not allow the belowground plant production, but an earlier peak
in fine root production during the subsequent growing season has been observed by
Tierney et al. (2001) after an experimental snow removal in forest ecosystems. They
also reported significant increases in fine root mortality, resulting in an increased
root turnover. In grasslands, Kreyling et al. (2008) indicated that recurrent freeze–
thaw events reduced root length during the subsequent growing season, but also
increased aboveground productivity.

Freeze–thaw events alter C and N dynamics, affecting root production and
turnover, soil microbial activity, soil C and N availability and its mineralisation. It
has been observed that repeated freeze–thaw cycles as well as prolonged frost
increase C and nutrient concentration in the soil solution, which can eventually be
lost by leaching (Fitzhugh et al. 2001; Freppaz et al. 2007; Wipf et al. 2015). Also,
a burst of CO2 and N2O emissions from thawing soils has often been observed
(Nielsen et al. 2001; Teepe et al. 2001; Matzner and Borken 2008), as well as
higher emissions during the subsequent growing season (Blankinship and Hart
2012). This response is partially explained by the decomposition of the microbial
necromass (Herrmann and Witter 2002), but a reduction of microbial biomass in
thawing episodes has not been detected in alpine soils (Lipson et al. 2002; Freppaz
et al. 2007). Another source of the CO2 flush when soil thaws is the death of fine
roots due to the soil frost. The decomposition of the fine root litter increases the
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CO2 efflux from these soils, but the release of soluble cell constituents from dead
fine roots is the main factor that contributes to the observed short-term CO2 and
N2O pulse after thawing (Matzner and Borken 2008), and the higher concentrations
of N and P in the soil solution (Fitzhugh et al. 2001; Freppaz et al. 2007; Wipf et al.
2015) after freeze–thaw events. The third source of the CO2 flushed upon a freeze–
thaw event is the change in the soil structure. Soil freezing causes a disruption of
soil aggregates because the ice crystals expand breaking the bonds between mineral
particles. This breakdown of the aggregates makes the organic matter protected
within the aggregates available for microorganisms. Macroaggregates are more
susceptible to these disruptive forces than microaggregates, and their vulnerability
is enhanced with increasing soil water content, while high clay, organic matter and
Fe-oxide concentrations reduce the disruptive effects of freezing (Six et al. 2004).

9.3.3 Plant Community Composition

The effect of abiotic environment on soil C content and its stability is in part
mediated by its effect on plant communities. It is well known that abiotic factors
determine the composition and characteristics of the plant community, which in
mountain ecosystems is also strongly related to topography (Sebastià 2004) and
bedrock type. The composition of plant communities determines some functional
characteristics that can be relevant for the organic matter production and allocation.
For instance, although most of the root characteristics are species-specific, Pohl
et al. (2011) showed that in alpine ecosystems graminoids usually have a large
proportion of fine roots compared to forbs or shrubs. This feature may enhance
topsoil aggregate stability under grasses (Pohl et al. 2009), which could be relevant
for stabilising C in soils. Other characteristics of the vegetation such as above- and
belowground productivity and allocation, rooting depth, horizontal root expansion
may influence the C inputs and its persistence in the soil.

Plant community composition is in turn related to the quality of soil organic
matter and, consequently to its decomposition rates. The low quality for decom-
position of the organic matter produced by woody shrubs, with high lignin and
polyphenol content, greatly differs from that produced by herbaceous plants, which
is much more readily decomposable. But also among herbaceous plants, there can
be significant differences, as occurs with the N-enriched organic matter produced by
legumes. Thus plant communities differing in the biochemical characteristics of the
biomass can lead to differences in the biochemical quality of soil organic matter.
Indeed, Eskelinen et al. (2009) indicated that high proportion of forbs in an alpine
tundra of northern Europe were related to low soil C/N ratios and high soluble
N/phenolics ratios, causing in turn differences in the associated microbial
communities.
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9.4 Effects of Land-Use and Management Changes on Soil
C Dynamics and Stocks

Although at the global scale remote areas still exist in mountain regions, in tem-
perate European mountains the diversity of habitats resulting from the complex
topography and multiple microclimates has been shaped, similarly to the lowland,
by the human activities for centuries (Montserrat and Fillat 1994; Gassiot Ballbè
et al. 2017 in the present book). Over the past centuries, low-intensity agriculture,
farming and forestry have created and structured semi-natural habitats that consti-
tute the contemporary landscapes in temperate mountains (Fig. 9.4). For some of
these habitats, the sustainability of ecosystem services, at least at short- and
mid-term, is linked to the continuity of human involvement and may be threatened
by changes in the historical use of the mountain ecosystems (MacDonald et al.
2000; Regato and Salman 2008).

Due to the inherent physical constraints of the vast majority of mountain valleys
that prevented the modernization of agriculture, traditional and sustainable
low-input farming systems had mainly remained invariable until the last decades
(Plieninger et al. 2006). In recent times, however, the long agropastoral tradition
was altered by the integration of local economies into the global market and the

Fig. 9.4 Low-intensity agriculture and farming for centuries have shaped subalpine landscapes.
Alinyà mountain, eastern Pre-pyrenees. Photo: Pere Casals
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emergence of new values and interests. As a consequence, traditional and sus-
tainable multifunctional activities were abandoned and replaced by more purely
production-oriented ones. Pastures located on steep slopes and at higher altitudes,
requiring intensive labour, were abandoned while, at the same time, agriculture and
livestock raising in accessible fertile lowland fields and productive mountain
grasslands has intensified (Tasser and Tappeiner 2002; Bartolomé et al. 2005;
Hopkins and Holz 2006). Changes in traditional farming practices have been
observed across the European mountains (MacDonald et al. 2000). In the Pyrenees,
traditional pastoral systems were characterised by an extensive management of the
herd and the local transhumance to the communal alpine pastures in summer. Also,
herds of sheep moved each year from the Ebro basin to summer mountain grass-
lands (Montserrat and Fillat 1994). In the last decades, in the Pyrenees, but also in
most of the temperate European mountains, the redirection of the labour force to
other employments, mainly related to the tertiary sector, caused changes in the
farming management practices. As a consequence, some farms were abandoned
while other intensified the management to accommodate socio-economic changes
and labour resources. Together with a decrease in the number of farms, an increase
of stocking number per farm and a shift of the stockbreeding to forms with low
labour requirements (i.e. ovine to bovine) are common trends that allowed
becoming more cost-efficient (Table 9.2).

9.4.1 Grazing Intensification

The adjustment of traditional farm households to a more intensive production and
pluriactivity had entailed spatial changes in the grazing practices and land man-
agement. In the Pyrenees and Alps, the decline in shepherding has led to localised
concentrations of stock around more easy-to-reach alpine grasslands, frequently
resulting in overgrazing of high-quality pastures, while grazing intensity on steep
slopes will likely decline (MacDonald et al. 2000).

Table 9.2 Change (%) in the number of farms and livestock heads during 1989–2009 in five
counties of the Catalan Pyrenees

Val d’Aran Alta Ribagorça Pallars Sobirà Cerdanya Ripollès

Farms

Bovine −77 −56 −33 −22 −30

Ovine −39 −44 −58 −29 −35

Livestock heads

Bovine −9 6 135 81 32

Ovine 21 −35 −8 −10 −43

Elaborated using data from the Ministry of Agriculture, Livestock, Fisheries and Food
(Government of Catalonia)
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SOC is a function of the balance between inputs from primary production and
outputs through decomposition (Fig. 9.1). As a result of overgrazing, the quantity
of the inputs to the soil may be reduced due to the aboveground biomass removal
by animals. Also, the reduced plant biomass (i.e. less photosynthetic tissue) in
heavily grazed grasslands causes a reduction of the aboveground productivity in
comparison to the non-grazed grasslands (Ferraro and Oesterheld 2002). Although
grazing can stimulate aboveground plant productivity under light or moderate
grazing intensities through the so-called compensatory growth, it has been shown
that heavy defoliation may lead to substantial reduction of the aboveground pro-
duction (Chen et al. 2006; Zhao et al. 2008). In this case, plants respond to defo-
liation by allocating more C aboveground and thus reducing root biomass and
productivity. The magnitude of this effect increases with the intensity of defoliation,
the nutrient availability and water availability (Zhao et al. 2008; Klumpp et al.
2009). So there are site-specific sustainable grazing regimes that allow the con-
servation of C stocks, but when that grazing pressures are exceeded, inputs into the
soil may be reduced (Georgaidis et al. 1989; Ferraro and Oesterheld 2002; Gao
et al. 2008).

Overgrazing causes an alteration in soil physical, chemical and biological
properties, resulting in changes in vegetation cover, a degradation of soil and a loss
of soil C stocks. A typical feature of grazing activity is spatial heterogeneity.
Animals tend to graze on areas with the most nutritious plants whereas select
particular landscapes features for resting and ruminating. As a consequence, dif-
ferent types of vegetation develop which, in turn, influences the subsequent
behaviour of the animals. Plant nutrient contents and soil nutrient availability
increase from grazed to resting areas (Badia et al. 2008). In highly grazed areas, in
comparison with only lightly grazed ones, the availability of P increases as a
consequence of cattle grazing and defecation, which may accelerate the P cycling
(Güsewell et al. 2005). An increase in fresh organic C (i.e. faeces) and nutrient
availabilities as a consequence of animal frequentation may increase the microbial
decomposition of native soil organic C. In addition, an excess of trampling and
continuous overgrazing increases the area of bare soil and the risk of soil erosion. In
the Tibetan plateau, the degradation of grasslands due to land-use change and
overgrazing caused relevant losses of soil organic C in the last 30 years (Xie et al.
2007). In the Alps, erosion rates can be considerably higher (4.4–20 Mg ha−1

year−1) on grasslands with clear signs of degradation of the vegetation cover
(Meusburger and Alewell 2014).

9.4.2 Grazing Abandonment

Abandonment of pasturelands and traditional farming practices is a widespread
phenomenon in the mountain areas of Europe (MacDonald et al. 2000). While the
impacts on several environmental and landscape values are evident (Tasser et al.
2007), the effects on C dynamics and soil C stocks are less apparent. The net effects
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of land-use changes on C stocks are the result of the changes in the inputs and
output drivers in the short- and long term after abandonment. Land-use changes
may also affect the biochemical quality of litter inputs, which is a major factor
influencing the organic C accumulation in soils (Liao and Boutton 2008). In
ecosystems with high belowground allocation, such as grasslands, root dynamics
represent the primary source for building up soil organic matter (Rasse et al. 2005;
Piñeiro et al. 2006). This situation mostly applies to grazed grasslands, where a
substantial amount of aboveground production is removed by grazing animals.
When grass species are not palatable, both above- and belowground productions
may be of the same order of magnitude. For example, in subalpine Festuca eskia
grasslands in the Pyrenees, Montané et al. (2010) estimated an aboveground pro-
duction of about 200 g m−2 year−1 while the root production estimated by
15 cm-depth ingrowth cores was about 150 g m−2 year−1.

Belowground biomass production and turnover have been related to microcli-
mate as well as to land-use management (Guo et al. 2007; Leifeld et al. 2015). In
the short term, grazing abandonment of subalpine grasslands allows higher
aboveground biomass and accumulation of substantial amounts of necromass, but
the effects on belowground biomass remain controversial. In general, belowground
productivity increases in response to grazing removal (Ruess et al. 1998; Johnson
and Matchett 2001; Smit and Kooijman 2001) but some studies did not find sig-
nificant effects (McNaughton et al. 1998; Bazot et al. 2005) or even negative effects
(Frank et al. 2002; Pucheta et al. 2004). Controversial findings may be partly
explained by the physiological responses of plants to defoliation, but also by
changes in plant species composition that may translate to differences in produc-
tivity, C allocation patterns and rooting depths at the ecosystem level. Indeed, Lanta
et al. (2009) reported changes in plant species composition and richness in a 3-year
field experiment with grazing and abandonment, and also showed a reduction of
belowground biomass in non-grazed grasslands of the White Carpathians in the
Czech Republic. In a 2-year grazing exclusion experiment in the Pyrenees, root
production decreased in grazed grasslands in comparison with non-grazed ones.
This response occurred right after the grazing event, and no apparent effects on
yearly belowground C input were found (Garcia-Pausas et al. 2011).

9.4.3 Soil C Stocks in Grazed and Ungrazed Mountain
Grasslands

The effect of grazing abandonment on soil C stocks has mostly been studied through
the comparison of grazed and ungrazed areas, but the short-term effects of grazing on
SOC is inconsistent to date, with both increases and decreases reported in response
to increased grazing pressure. Although the effect of herbivory on plant productivity
and C allocation is still under debate, abandonment of light, extensive grazing
management might reduce soil stocks (Schuman et al. 1999; Pucheta et al. 2004).
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Thus in a survey of grasslands in the Pyrenees, we found that abandoned grasslands
had lower SOC stocks in the uppermost 20 cm of soil than grazed ones (Casals et al.
2004). However, this result may just reflect that the less productive grasslands were
abandoned. In summary, changes in soil C stocks of mountain grasslands as a
consequence of grazing abandonment are, at least in the short term, small and no
clear trends may be stated.

9.4.4 Effects of Shrub Encroachment on Soil C Dynamics
and Stocks

In the long term, grazing abandonment may involve a change in the dominant
functional groups and often leads to shrub encroachment (Fig. 9.5). This shift is
often observed in many mountain areas (MacDonald et al. 2000) and can lead to
long-term expansion of forests (Gehrig-Fasel et al. 2007; Améztegui et al. 2010).
Shrub encroachment into grasslands has been documented in the Pyrenees
(Molinillo et al. 1997; Roura-Pascual et al. 2005) and the Central System ranges of
the Iberian Peninsula (Sanz-Elorza et al. 2003). However, depending on the site
characteristics, this can be a slow process. Indeed, Pardo et al. (2015) did not

Fig. 9.5 Shrub encroachment (Cytisus balansae ssp. europaeus) into mountain grasslands. Durro
mountains (Alta Ribagorça, Central Pyrenees). Photo: Pere Casals
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observe great changes in vegetation richness and composition after two decades of
grazing exclusion in subalpine grasslands in the central Pyrenees. In Collada de
Montalto (Central Pyrenees), shrub encroachment occurred mostly in grass patches
inside the shrublands while woody proliferation into open grassland was less evi-
dent. Comparing the border between grassland and shrubland, we estimated a mean
shrub expansion of the border into the mesic grassland of 2.0 ± 1.4 m (n = 263) in
the period between 1997 and 2014 (unpublished data).

When woody plant invasion occurs, the shift from grass- to a shrub-dominated
ecosystem entails significant changes in the production and placement of the inputs
of litter (i.e. aboveground or belowground) and on factors that regulate soil organic
matter mineralisation such as microclimate, biochemical quality of organic matter
and the structure of the microbial community.

9.4.4.1 Litter Inputs

After shrub encroachment, the pattern of litter inputs changes from a belowground
predominance in grasslands to an increase of aboveground deposition in shrub-
lands. This shift is due to the differential allocation patterns between grasses and
shrubs (Lett et al. 2004). For instance, in Cytisus balansae shrublands that had
invaded subalpine grasslands of the Pyrenees, aboveground litter input was esti-
mated as high as fourfold the root litter inputs in the top 15 cm of soil (Montané
et al. 2010).

Surface litter is partially decomposed to CO2, but a fraction is incorporated into
the mineral horizons as a dissolved or particulate organic matter where it is min-
eralised or stabilised. Indeed, litter layers under shrubs may be an important source
of dissolved organic C into the mineral soil, with a flux that may represent up to
35% of the annual litterfall C (Kalbitz and Kaiser 2008). Also, free particulate
organic matter plays a significant role in the increase of soil organic C in the
uppermost layers after woody plant encroachment in grasslands (Liao et al. 2006).
Consequently, shrub encroachment into grasslands modifies the amount and
placement of organic matter into the soil, but the effect on C sequestration also
depends on the C loss from decomposing litter and soil organic matter.

9.4.4.2 Microclimate

Changes in the plant cover after pasture abandonment and shrub encroachment
modify incoming solar radiation and precipitation to the soil. After grazing removal,
the accumulation of standing necromass and litter reduces soil temperature and may
increase soil water content (Rosset et al. 2001). In the Pyrenees, cumulative
degree-days above 0 °C from May to November at 5 cm-depth soil were about 20%
lower beneath woody canopies than under grasses (Montané et al. 2010). Lower
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temperatures under shrub canopies likely reduces above- and/or belowground litter
decomposition which may be the predominant mechanism behind higher SOC after
shrub encroachment (Smith and Johnson 2004). For instance, a reduction of soil
CO2 efflux after grazing exclusion in the Tibetan Plateau has been attributed in part
to its lower soil temperature (Chen et al. 2016). In the Pyrenees, Festuca eskia roots
incubated for 1 year in buried litterbags in a subalpine soil decomposed slightly
slower under shrubs than in paired grasslands (20.1 ± 0.42% and 22.4 ± 1.44%
mass loss, respectively) (Casals et al. 2010). In addition, using buried labelled
wheat roots mixed with soil, Casals et al. (2010) showed that 13C loss was about
four percent units lower in root bags incubated for 1 year in non-grazed grassland
plots and seven percent units lower under shrubs than in paired grazed grasslands.
As these results derived from the incubation of standard labelled material, they
mainly reflect a change to a less favourable soil environment for root decomposition
due to either grazing exclusion or shrub encroachment. Therefore, a decrease in soil
temperature may contribute to explain lower root decomposition rates after grass-
land abandonment and shrub encroachment.

9.4.4.3 Biochemical Quality and Microbial Activity

It is widely known that litter nutrient concentration and organic matter quality (e.g.
lignin content) are the main factors determining litter decomposition rates
(Cornwell et al. 2008). Grasslands typically have a high density of fine roots that are
poorly lignified and with high turnover rates, thus providing a relatively labile C
substrate for microbial activity. In contrast, the proliferation of shrubs may increase
the presence of lignified roots with lower turnover rates. After shrub encroachment,
low quality of litter inputs, with large amounts of secondary compounds such as
lignin or polyphenolic substances, may hinder decomposition and promote C
accumulation (Pérez-Harguindeguy et al. 2000; Shaw and Harte 2001; McCulley
et al. 2004; Liao and Boutton 2008).

The biochemical quality of litter may differ between species. In the Pyrenees, an
aboveground litter of grasses showed marked differences in the chemical compo-
sition from that of the two main invading shrubs of that area (Cytisus balansae and
Juniperus communis). The litter of both shrubs had higher concentrations of
recalcitrant compounds (e.g. lignin, lipids, suberin) and a low concentration of
either N (conifer) or P (legume) relative to grass litter (Montané et al. 2010).
Consequently, the higher organic C found in the upper mineral soil layer under
shrubs compared to the grassland was mainly attributed to the slower decomposi-
tion of shrub litter and the transfer of litter-derived C into the soil. However, the
presence of grass litter, with high N and P concentrations, may enhance microbial
activity and prime the decomposition of recalcitrant shrub litter. As a result, at least
in the short term after shrub proliferation when both shrub and grass litters coexist,
the shrub litter accumulation pattern is altered (Montané et al. 2013).

222 J. Garcia-Pausas et al.



Defoliation induces an increase of root exudation (Paterson et al. 2005).
Therefore when grassland is abandoned a reduction of labile C inputs into the soil
can be expected. Also, when shrubs proliferate, their lower fine root density may
cause further reduction of C inputs by exudation. This decrease of labile C release
from roots may cause a significant reduction of microbial activity (Hamilton and
Frank 2001) and also a lower stimulation of soil organic matter mineralisation (i.e.
priming) that usually occurs in the presence of labile C (Kuzyakov et al. 2000).
Priming effect on soil organic matter mineralisation is particularly relevant in the
rhizosphere and, although its magnitude is variable, it increases with the rate of
rhizospheric C inputs (Paterson and Sim 2013) and may account for a substantial
fraction of the SOM-derived CO2 efflux (Cheng and Kuzyakov 2005). In addition,
this reduction of priming effect may cause in turn a reduction of the nutrient
availability for plants (Hamilton and Frank 2001).

The change of root exudates, as well as the fate of particulate organic matter also
promotes a change in the microbial community composition (Grayston et al. 2004).
Indeed, fungal growth and activity seems to be generally favoured in surface
horizons after grazing or agricultural abandonment (Zornoza et al. 2009;
Lopez-Sangil et al. 2011) and a higher fungal-to-bacterial activity ratio seems to
promote a conservative cycling of nutrients in soil and C accumulation (Wardle
et al. 2004; Gordon et al. 2008). Therefore a reduction in soil organic C decom-
position in abandoned sites is expected.

9.4.4.4 Soil C Stocks in Shrub-Encroached Grasslands

In summary, shrub encroachment into mountain grasslands increases soil organic
carbon in the upper soil mineral profile compared to the grassland soil (Montané
et al. 2007). This net C increase may be explained by lower aboveground and
belowground litter decomposition after shrub proliferation due to lower soil tem-
peratures and lower biochemical quality of shrub organic matter. Lower litter
quality may promote a shift in the composition of the microbial community to a
slow-growth strategy, typical of a fungal-dominated microbial community
(Bardgett et al. 2005), which may contribute to explain lower decomposition. The
reduction of fine root density with the proliferation of shrubs may also reduce the
rates of root exudation, which may decrease the priming effect on soil organic
matter mineralisation thus contributing to the conservation of soil C stocks.

9.4.4.5 Shrubland Management and Soil C Stocks

Shrub encroachment into grasslands involves the replacement of one dominant
growth form by another one, and it is likely to impact on ecosystem structure and
functions (Lett and Knapp 2005). In the Pyrenees, a decrease in diversity
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(Anthelme et al. 2007) and increases in soil C storage (Montané et al. 2007) have
been reported after shrub proliferation into grasslands. Woody encroachment
increases the risk of fire propagation by incrementing both fuel load and fuel
continuity. In these encroachment-prone communities, managers may have to
decide between reducing shrub proliferation to maintain biodiversity and grazing
potential or allowing the shrub proliferation to increase C sequestration.

In the Pyrenees, shepherds have traditionally used fire as a management tool to
improve grass productivity and transform encroached land into grassland. Today
prescribed burning is usually carried out by fire brigades or foresters in winter when
snowy or wet conditions limit the impact of the fire on soils and herbaceous plants
(Rigolot et al. 2002). Mechanical thinning is also applied to revert encroached
grasslands. How these management options affect organic matter dynamics and soil
C stocks remains an issue.

9.5 Conclusions and Further Research Needs

Agricultural land-use changes in the European mountains show antagonist trends,
intensification at the bottom of valleys and other productive grasslands, whereas the
less productive grasslands located on steep slopes and at higher altitudes are being
increasingly abandoned. A mechanistic understanding of how these changes affect
relevant ecological processes, such as biodiversity or C stocks, is necessary to
predict the effects of global change on ecosystem function and deliver appropriate
management recommendations.

The decline of agropastoral activities is especially pervasive in high mountain
grasslands. As a consequence, pasture abandonment, especially of marginal and less
productive lands, and shrub encroachment into grasslands have become the most
significant trends in land use, which may be observed all around European
mountains, to a greater or lesser extent. Short-term changes in soil C stocks as a
consequence of grazing abandonment are difficult to detect due to the large size of
the organic matter pool as compared to the small changes in the C inputs, and also
to the high spatial variability of soil C stocks (Conant and Paustian 2002; Smith
2004). Smith (2004), using a modelling approach, demonstrated that a change in
SOC may not be detectable until about 7–10 year after the experiment, assuming an
increase in soil C input of 20–25% (Smith 2004). Therefore, well monitored
long-term exclusion experiments would be very useful to measure changes in the C
stocks caused by management changes.

Higher soil organic matter after shrub encroachment into grasslands may be
explained by the high content of recalcitrant compounds such as lignin and
polyphenols in the plant-derived organic matter inputs, which slows the decom-
position of soil organic matter and delays its incorporation into the protected pools
in the mineral soil.

Due to high fine root density and rhizosphere exudation rates, grassland soils
show higher priming effect on C mineralisation than in woodland soils (Waldrop
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and Firestone 2004). The effect of woody plant invasion on rhizosphere priming is
still unknown and could have a significant impact on C balance.
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