Chapter 11
Life-History Responses to the Altitudinal
Gradient

Paola Laiolo and José Ramon Obeso

Abstract We review life-history variation along elevation in animals and plants
and illustrate its drivers, mechanisms and constraints. Elevation shapes life histories
into suites of correlated traits that are often remarkably convergent among organ-
isms facing the same environmental challenges. Much of the variation observed
along elevation is the result of direct physiological sensitivity to temperature and
nutrient supply. As a general rule, alpine populations adopt ‘slow’ life cycles,
involving long lifespan, delayed maturity, slow reproductive rates and strong
inversions in parental care to enhance the chance of recruitment. Exceptions in both
animals and plants are often rooted in evolutionary legacies (e.g. constraints to
prolonging cycles in obligatory univoltine taxa) or biogeographic history (e.g.
location near trailing or leading edges). Predicting evolutionary trajectories into the
future must take into account genetic variability, gene flow and selection strength,
which define the potential for local adaptation, as well as the rate of anthropogenic
environmental change and species’ idiosyncratic reaction norms. Shifts up and
down elevation in the past helped maintain genetic differentiation in alpine popu-
lations, with slow life cycles contributing to the accumulation of genetic diversity
during upward migrations. Gene flow is facilitated by the proximity of neigh-
bouring populations, and global warming is likely to move fast genotypes upwards
and reduce some of those constraints dominating alpine life. Demographic buffering
or compensation may protect local alpine populations against trends in environ-
mental conditions, but such mechanisms may not last indefinitely if evolutionary
trajectories cannot keep pace with rapid changes.
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11.1 Introduction

Mountain environments present a challenge to any living organism, and elevation
gradients, with their sharp physical and ecological transitions, have been a favourite
scenario for approaching general questions about adaptive change in life histories.
Growth, development, maturation, reproduction and survival patterns of organisms
are remarkably diversified along elevation, but also tend to converge in similar
environmental conditions. Literature on the subject is abundant, but also widely
dispersed and poorly integrated with respect to the plant and animal realms, and
also between endotherms (animals that primarily produce their own heat) and
ectotherms (in which body temperature tends to match environmental temperature,
or requires behavioural thermoregulation). Undeniably, focal organisms differ in
substantial ways, but the similarities in scope, objective, and often in findings
among studies along elevation gradients provide an opportunity for a synergic
appraisal with insights from both vascular plants and animals. Here, we first
highlight those abiotic and biotic factors that are major determinants of life-history
variation in elevation. We then illustrate the primary mechanisms of evolutionary
adaptation to such variation, involving environmental and genotypic variation, their
interaction and covariation. We discuss the limitations to environmental fit within
and among species, like those imposed by intrinsic or evolutionary constraints. We
review published literature on elevation patterns in growth, reproduction and sur-
vival in populations and species of plants and animals, and discuss the elevation
life-history continuum in these taxonomic contexts. Our intention is neither to
provide an extensive survey of literature on specific taxonomic groups, which in
some cases are adequately covered (e.g. insects and birds: Hodkinson 2005; Hille
and Cooper 2015; Boyle et al. 2015), nor to perform a meta-analysis given the
literature bias towards specific taxa. Rather, we aim to provide a broad and syn-
thetic appraisal of life-history variation along elevation. We discuss whether the
climatic and ecological shifts occurring along elevation select some strategy within
the life-history continuum and whether responses are, to a certain degree, compa-
rable within and between unitary animals and modular plants. In spite of obvious
connections with life histories, we intentionally omit to canter on seasonality of
plant and animal life-cycle events, i.e. phenology per se, as this would require
different spatial and temporal perspectives from those adopted here.

11.2 Environmental Variation in Elevation

11.2.1 Temperature

Among the abiotic factors that vary among mountainsides, temperature is the most
critical for both plants and animals given the magnitude of variation it displays, and its
profound effect on biochemical or physiological processes (Sibly and Calow 1986).
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It decreases at a rate of 0.54—0.65 °C per 100 m of ascent, but significant variation is
introduced by meteorology, local topography and height above the ground (Barry and
Chorley 1987; Koérner 2003; Rolland 2003). At cold temperatures, physical and
chemical reactions slow down, as do the assimilation of energy and metabolic activity
(Schmidt-Nielsen 1997). This process has the most remarkable consequences for
plants and ectotherms, and either leads to reduced activity or triggers costly homeo-
static responses to offset the passive reaction to reduced temperature and freezing
(Sakai and Larker 1987; Gillooly et al. 2001). Endotherms may be affected in a similar
way when they are outside their thermoneutral zone (Angilletta et al. 2010), and lower
critical temperatures are reached more frequently at high elevations. Dormancy (in-
cluding diapause and hibernation) is a mechanism to escape cold weather or resource
shortage over the winter and corresponds to a period when growth, development and
physical activity are temporarily arrested. Through its effect on metabolism, tem-
perature limits the rates of production throughout ontogeny and reproduction, thus
directly influencing phenology, growth and reproductive patterns, and life-history
correlates such as body size (Atkinson 1996; Atkinson and Sibly 1996; Angilletta
et al. 2004). Temperature is also tightly associated with seasonality, and in turn, with
productivity, and thus also controls the above processes indirectly via these variables.

11.2.2 Atmospheric Pressure

Atmospheric pressure, the moisture content of air and the partial pressures of
biologically relevant gases, such as oxygen and carbon dioxide, decrease relatively
uniformly with increasing elevation, and impact gas exchanges in plants and res-
piration in animals. Pressure effects on photosynthesis are, however, smaller than
predicted from the decline in the ambient pCO, alone because the increased rate of
molecular diffusivity, induced by thinner air, is counteracted by the descent of
atmospheric temperature, decelerating diffusion. Moreover, up to 80% of the total
CO, transfer resistance between air and the chloroplasts is in the liquid phase,
which is not influenced by pressure (Korner 2007). An improvement in the rate of
oxygen intake with elevation has been observed in animals through ventilation or
changes in blood composition (Rourke 2000), as well as increased porosity of bird
eggshells to facilitate O, diffusion to the embryo (Kérner 2007).

11.2.3 Precipitation

Unlike temperature and atmospheric pressure, precipitation exhibits non-linear
relationships with elevation, and regional, rather than global, patterns. Precipitation
tends to increase with altitude at low elevations, but exhibits no pattern at very high
elevations, or declines above the cloud zone in tropical areas (Nagy and Grabherr
2009). Orographic precipitation in the form of snow typically characterises high
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elevations and dictates, together with seasonal changes in temperature and pho-
toperiod, the duration of the growing and/or breeding seasons of alpine organisms,
apart from providing thermally protective snow blankets (Hodkinson 2005). Since
evapotranspiration declines with elevation, the balance for plant water supplies is
rarely critical. However, in periods of high evaporative demand or prolonged soil
moisture depletion, the need to reduce transpiration may affect the rates of CO,
photosynthetic uptake and nutrient assimilation (Schulze and Chapin 1987). This
trade-off has direct consequences for alpine plant recruitment, survival and growth
patterns, and ultimately shapes their phenology and morphology (Koérner 2003), as
well those of the fauna they host (Hodkinson 2005).

11.2.4 Primary Productivity

Mountain environments display sharp gradients in soil fertility, largely dependent
on climate, bedrock, soil structure and age, micro-topography and soil fertilisation
by primary consumers. At high elevations, low temperatures (or a short duration of
mild temperatures) negatively affect soil enzymatic activities, the rate of nutrient
mineralisation and turnover, thus reducing nutrient availability for primary pro-
ducers with consequences for upper trophic levels (Laiolo et al. 2015a). In some
mountain areas, shorter grazing seasons and reduced nutrient inputs from herbi-
vores also contribute to lower productivity, and the permanence of nutrients
shortens in steep and shallow soils (Mariotti et al. 1980; Huber et al. 2007). Alpine
plants may respond by reducing their size and enhancing mineral nutrient con-
centration (Korner 2003), although there are exceptions (Laiolo et al. 2015a). It is
also worth mentioning that soil nutrient concentration does not always reflect
availability for organisms, as nutrients may be in a form that cannot be absorbed.
Nutrient availability unquestionably affects the overall performance of plants up to
higher trophic levels and plays a key role in life-history evolution (Stearns 1992).

11.2.5 Biotic Interactions

The above factors, together with land area and history, are evoked as the primary
drivers of the decline in species richness observed in many taxa on mountains, as
well as of the decrease of biotic interactions (McCain and Grytnes 2010). Under the
Stress Gradient Hypothesis, negative interactions should decline with environ-
mental harshness while positive ones should increase (Brooker 2006). Negative
trends of competition, predation and parasitism with elevation have indeed been
documented in a large number of studies (Hodkinson 2005; Boyle 2008; Meléndez et al.
2014), but some positive relationships have as well (e.g. Abbate and Antonovics 2014).
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Greater agreement exists on the enhancement of plant facilitation with elevation,
documented in floral communities across the globe (Callaway et al. 2002). Together
with productivity, variation in extrinsic mortality related to interactions is a major
driver of organisms’ life strategies, influencing patterns of growth, development,
age and size at maturity, allocation in self-maintenance and parental care, as
detailed further in the text.

11.3 The Process of Life-History Evolution

11.3.1 Mechanisms

Life-history variation among mountain populations can be explained by both
phenotypic plasticity and local adaptation. The former, by means of which
organisms with the same genetic constitution adjust their development to the cur-
rent conditions, is generally considered poorly efficient for coping with extreme
environments (Grime 1974; DeWitt et al. 1998). Some studies have shown that
plastic genotypes bear a cost of low performance in unfavourable alpine habitats
when compared to locally adapted genotypes (Emery et al. 1994; Stocklin et al.
2009; Fischer and Karl 2010). However, purely plastic life-history responses to
changes in resource availability among elevations have been described (Dobson and
Murie 1987; Blanckenhorn 1997; Sears and Angilletta 2003; Yeh and Price 2004).

More frequently, selection for stress tolerance induces ecotypic differentiation in
the form of local adaptations, exemplified by significant non-additive gene—envi-
ronment interactions and populations that show genetic differences, and perfor-
mances, corresponding to the conditions met along the gradient (T6rang et al. 2015;
Muir et al. 2014). Since environmental variation occurs at small spatial scales
across elevations, strong local selection and limited gene flow are required to
promote local adaptation sensu strictu (i.e. demonstrated by comparing perfor-
mances after reciprocal transplants; Kawecki and Ebert 2004), and population size
may also matter (Leimu and Fischer 2008). Local adaptation also results in gene—
environment covariation and non-random distributions of genotypes along the
gradient, an evolutionary pathway fairly well documented in mountain species. If,
for instance, slow-growing genotypes are favoured at high elevations, where low
temperatures also act to slow organisms’ growth rates, then genetic and environ-
mental influences on phenotypic expression covary positively. This process of
co-gradient selection explains size reduction in alpine plants, with genotypes for
small size found primarily on uplands where the environment also hampers somatic
growth (Aarssen and Clauss 1992; Byars et al. 2007). The same environmental
context may however select for genetically rapid growth and development to
compensate for environmental conditions that slow down these processes (Conover
and Schultz 1995), a countergradient pattern often adopted by ectotherms in cool
environments.



258 P. Laiolo and J.R. Obeso

Across populations or species, life histories can be interpreted as the result of the
optimisation of individual phenotypes, or the development of evolutionarily stable
strategies, with respect to the environment (Stearns 1992). This process should lead
to similar elevation trends within and among species. The greatest variability
among species in organismal design, evolutionary history and ecological niche
enhances the opportunity for differentiation as compared to variation within species,
but these factors also constrain environmental fit proportionally more among spe-
cies, as detailed below.

11.3.2 Constraints

Body size is one of the most crucial intrinsic constraints to differentiation in life
histories and should always be accounted for when analysing the fit of life histories
to the environment. It engenders a continuum with, at one extreme, large species that
grow slowly, mature late, and live long, and at the other extreme, small species
adopting the opposite strategy (Sibly and Brown 2007). Biological rates, such as
growth rates or reproductive biomass production, tend to obey simple allometric
scaling laws regardless of the living conditions or taxonomic group (Enquist et al.
1999; Laiolo et al. 2015b). Trade-offs in resource allocation among competing
functions foster a second dimension of correlated traits, also known as the ‘slow-fast
life-history continuum’, rooted in the concept of r/K-selection. The cost of repro-
duction, i.e. the reduction in future reproduction resulting from current investments
in reproduction, is the most prominent trade-off, describing the constraining rela-
tionships between growth, survival and reproduction (Reznick 1985; Obeso 2002).
Great allocation in reproduction is associated with fast and short lives even when the
effect of body mass or environment is controlled for, a correlation also defined as the
‘pace-of-life’ syndrome in comparative animal studies (Ricklefs and Wikelski
2002). In plants, vegetative growth is strongly hampered by investment in sexual
reproduction, and is a crucial component of this continuum. Within species, this
trade-off lies beneath the population process of ‘demographic compensation’, or
negative correlations of fithess components across environmental gradients and
towards species’ range margins (Villellas et al. 2015). At margins, vital rates tend to
decline because of poorer conditions of the environment (‘centre-periphery’
hypothesis: Lawton 1993; Vucetich and Waite 2003; Angert and Schemske 2005).

Evolutionary history, relatively unimportant at the intraspecific level, dictates the
options available to selection, with traits of more closely related species responding
more similarly to environmental factors (Harvey and Clutton-Brock 1985).
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11.3.3 Drivers

Beyond these constraints, natural selection shapes life histories into suites of cor-
related traits, often remarkably convergent among alpine organisms facing the same
environmental challenges. Life-history theory predicts that components of the
environment, such as resources, predation, herbivory, competition, disease or
physical stresses, favour different combinations of life histories and yield general
patterns in their variation. Altogether, these factors can be grouped in two major
extrinsic drivers of variation, associated broadly with resource availability and
disturbance, respectively. Abundant resources, such as food and light, and com-
petitive environments foster fast growth, short life cycles and high levels of
reproduction, thus a ‘fast’ strategy (Clark and Clark 1992; Ghalambor and Martin
2001). This ‘fast’ strategy is also favoured when a disturbance, for instance, disease
and predation, increases juvenile extrinsic mortality (Franco and Silvertown 1996).
The investment in parental care reflects responses to perceived risks and environ-
mental stresses. High juvenile (extrinsic) mortality or reduced recruitment may
yield greater allocation in offspring quality instead of quantity to enhance (intrinsic)
juvenile survival and recruitment (Clutton-Brock 1991; Armstrong and Westoby
1993). Life-history theory also predicts that where environmental conditions are not
constant across years, individuals should favour a bet-hedging strategy. This
strategy involves a reduction in annual breeding performance to reduce the prob-
ability of investing too much in reproduction during poor years, and an increase in
self-maintenance so that reproduction can be attempted over multiple years (Stearns
1976).

As we detailed above, mortality risk (especially for juveniles) associated with
disease, competition and predation tends to decline, while those associated with
abiotic stress or a paucity of resources increases in alpine environments. These
factors are expected to tilt the life-history continuum towards slower life cycles and
enhanced offspring quality vs. quantity, thus a ‘slow’ strategy. Moreover, the
environmental variability of alpine regions, consisting both of predictable (sea-
sonality) and less predictable components (e.g. between-year variability), should
also favour the evolution of bet-hedging strategies and longer lifespan. This com-
bination of longevity and limited reproductive effort reduces the deleterious effects
of environmental stochasticity on population growth and persistence.

In the next section, we present an assessment of the above predictions, reviewing
literature that measured responses of life histories along elevation clines in major
taxonomic groups, as summarised in Table 11.1.
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Table 11.1 Summary of the main life-history characteristics of upland populations and species of
different taxonomic groups

Taxonomic
group

Responses in uplands (or at
the cold extreme of the
gradient)

References

Insects and
other

Prolonged generation time

Hodkinson (2005), Schmoller (1970)

Short larval stage

Tanaka and Brookes (1983), Zettel (2000)

arthropods Fast growth Dingle et al. (1990), Berner et al. (2004),
Laiolo and Obeso (2015), Chown and Klok
(2003)
Small adult size Laiolo et al. (2013)
Low fecundity Reviewed by Honek (1993)
Fewer but larger eggs Fischer et al. (2003), Hayashi and Hamano
(1984), Mashiko (1990), Hancock et al.
(1998), Wilhelm and Schindler (2000)
Parthenogenesis Wachter et al. (2012)
Fishes Increased longevity Pauly (1980), Beverton (1987)
Fewer but larger eggs Sternberg and Kennard (2013)
Egg guarding Sternberg and Kennard (2013)
Amphibians Increased longevity Zhang and Lu (2012)
Larger eggs and reduced Liao et al. (2014)
offspring size
Fast growth in common Berven et al. (1979), Berven (1982)
garden experiments
Reptiles Increased adult survival Adolph and Porter (1993)
Viviparity Brafia et al. (1991), Tinkle and Gibbons
1977)
Reduced eggshell thickness Mathies and Andrews (1995)
Increased offspring size Sinervo et al. (1992)
(oviparous species)
Infrequent reproduction Shine (2005)
Birds Reduced fecundity Badyaev (1997a), Badyaev and Ghalambor
(2001), Boyle et al. (2015), Laiolo et al.
(2015b)
Prolonged parental care Badyaev (1997a), Badyaev and Ghalambor
(2001), Boyle et al. (2015)
Shift from sexual to parental Badyaev (1997b), Snell-Rood and Badyaev
behaviour in males (2008), Apfelbeck and Goymann (2011),
Bastianelli et al. (2015)
Mammals Longer lifespan of adults, Bronson (1979), Zammuto and Millar

older age at reproduction

(1985), Yoccoz and Ims (1999)

Lower litter size

Dunmire (1960), Fleming and Rauscher
(1978), Smith and McGinnis (1968)

Increased parental care

Festa-Bianchet et al. (1994)

(continued)
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Table 11.1 (continued)

Taxonomic Responses in uplands (or at References

group the cold extreme of the
gradient)

Vascular More investment in Jonsdottir (2011)

plants maintenance and less in
reproduction
Clonal growth and vegetative Stocklin (1992), Klimes et al. (1997)
reproduction
Iteroparity; high adult Bliss (1971), Hautier et al. (2009), Milla
survival et al. (2009), Garcia and Zamora (2003),

Arx et al. (2006), Kim and Donohue (2011)

Reduction in seed bank size Molau and Larsson (2000)
Low seedling recruitment, Bliss (1971), Hautier et al. (2009), Milla
high seedling mortality et al. (2009)
Pseudoviviparity Sarapult’tsev (2001)

11.4 Empirical Evidence in Animals

11.4.1 Insects and Other Arthropods

Two major obstacles are faced by ectotherms in uplands or with broad altitudinal
distribution: low or decreasing ambient temperature and short or decreasing
growing/breeding seasons. Insect growth, development, reproduction, dormancy
and diapause are timed in relation to these constraints through alternative strategies.
The most common are the reduction of the length of the larval stage and the
acceleration of growth. Insects from collembolans to orthopterans have been shown
to reduce the number of instars (i.e. the number of moults to achieve the adult stage)
or the timing of diapause to complete their annual cycle earlier in uplands (Tanaka
and Brookes 1983; Zettel 2000). This response is typically associated with thermal
conditions close to a species’ tolerance range at either low or high extremes (Esperk
et al. 2007). Growing faster at high elevations is a widespread alternative (Dingle
et al. 1990; Berner et al. 2004; Laiolo and Obeso 2015), and represents one of the
best examples of countergradient genotypic variation opposing physiological
responses to temperature.

The reduction of instar number or development time lead to smaller adult body
sizes, a pattern commonly observed in upland insect populations and species
(Laiolo et al. 2013). Body size constrains fecundity, thus these strategies may carry
direct fecundity costs (Honek 1993). These costs are obviated when prolonging
development or generation time over the years rather than restraining them within a
single year. This strategy has been described in alpine populations of both holo- and
hemimetabolous insects (Hodkinson 2005) and is more commonly associated with
seasonal but non-resource-limited environments. Meanwhile, resource limitation
together with high seasonality tends to favour fast growth at the expense of body
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size and overall reproductive output (Chown and Klok 2003). Prolonged devel-
opment is achieved either by increasing instar numbers or by extending instar
growth over 2 years, which involves passing from pluri- or univoltinism in low-
lands, to semivoltinism in highlands, with individuals overwintering at different
instar stages over the years (Miles et al. 1997), or entering diapause at different
stages (Dingle et al. 1990).

The allometric reduction in egg number with elevation is often accompanied by
increased egg size to enhance embryo viability at low temperatures, whereas, at
higher temperatures, it pays off to produce more and smaller eggs since offspring
mortality is lower (Fischer et al. 2003). Increased adult survival with elevation has
been observed in fruit flies (Duyck et al. 2010) and is explained by trade-offs
between fecundity and longevity (Norry et al. 2006) or increasing rates of damage
from by-products of metabolism in hot temperatures (Leiser et al. 2011). In annual
species, however, selection on reproductive schedules may induce the opposite
patterns, with accelerated senescence at the completion of reproduction (Tatar et al.
1997).

Asexual, or parthenogenetic, populations frequently appear in high-altitude
habitats. This strategy, favoured in areas with few sexual competitors (Peck et al.
1998), permitted persistence in isolated ice-free summits surrounded by glaciers
(‘nunataks’) during the Pleistocene glaciation periods (Wachter et al. 2012).

The optimal life strategies of crustaceans also vary along elevation, and females
from stream head or alpine waters, for instance, lay larger eggs but smaller clutches
than those from lowlands (decapods: Hayashi and Hamano 1984; Mashiko 1990;
Hancock et al. 1998; amphipods: Wilhelm and Schindler 2000). Among arachnids,
alpine tundra Pardosa wolf spiders display no interpopulation variation in egg
number per cocoon, but generation time is twofold than that in lowlands (Schmoller
1970).

11.4.2 Fishes

Despite the high thermal conductivity of water buffers thermal fluctuations over
time and space, and thus reduces the opportunities for sharp temperature-driven
selection, temperature has a pervasive influence on developmental traits of fishes
and adaptation to local thermal regimes as well as plastic responses are well doc-
umented (Haugen and Vellestad 2000). Factors such as water flow or predation risk
also affect fish life-history decisions and, in particular, recruitment is a key trait in
determining fish allocation to contrasting life-history traits. As a general rule, larger
sizes, later maturity and long reproductive lifespans are selected for when recruit-
ment is low (Kennedy et al. 2003; Parra et al. 2014). Sternberg and Kennard (2013)
found that among Australian freshwater fishes, egg guarding species that reach
maturity at a small size were more frequent in environments with perennial flow
and low mean annual temperatures typical of uplands. Conversely, larger-bodied,
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non-egg guarding, highly fecund fish with small eggs and late maturity were more
frequent in environments with high mean annual temperature and temporary flow.
This pattern indicates that it may be advantageous to increase parental care or
produce fewer but larger eggs in low-temperature stream heads, as also observed in
crustaceans. Another consistent intraspecific pattern with temperature is that of
longevity, which declines at increasing temperatures (Pauly 1980; Beverton 1987).

Many fish species continue somatic growth after sexual maturation and growth is
typically highly plastic (Gotthard 2001). However, there is evidence that devel-
opmental decisions and growth patterns of populations are locally adapted (Nicieza
et al. 1994; Haugen and Vellestad 2000) and respond to climate, for instance, along
latitudes, in a countergradient fashion as for other ectotherms (Conover and Present
1990).

11.4.3 Amphibians

Juvenile development to metamorphosis or sexual maturity strongly influences
amphibian adult fitness and has been the target of a large number of studies along
climate gradients (Berven and Gill 1983; Altwegg and Reyer 2003; Laugen et al.
2003; Muir et al. 2014). These have shown that ontogenetic traits tend to adjust to a
countergradient variation pattern across elevations. Berven et al. (1979) and Berven
(1982) showed, for instance, that the mountain larvae of the green frog (Rana
clamitans) and wood frog (R. sylvatica) complete metamorphosis faster and at a
larger size than their lowland counterparts in a common environment. Despite their
higher genetic growth capacity, however, in nature they metamorphose later
because of strong climatic constraints.

Again, similar to other taxonomic groups, anurans and urodeles from
high-altitudes invest in larger eggs but reduce offspring number (Liao et al. 2014)
and increase mean and maximum age, as well as maturation age (Zhang and Lu
2012). Apart from intrinsic trade-offs, hypoxia has been evoked as a possible cause
of increased longevity in high-altitude regions (Zhang and Lu 2012).

11.4.4 Reptiles

Viviparity in squamate reptiles has been explained in terms of climate selection for
longer periods of egg retention where juvenile mortality is high because of extended
cold exposure (Tinkle and Gibbons 1977). However, this does not apply to the
independent evolution of viviparity in freshwater fishes (Pollux et al. 2009) and
amphibians (Vitt and Caldwell 2013). In viviparous lizards and snakes, gravid
females actively thermoregulate and provide embryos of higher temperatures for
development, a behaviour that reduces juvenile mortality as compared to conditions
in nest regimes (Brafa et al. 1991). Viviparity, however, requires modifications to
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other reproductive features, such as eggshell thickness and clutch size, both
decreasing with the degree of viviparity and elevation (Mathies and Andrews
1995). Moreover, pregnant females pay metabolic costs for maintaining higher
body temperatures, as visibly appreciable in postpartum body condition. However,
the ultimate consequences for survival depend upon a combination of factors, from
stored reserves and thermal conditions to the capability of using current food intake
during reproduction (Lourdais et al. 2002; Cox et al. 2010). Many reptiles are in
fact predominant ‘capital breeders’, i.e. they use reserves gathered over long
periods prior to the year of reproduction, but nevertheless are able to optionally
integrate energy from current feeding (‘income’) (Shine 2005).

In oviparous species, a decrease in clutch size translates into an increase in
offspring size (Sinervo et al. 1992), infrequent reproduction (Shine 2005) and
enhanced annual survival rate (Adolph and Porter 1993). Lizards exhibit indeter-
minate and fully plastic growth (Sears and Angilletta 2003) with a few documented
cases of countergradient variation (Sinervo 1990). Although no comparative anal-
yses have addressed interspecific variation along elevation gradients, a trend for
‘slow’ life strategies in cold-environment or slow-metabolism taxa, in contrast to
‘fast’ strategies in hot-environment or fast-metabolism taxa, has been highlighted
(Bauwens and Diaz-Uriarte 1997; Shine 2005).

11.4.5 Birds

Several comparative reviews on avian intra- and interspecific patterns highlight a
strategy of reduced annual fecundity, e.g. reduced clutch size or reproductive
attempts per year, with elevation. As an opposite pattern, the duration of the
incubation and nesting phases increase with elevation (Krementz and
Handford1984; Badyaev 1997a; Badyaev and Ghalambor 2001; Boyle et al. 2015;
Hille and Cooper 2015; Laiolo et al. 2015b). Ruling out the effect of body size, low
predation pressures and poor food availability likely contribute to prolonged par-
ental care, as a result of bird parents spending increasingly longer periods outside
the nest (Boersma 1982). This fact inevitably slows the development of young, but
protects parental survival (Martin 2002) and improves food provisioning where
resources are scarce and scattered and where chicks have increased metabolic
demands because of cold weather.

At the intraspecific level, survival has been shown to increase with elevation in
some study cases (e.g. Bears et al. 2009), but pairwise comparisons of closely
related species, subspecies or populations are not conclusive in this respect
(Badyaev and Ghalambor 2001; Boyle et al. 2015). It is possible that large varia-
tions in extrinsic (environmental) mortality, essentially independent of the choices
made by individuals, override slight differences in intrinsic mortality between
entities with a great degree of shared history. Tests with phylogenetically and
functionally diverse bird assemblages indeed suggest remarkable variation in sur-
vival patterns (Laiolo et al. 2015b; Bastianelli et al. 2017).
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Elevation clines in reproductive allocation and parental care have crucial con-
sequences for the expression of costly sexual characters in passerines with
bi-parental care (Badyaev and Ghalambor 2001). Males from upland grounds have
to shift rapidly from sexual to parental behaviours, which requires that testosterone
be maintained at low levels, or to rapidly decline, to avoid an undermining of
reproductive success by testosterone-driven aggressiveness (Apfelbeck and
Goymann 2011). These conditions should tilt the balance between parental and
mating effort of males towards the former, considering that opportunities for
additional mating and extra-pair fertilizations may decline with elevation, because
of low densities or synchronic reproduction. As a matter of evidence, Badyaev
(1997b) and Snell-Rood and Badyaev (2008) found reduced plumage dimorphism
and shorter and simpler songs in high elevation Cardueline species, while
Apfelbeck and Goymann (2011) and Bastianelli et al. (2015) highlighted weaker
male territorial aggressiveness in Phoenicurus and Anthus species.

11.4.6 Mammals

Literature is limited in mammals compared to other taxonomic groups. One pos-
sible explanation is that life-history strategies are constrained by aspects of the
ecological niche (e.g. aquatic, aerial or terrestrial life; diurnal vs. nocturnal habits)
with a poor relationship with elevation (Fisher et al. 2001; Bielby et al. 2007; Sibly
and Brown 2007). Mammal growth and reproduction tend to be highly plastic
(Hansen and Boonstra 2000), and temporal patterns are often more divergent than
spatial ones. Seasonality is a strong driver of life-history diversification. Thus,
elevational clines should be envisioned, but high latitudes have instead been the
favourite scenario for analysing major temperature and photoperiod influences.
Polyestrous rodents represent one of the best examples of seasonal diversification:
spring-born young grow fast, mature early and reproduce in the year of birth, while
those born later grow slowly, overwinter as immature and reproduce the next year
(Bronson 1989).

When analysing variation across elevation, Bronson (1979), Zammuto and
Millar (1985) and Yoccoz and Ims (1999) found that highland populations of
ground squirrel (Spermophilus columbianus) and voles (Chionomys nivalis) have
longer lifespans, lower litter sizes and later ages at reproduction than those from
lowlands. Lower litter size in ground squirrels depends on reduced ovulation rates
because embryonic mortality is low and decreases with elevation (Bronson 1979).
A reduction in litter size with altitude has also been recorded in the deer mice
Peromyscus maniculalus (Dunmire 1960; Fleming and Rauscher 1978) and holds at
the interspecific level among species of this genus (Smith and McGinnis 1968). In
the alpine collared pika Ochotona collaris, adult survival is the trait that contributes
most to population growth rate, and fecundity is less variable than in other lago-
morphs (Morrison and Hik 2007). As previously mentioned, buffering of survival
and bet hedging are thought to secure persistence in alpine environments.
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Among mountain goats (Oreamnos americanus), females augment parental care
to enhance juvenile survival in high elevations (Festa-Bianchet et al. 1994). Male
parental care, although rare in mammals, emerges as a facultative behaviour at very
low population densities (Barash 1975) and in extreme cold, arid or seasonal
environments (Kleiman and Malcolm1981). In the dwarf hamster Phodopus
campbelli, for instance, male presence is essential to guarantee pup survival and
growth, because it alleviates female thermoregulatory stress and thus water loss due
to maternal hyperthermia, which compromises milking (Wynne-Edwards 1995,
1998). Similarly, pups of the alpine marmot Marmota marmota, due to small sizes,
have reduced thermal inertia and take advantage of the energy spent by all family
members during hibernation (‘social thermoregulation’; Arnold 1988). Young
survival, in particular, is positively associated with the number of subordinate
males, which also participate in the surveillance of the family’s territory (Arnold
1993; Allainé and Theuriau 2004).

11.5 Empirical Evidence in Plants

11.5.1 Interspecific Variation

In mountain and alpine environments, life histories are often characterised by
long-lived iteroparous perennial life cycles. A trade-off between allocation to
vegetative growth and sexual reproduction is expected as a consequence of nutrient
limitation. Thus, the increased allocation to vegetative growth should reduce the
availability of resources for reproduction (Obeso 2002). In general terms, alpine and
arctic plants invest more in maintenance and less in reproduction (Jonsdottir 2011).

In the harsh climatic environment of high altitudes, new plant establishment is a
particularly risky (unsuccessful) mode of reproduction because of the high nutrient
demand of seed production (Watson 1984), infrequent germination and low seed-
ling survival (Bliss 1971; Scherff et al. 1994). Accordingly, there may be a
reduction in seed rain and seed bank size as elevation increases (Molau and Larsson
2000). The demography of alpine plant populations is often characterised by low
seedling recruitment and high seedling mortality at early developmental stages
compared with lower-elevation populations (Bliss 1971; Hautier et al. 2009; Milla
et al. 2009). In general terms, this implies that the successful establishment ex-novo
of new genets (independent physiological units, or clonal colonies, sensu Watson
and Casper 1984) is infrequent. However, these paradigms regarding alpine plants
are currently changing and seedling establishment may be more common and
successful than previously thought (Jolls and Bock 1983; Chambers et al. 1990;
Forbis 2003, Forbis and Doak 2004; Giménez-Benavides et al. 2007; Venn and
Morgan 2009; Kim and Donohue 2011).

The main evidence of the rarity of seedling establishment in alpine plants is the
fact that the size-class distributions within the populations are often characterised



11 Life-History Responses to the Altitudinal Gradient 267

by the absence of the smaller size-classes (Philipp 1997; Jénsdéttir 2011). These
distributions may also be a consequence of longer intervals between ‘windows’ of
regeneration by seeds in the extremely variable alpine conditions (Eriksson 1997).
Additionally, taking into account that long-lived alpine plants may reach ages of
one thousand years or more, the selective pressures that conditioned the estab-
lishment of the parent plant were likely not the same that seeds and seedlings
currently face.

Persistence of established genets, through somatic maintenance, clonal growth
and vegetative reproduction is thought to be one of the most remarkable adaptations
to the conditions of high mountain habitats and its importance tends to increase with
altitude. Survival of adult plants has been suggested to be a key demographic
parameter for maintaining alpine plant populations, and their demography is often
characterised by high adult survival compared with lower-elevation populations
(Bliss 1971; Hautier et al. 2009; Milla et al. 2009; Garcia and Zamora 2003; Kim
and Donouhe 2011). As a consequence, the decline of annual species with
increasing altitude is remarkable, as it is the number of long-lived species that relies
on clonal reproduction for population maintenance (Stocklin 1992; Klimes et al.
1997).

Despite the above generalisations, life histories of alpine plants are highly
diverse due to a great variety of growth and multiplication models. This diversity
may be associated with different growth forms and varying degrees of physiological
integration within genets. Most alpine plants are clonal perennials, the lifespan of
which is one order of magnitude longer than that of non-clonal perennials (de Witte
and Stocklin 2010). Clonal perennials range from ‘splitters’ to ‘extensive integra-
tors’. In the former case, the new clonal individuals (ramets) split from the parental
genet shortly after their development (seeds produced by agamospermy, bulbils,
plantlets, and some bulbs and tubers) and in the latter, the offspring ramets (nor-
mally rhizomes) remain physiologically integrated with the parent genet throughout
their lifetime. There is an intermediate situation (‘intermediate integrators’) in
which the offspring ramets remain connected to the parental plant for a time, as is
the case of stolons, rosettes, rhizomes and root shoots (Jonsdottir 2011).

Arctic and alpine non-clonal perennial lifespans from several decades to more
than one hundred years are common (Callaghan and Emanuelsson 1985) and genet
age of ‘extensive integrator’ clonal perennials may reach over one thousand years
or more. As an expected consequence of a trade-off between longevity and sexual
reproduction, the allocation to sexual reproduction is generally lower in clonal than
in non-clonal plants (Jonsdottir 1995; Stenstrom 1999; Stenstrom and Jonsdottir
2006).

Taking into account the reduction in reproductive allocation at high elevations,
we can expect that plants have developed some adaptations in their life histories to
reduce the risk of costly reproductive investment. In this sense, we can expect
alpine plants to increase offspring survival throughout life-history variables related
to parent care: larger seed size to produce larger seedlings, pseudovivipary (Lee and
Harmer 1980) and nursing of seedlings to increase their survival. Established
cushion plants (such as Silene acaulis) can act as nurses of seedlings increasing
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their survival (Bliss 1971). This nursing effect has been mostly observed in an
interspecific context. However, we can predict that this may be an important
phenomenon from an intraspecific perspective, as has been proposed in environ-
mental contexts others than alpine ones (Fajardo and Mclntire 2011).

Pseudoviviparity consists of the formation of vegetative diaspores in inflores-
cences, with the already developed flower parts undergoing proliferation and
transformation into leaf-like structures (Pijl 1972). Species with pseudovivipary are
mostly found in arctic, alpine and arid environments. In the local high-altitude
floras, the proportion of pseudoviviparous species reaches 10% and, in exceptional
cases, even up to 25% (Sarapul’tsev 2001). These habitats may favour pseu-
dovivipary because they are extraordinarily coarse-grained for seedling establish-
ment and the probability of an offspring being dispersed to a suitable patch is very
low. The success of pseudovivipary may also be related to the problems of
establishment and growth in the short, cold growing seasons of these regions (Lee
and Harmer 1980; Elmqvist and Cox 1996). Furthermore, parental care is not
restricted to seedling establishment, as the survival of daughter ramets may be
greatly enhanced by translocation of resources from the parental plant through the
vascular connections. This extended parental care depends on the degree of
physiological integration or independence and is prolonged in the case of ‘extensive
integrators’ (Callaghan 1984; Jonsdottir 2011). As a rather general trend, parental
care to seeds is substituted by parental care to daughter ramets, which are much
more costly to produce but exhibit much higher survival. Seedling survival is
probably the most critical stage in the life histories of long-lived perennial alpine
plants, determining species’ distribution and range shifts (Kitajima and Fenner
2000).

Seed weight should be affected by altitude because heavier seeds are more likely
to produce larger seedlings that successfully establish in harsh conditions (Westoby
et al. 1992), which is in accordance with the ‘stress-tolerance’ hypothesis (survival
depends on plant stress resistance). However, despite the fact that elevation gra-
dients in seed mass have repeatedly been reported (Baker 1972; Blionis and Vokou
2005), findings were often conflicting and had not revealed any consistent pattern
thus far. Although an increase in seed mass with elevation was reported by Pluess
et al. (2005), there is also evidence of negative relationships between seed mass and
elevation supporting the ‘energy constraints’ hypothesis, which states that lower
temperatures and shorter growing seasons at higher elevations may reduce resource
acquisition and the energy available for seed development and seed provisioning
(Baker 1972; Kormer 2003; Bu et al. 2007). Additionally, seed size is subjected to
allometric constraints and thus determined by plant size variation with altitude.

In detail, Pluess et al. (2005) tested the hypotheses that between related
species-pairs and among populations of single species a similar trend for increasing
seed weight with increasing altitude should be present. These authors determined
seed weights from 29 species-pairs, with each pair consisting of one species
occurring in a lowland area and a congeneric species from a high altitude area.
Compared to the related lowland species, 55% of the alpine species had heavier
seeds, 3% (one species) had lighter seeds and 41% had seeds of approximately
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equal weight. However, Wu and Du (2009), who examined the hypothesis of a
positive effect of altitude on both interspecific and intraspecific variation in seed
mass, found that in 50% of the 44 species that occurred in both low and high
altitudes, seed mass increased with altitude, but decreased in the other 50%.
Moreover, Wang et al. (2014) examined seed mass variation in 42 species of
Rhododendron along an altitudinal gradient from a few hundred metres to 5500 m
above sea level on the Tibetan Plateau. They found that seed length, width, surface
area and wing length were negatively correlated with altitude, and positively with
plant height. Conversely, Qi et al. (2014), using a large database involving 1355
species from the Tibetan Plateau, found a non-significant seed mass-elevation
relationship across all species after controlling for phylogeny and plant height.
These authors also found a mass-dependent response to the elevation gradient:
smaller seeds tended to increase in mass with elevation but large seeds tended to
decrease.

11.5.2 Intraspecific Variation

When the same plant species occurs along a mountainside, within-species variation
in life histories is expected since a suitability gradient is found within each
mountain range (Korner 2003). Depending on the biogeographic origin of the
species, plants occurring at the highest or lowest altitudinal limits should face
especially harsh constraints on reproduction and establishment via seeds (Hampe
and Petit 2005; Arrieta and Suarez 2006; Giménez-Benavides et al. 2007). In this
sense, the ‘centre—periphery’ hypothesis proposes that conditions for the regener-
ation of plant populations are less suitable in the boundaries than in the centre of the
distribution area, and at the same time, life cycles should slow down at high
altitudes (Lawton 1993; Vucetich and Waite 2003; Angert and Schemske 2005).

Arx et al. (2006) used the width of annual rings in roots to study plant
demography along an altitude gradient after determining plant age and lifetime
growth in three perennial forbs. For all three species, the plants from the highest
altitudes tended to be considerably older and produced more flowering shoots than
lowland plants. Highland plant growth, estimated by ring width, was approximately
half that of lowland plants. However, ring width of the high-altitude plants
increased during the first years and later decreased. These results highlight the
importance of investing resources in plant growth during the first years to ensure
plant establishment. This initial investment in growth is a characteristic behaviour
of life cycles in which mortality decreases considerably with the age of the
individual.

When comparing demography and life-history traits of populations of Erysimun
capitatum from alpine and low-elevation populations, Kim and Donohue (2011)
found that mortality of all life stages was higher at lower elevations than at an
alpine site. At the same time, they found that low-elevation plants reproduced
more quickly and were more frequently semelparous than alpine plants.
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Thus, low-elevation semelparous populations depended primarily on seedling
recruitment and precocious reproduction, whereas alpine plants tended to be iter-
oparous and to produce more vegetative rosettes. These results showed an altitu-
dinal variation in parity (number of reproductive events), and its demographic
consequences, indicating that plastic or evolutionary changes in this trait have a
clear influence on population performance along altitudinal gradients.

As the allocation of resources to reproduction results in a reduction of allocation
to vegetative growth and, therefore, an impact on future reproductive success, the
trade-off between allocation to reproduction and vegetative growth is also a
determinant of iteroparous perennial cycles within species. Hautier et al. (2009)
conducted a transplant experiment to assess the influence of both the altitudinal
origin of populations and the altitude of the growing site on vegetative growth and
reproductive investment in Poa alpina. According to the general trend in plants, the
variation in reproductive investment was mainly explained by plant size. However,
the vegetative growth and the relative reproductive allocation decreased in popu-
lations originating from higher altitudes compared to populations originating from
lower altitudes. They also found that the importance of plasticity was scarce in
relation to genetic effects and interpreted these results as a consequence of local
adaptations.

Gao-Lin et al. (2011) tested the hypothesis that seed mass was positively cor-
related with altitude within species in four congeneric Saussurea (Asteraceae) that
occur in the Tibetan Plateau. They found a general trend of a significant increase in
seed mass with altitude. Contrarily, Meng et al. (2014) showed that along an
altitudinal gradient in the Hengduan Mountains, mean seed weight of
Sinopodophyllum hexandrum decreased significantly. Pluess et al. (2005) compared
seed weights among populations of four species from different habitats and with
different life histories along an altitude gradient (Scabiosa lucida, Saxifraga
oppositifolia, Epilobium fleischeri and Carex flacca). In all the four species, they
found no indication for heavier seeds at higher altitudes. Similarly, in the cactus
Gymnocalycium monvillei seedling height increased with altitude, whereas seed
mass was not related to this variable (Bauk et al. 2015).

Assessing adaptive differentiation of plant populations along altitude gradients is
useful for predicting how they may respond to climatic change. Local adaptation
along altitudinal gradients has been demonstrated in several alpine plant species
after reciprocal transplant experiments (Byars et al. 2007; Kim and Donohue 2013;
Tordng et al. 2015) or transplants to a common garden (Stenstrom et al. 2002).
However, information about local adaptation in traits related directly to life history
is still scarce. Leimu and Fischer (2008) reviewed the information about local
adaptations and found that although local plants performed better than foreign
plants in 71% of the studies, local adaptation, sensu stricto, was demonstrated in
approximately 40% of the case studies.

Surprisingly, genetic diversity of alpine plant populations is not as depleted
as predicted from small population sizes and repeated vegetative multiplication,
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a fact that suggests that gene flow and repeated seedling recruitment during suc-
cession might be more frequent than commonly thought (Diggle et al. 1998; Pluess
and Stocklin 2004; Reisch et al. 2007).

11.6 Discussion

11.6.1 Current Patterns

This review shows that much of life-history variation in elevation is the result of
direct physiological sensitivity to temperature and nutrient supply, which is then
modified secondarily by evolutionary responses that refine the relationship with the
environment. Generally, organisms as diverse as animal ectotherms, endotherms
and plants inhabit mountaintops by adopting ‘slow’ life cycles, involving longer
lifespan, delayed maturity, slow reproductive rates, including clonal or partheno-
genetic spreading and strong inversions in parental care to augment juvenile sur-
vival where recruitment is limited. There are however exceptions, for instance, slow
life cycles are precluded to obligatory annual organisms in seasonal environments.
Moreover, traits may not reflect optimality at lower and upper margins of species
ranges, also depending on the position of the mountain ridge with respect to spe-
cies’ overall geographic distribution (Fig. 11.1). Jiménez-Alfaro et al. (2014)
showed, for instance, that plant species from different geographic regions are fil-
tered in different ways by altitude, and that constraints on reproduction and
establishment via seeds may vary, being generally strong for lowland species at
their highest elevation or arctic and alpine species at their lowest limits (Hampe
and Petit 2005; Arrieta and Suarez 2006; Giménez-Benavides et al. 2007).

“Slow" life cycle

Delayed maturation

Long life span

Reduced reproductive allocation
Reduced mating effort

Few, large offspring

Enhanced parental care

Elevation =

“Fast” life cycle

Early maturation

Short life span

Enhanced reproductive allocation
Enhanced mating effort
Numerous, small offspring
Reduced parental care

Fig. 11.1 Main trends of life-history variation observed along the elevation gradients
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Contrarily, species at the centre of their distribution areas (e.g. endemic species)
should face optimal conditions for regeneration (Fig. 11.2).

11.6.2 Evolutionary and Plastic Responses
to Environmental Change

A frequent assumption is that populations negatively affected by ongoing climate
change, when lacking the plasticity to tolerate it, will migrate more readily than
undergoing evolutionary change to produce new phenotypes. Implicit in this view is
the observation that modern populations of many species that shifted ranges in the
past display life-history adaptations to current climatic conditions. However, the
tolerance ranges of migrating species are not ‘static’ during distribution shifts:
differential survival of migrating individuals, or their propagules, sieve out geno-
types that do not tolerate local conditions, and differential growth and reproduction
further promote adaptation of physiological characteristics (Davis and Shaw 2001).
In this scenario, negative genetic correlations among life-history traits, such as
those between survival and reproduction, may slow (or impede) the responses to
selection of single traits, as compared, for instance, to the responses of unrelated
traits, as those conferring physiological tolerance (Davis and Shaw 2001).

Apart from dispersal and selection, gene flow and recombination are essential
elements in evolutionary change during range shifts. When dealing with altitudinal
migration, gene flow is facilitated by the proximity of neighbouring populations. In
the case of species with broad elevational distribution, if the upper elevation limit is
the leading edge of the migrating front, adaptations to the novel environment may be
enhanced by gene transfer from the centre of the range. This feature would likely lead
to the spread of ‘fast’ genotypes that may allow persistence in warmer conditions.
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Although a ‘fast’ strategy may enhance the speed of range expansion (Burton et al.
2010), ‘slow’ cycles protect species from the dramatic loss of genetic variability
during upward migration: when a few founders colonise a remote patch, delayed
maturation allows genetic diversity to accumulate through recruitment of additional
individuals (Austerlitz et al. 2000). It is also often argued that alpine specialists
inhabiting narrow elevation bands may lack substantial genetic variability for traits
under selection, but evidence of this phenomenon is not strong, because the distri-
bution of these species is the result of past climate-driven shifts up and down elevation
gradients that helped maintain genetic differentiation (Galbreath et al. 2009; Wachter
et al. 2012). Hence, predicting evolutionary trajectories into the future must take into
account the past persistence of many relict species (Hampe and Petit 2005).

The interactions between climate shifts with phenotypic plasticity or heritable
variation in reaction norms are also crucial to envisage species responses to
changing environmental conditions (Winkler et al. 2002; Both and Visser 2005;
Jensen et al. 2008; Williams et al. 2015). Temperature increases may not neces-
sarily have the expected worst impact on ectotherm metabolism because they may
adjust thermoregulation and activity to prevailing temperatures (Aguado and Brafa
2014), as alpine plants do with respiration (Larigauderie and Korner 1995). It is also
worth stressing that warming reduces some of those constraints dominating alpine
life, as evidenced by improved survival or reproductive output of a number of
species (e.g. Day et al. 1999; Erschbamer 2007; Ozgul et al. 2010). Similarly,
Barrett et al. (2015), using data from a long-term research project in the Arctic,
demonstrated enhanced reproductive allocation in connection with improved air
and soil temperature. Differences in species’ responses are, however, huge, making
generalisations of responses and predictions of effects very weak. Experiments and
observations within the same community or environmental context often highlight
highly idiosyncratic responses in growth and reproduction to changing temperature
and resource availability (Wookey et al. 1993; Arft et al. 1999; Dorman and
Woodin 2002; Wipf et al. 2009).

11.6.3 Demographic Responses to Environmental Change

Patterns of life history determine the dynamics of populations when facing envi-
ronmental variation, and life-history traits have a differential influence in this
process. Perturbations (either cyclic or stochastic) can trigger substantial fluctua-
tions in population size when reproductive parameters have the greatest influence
on the finite rate of population growth, corresponding to a ‘fast’ life strategy. In
contrast, perturbations are buffered when survival parameters have the largest rel-
ative influence on growth rate, i.e. a ‘slow’ strategy (Sather and Bakke 2000; Oli
and Dobson 2003). Therefore, when facing environmental change, a ‘slow’ life
strategy is expected to confer more stable dynamics, high resistance and low
resilience, as opposed to a ‘fast’ life strategy, which induces more cyclic or chaotic
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population dynamics and low resistance, but a greater chance of recovery.
Processes like demographic buffering (temporal stability) and demographic com-
pensation (spatial compensation) may buffer local alpine populations against trends
in environmental conditions (such as climate warming) (Villellas et al. 2015),
although such compensatory responses may not last indefinitely (Doak and Morris
2010).

11.6.4 Future Research

In spite of widespread evidence of adaptations to climate in the past, there is a need
to assess whether these changes will occur as readily during the present period of
climate change since the range shifts documented in the past are below the rates
required to track climate in the future (Davis and Shaw 2001). More experiments
coupled with quantitative genetics are required to appreciate the magnitude of
genetic constraints and genetic variation for traits critical to survival and repro-
duction, as well as molecular and demographic studies assessing the potential for
dispersal and gene flow.

This overview highlights the scarcity of information and the gaps in our
knowledge about life-history variation along elevation gradients. There is a need to
expand the taxonomic focus because there has been a disproportionate effort on
northern-latitude cold environments (such as the Arctic) compared to mountain and
alpine systems in many groups. Life-history knowledge should also be improved:
reproductive variables such as seed, clutch or litter size or number have been a
favourite target of research, but lifespan and age at first reproduction are virtually
unknown for the majority of alpine species. Ultimately, processes within and
among species should be integrated, such that their changes can be linked to
community-wide processes. This integration will improve our capability for pre-
dicting the response of alpine flora and fauna to the combinations of current, novel
environmental drivers.
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