
Multi-kinect Skeleton Fusion for Enactive Games

Nikolaj Marimo Støvring, Esbern Torgard Kaspersen, Jeppe Milling Korsholm,
Yousif Ali Hassan Najim, Soraya Makhlouf, Alireza Khani, and Cumhur Erkut(✉)

Department of Architecture, Design and Media Technology, Aalborg University Copenhagen,
Copenhagen, Denmark

{nstavr14,ekaspe14,jkorsh14,ynajim14,smakhl14,
akhani14}@student.aau.dk, cer@create.aau.dk

Abstract. We present a procedural method and an implementation of multi-
Kinect skeleton fusion on Unity environment. Our method calibrates two Kinects
by combining the relative coordinates of a user’s torso onto a single coordinate
system. The method is tested with a small number of participants in scenarios
involving multiple users, results indicate that the method provides an improve‐
ment over a single camera, and it is accurate enough for games and entertainment
applications. The video demonstration of the system is provided, and future
directions to improve accuracy are outlined.

Keywords: Motion tracking · Depth cameras · Sensor fusion · Occlusion

1 Introduction

Tracking of one or multiple human bodies is currently feasible with computer vision [1].
Human posture and gestures are studied and tested within various applications; they can
properly represent human kinematics and be used for tracking as well as activity recog‐
nition [1].

One way of tracking human is to use active depth cameras, which send out light, and
upon processing the feedback, produce depth maps instead of an RGB picture. A good
example of such an active camera is the Microsoft Kinect. Created as a controller for
the Xbox 360 console, Kinect enables the user to play games by following her body
movements. The Kinect-v1 combines a passive RGB camera with an active depth sensor,
using a structured light pattern, and is capable of body recognition and skeletal tracking
in real time [2].

Because of Kinect’s capabilities, availability of development tools, and its consumer
price range, many researchers have proposed new application areas using the sensor.
For instance, its potential in education has been explored by [3]. However, when used
in such multiple-user setups, Kinect suffers from the occlusion problem. A way to over‐
come the occlusion problem could be to set up multiple cameras, so that they can track
objects in a scene from different angles, thereby reducing the possibility of occlusion.
Various methods of combining multiple depth cameras have been reviewed in [4]. Most
of the methods rely on point-clouds, and require the use of a checkerboard grid or other
calibration objects. More recent methods rely on skeleton-based calibration of multiple

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
A.L. Brooks and E. Brooks (Eds.): ArtsIT/DLI 2016, LNICST 196, pp. 173–180, 2017.
DOI: 10.1007/978-3-319-55834-9_20



cameras; for instance in [5], an absolute orientation algorithm proposed by Umeyama
and his colleagues [6] has been combined with multi-frame Kalman filtering to dynam‐
ically calibrate multiple depth cameras based on the skeletal data.

In this paper, we show a fast and computationally efficient implementation by
imposing a symmetric initial calibration step and neglecting the possible drift. The
results may not be as accurate as the needs of therapeutic applications, however they are
good enough for entertainment and gaming purposes.

The structure of this paper is as follows. In the next section, we provide some back‐
ground, specifically on skeleton tracking with the Kinect SDK, tracking multiple people,
and occlusion problems. Then we describe the pragmatics of our implementation,
followed by the tests we have conducted for evaluating our approach. We present the
results of these tests, discuss the outcomes and possible improvements, and conclude
the paper, indicating future work in the field.

2 Background

In this section we first review the skeleton tracking with the Kinect SDK. After this, we
describe the calibration of multiple depth cameras.

2.1 Skeleton Tracking with the Kinect SDK

The Kinect depth camera, combined with the IR sensor is capable of tracking up to six
people at once [7]. Of those, two people can be assigned a skeleton. Kinect SDK assigns
20 points to a tracked person. Every point is mapped to a key joint or position on the
human body, effectively creating a skeleton. The Kinect is also capable of assigning a
seated skeleton; that is assigning a 10 point skeleton to a seated person. It is important
to point out that the Kinect SDK cannot distinguish between the front and back of a
person.

The recognition and tracking of skeletons are carried out in Kinect SDK using a
dedicated GPU and machine learning techniques. They increase motion tracking accu‐
racy and can be used for advanced applications. An example of an advanced application
is the posture recognition system described in [8]. This method assigns vectors to the
body joints and checks the current posture against predefined ones.

The position tracking error of Kinect, averaged on the horizontal and vertical angles,
is found as 29 mm (see http://chhs.gmu.edu/ccid/upload/s12-Gelman.pdf). The largest
observed error was about 40.5 mm at a distance of 0.876 m from the object in question,
while the smallest error was around 16.5 mm at a distance of 3.07 m. In its most accurate
range (around 2–3 m) Kinect has an average tracking error of 22.4 mm.

2.2 Occlusion and Multi-camera Setups

Depth cameras work with the principle that both the emitted light is reflected from a
target. If other objects are in the propagation path of the light, this assertion does not
hold, and occlusion occurs. Moreover, the inhomogeneity of the medium or reflecting

174 N.M. Støvring et al.

http://chhs.gmu.edu/ccid/upload/s12-Gelman.pdf


surfaces may result in blind spots. In recent years, occlusion and blind spots problems
of the depth cameras have been increasingly tackled [9]. To increase the recognition rate
of an object from the sensors, four cameras placed 5 m apart are arranged in [9] to
surround a specific tracking area. With multiple angles to study the same object, the
boundary between the object and the background is cleared, making that object the
cameras’ focal point. With this setup, it is possible to correct the skeletal data of a self-
occluding participant but not when multiple participants are within the tracking area. To
fix blind spots with multiple users, additional motion sensors are placed on users to
collect rotation data, which is later combined with the data the Kinects receive, to be
fused into a skeleton.

Various methods that entirely rely on multiple depth cameras without additional
motion sensors have been reviewed in [4], and more recent methods rely on skeleton-
based calibration of multiple cameras [5], as mentioned in the Introduction. We proceed
with a procedural description of our implementation.

3 Implementation

We use the position of a tracked user, in the form of one or more vectors, to calculate
the position of the camera relative to it. As a user is represented by a position in each
camera, and assuming that the positions calculated by each camera are fairly close to
each other in the real world, we assume that the difference between these positions must
be equal to the distance between the cameras. To get these positions, we use the joints
and the center of gravity obtained from the Microsoft Kinect SDK, and visualize the
coordinate systems of each depth cameras, as well as the reference coordinate system
(main camera) of Unity.

In the current implementation, we use Unity 5.2 and its new Network code. This
feature allows us to easily set up a scene and server that multiple clients, or Kinects, can
connect to and thereby transfer data about the positions of the users over the network.
The Network Manager component is only placed on one object in the scene; every
other object has a Network Identity component. The manager keeps track of all these
identities, manages all networking. The Network Manager HUD component handles the
interface, and adds buttons to the scene, to start a server, connect to a server as a client,
or start the server as a host, which also counts as a client.

The position and orientation of the tracked user are acquired and subsequently used
in calibration. The information is received from the Skeleton Stream, which contains
the position and orientation of every user that the Kinect tracks. We then check whether
or not the movement is mirrored; the z-axis movement registered by Kinect is inherently
mirrored, and therefore, we want to mirror it again to make the movement unfold in the
natural direction.

Then we start with calibration, if enabled. The first check is for rotation: the script
gets the horizontal and vertical rotation seen by each camera in comparison to the default
coordinate system of Unity. Then we calculate the quaternion angle between the offset
and a unit vector for each camera, converting the resulting angles into a quaternion
matrix. The horizontal and vertical matrices are multiplied to yield the rotation matrix.

Multi-kinect Skeleton Fusion for Enactive Games 175



The reference position vector is then multiplied with the rotational matrix. The new
position vector indicates where the cube would have been if the cameras had only been
offset in position and had a zero-degree angle between them. In other words, the position
vector correlates directly to how the camera is positioned in relation to the main camera
of Unity. Finally, we add the positional offset, which aligns the cubes on top of each
other.

However, this alignment does not yet guarantee the alignment of the orientation of
the user. For this, we consider shoulder and hip center joints from the skeleton data. We
first invert their z-coordinate, as discussed above. To find the horizontal orientation, the
position of the left shoulder is subtracted from that of the right shoulder, the difference
is projected onto a unit vector. The vertical orientation component is calculated similarly,
but uses center-shoulder and center-hip joints. Both angles are applied to the aligned
cube, forcing it to face the same direction as the real-life user.

The video demonstration of the system is provided at https://vimeo.com/156941392
(password: ArtsIT16-AAU-CPH). Figure 1 below presents an instant where a single
camera would provide an occluded image, but two cameras within our implementation
alleviates this problem.

Fig. 1. An example snapshot from the video where the cameras were placed at the edges of the
scene view. A single camera would provide an occluded image, but two cameras keep track of
two people, represented by the blue and yellow cuboids. (Color figure online)

4 Evaluation

In order to evaluate the effectiveness of the Positional Vector Calibration Setup (PVC),
we made an evaluation to compare two conditions; the PVC setup and a single camera
setup. The variables of our tests were the error rate in tracking, and accuracy, measured
in the offset between a participants’ actual and detected position. The users were on a
known position (marker) but we did not measure precisely their position. So the error
of the fusion is sensitive to this position error.

176 N.M. Støvring et al.

https://vimeo.com/156941392


We have controlled the independent variables: the number of people and their posi‐
tions in the test scene. We have started with a pilot and tested different scenarios. The
setups are illustrated on Fig. 2. All authors, but the last one have participated to tests.
Since this is a physical and not perceptual or assessment test, the familiarity of the
participants with the system is not considered important.

Fig. 2. From top left, clockwise: Pilot, Final, Test 1, and Test 2 setups. (Color figure online)

In the pilot, the dead spots of single and two Kinect configurations were identified
(Fig. 2, top left), and the floor markers have been set accordingly (Fig. 2, top right).

Multi-kinect Skeleton Fusion for Enactive Games 177



4.1 Tracking Multiple Participants Without Occlusion

For this test we had four participants standing next to the marked area and the video for
the test was started. Next, the test leader enabled the tracking; a stop watch was started
simultaneously. After ten seconds, the first participant entered and walked across the
area towards the grid point marked by the solid red circle on Fig. 2, bottom right. Every
subsequent ten seconds, another test participant walked into the scene and took up a spot
one meter to the right of the former, taking up the green, blue and yellow points in
sequence. When all four participants where lined up, they all moved back to the marker
directly behind their current, after ten seconds. This was done two more times, recording
the test participants’ position in a total of four places.

4.2 Tracking Multiple Participants with Occlusion

Before the test was commenced, markers where placed on grid points 28, 40, 24, 12, as
shown in Fig. 2, bottom left. The test was then started like the previous one, with four
participants standing and the test leader starting the test after the video. Again a stop‐
watch was employed, and ten seconds after the test was started, the first participant
entered the scene. Ten seconds later the last three participants entered the scene, and
moved around the scene at their own pace for a minute. After one minute, the participants
took a position on the closest marker. Starting with the participant at the red marker, the
participants moved clockwise to new markers. This was done every ten seconds for all
markers.

5 Results and Discussion

The logs during the tests were saved to a text document, and were subsequently put into
a spreadsheet as shown in Fig. 3. The logs are not formatted as a table with column
headings; the first column shows when or why the data point was logged. Every tenth-
second logs are made for all currently tracked participants under the tag ‘tracking
continued’. Logs are also made every time tracking of a participant starts or ends.

Fig. 3. Sample log from the test. The columns are the tag, the position, which Kinect tracked the
participant and the time.

To find the rate of errors in tracking based on this data, the ‘tracking continued’ logs
were combined from the two Kinects and ordered according to time stamps. To account
for participants being tracked by more than one Kinect amounts of overlap in the scene

178 N.M. Støvring et al.



where calculated. To calculate this, it was decided that if the difference in either the x
or z values of two points with the same timestamp were below a threshold of 25 cm, it
would be counted as an overlap.

After calculating overlaps, the total amount of detected participants were calculated
by adding the number of participants detected without overlaps. The final precision of
the tracking algorithm, while tracking multiple participants with possible occlusion, is
found to be 81.82%.

In calculating the magnitude of the offset, the logs were sorted in time. The difference
between the actually and detected positions were determined, and the magnitude of the
offset vector was calculated. The mean magnitude offsets for the first test was found to
be 25,55 cm for one Kinect and 15,54 cm for two Kinects.

As our system relies on local network connectivity to synchronize tracking data,
delays in data transferring might have resulted in it being out of sync. The delays could
have been minimized with a direct connection to a single computer. This would also
have avoided the risk of potential packet loss. However, using a single computer was
not an option, as the motherboards and USB busses of the computers available for our
experiments were not designed to handle data streams from multiple Kinects simulta‐
neously.

The stands which held the Kinects, as well as the markers placed on the grid, might
have been slightly moved during the course of the test. This could have caused inter‐
ference in terms of accuracy and could have been completely avoided by re-measuring
and re-calibrating the setup before each test. Our reference grid measurements might
also have causing offset; a better solution would be to benchmark our method against
well-established and accurate methods.

During our tests, it appeared that the Kinects had trouble with detecting dark colors.
This might be due to the IR projection from the Kinect being absorbed rather than
reflected by dark materials. This could have been avoided by not wearing dark clothing
during tests.

6 Conclusions and Future Work

We presented a procedural method and an implementation of multi-Kinect skeleton
fusion on Unity environment. Our method calibrates two Kinects by combining the
relative coordinates of a user’s torso onto a single coordinate system current, by calcu‐
lating the rotation, translation, and scaling in a short calibration time. The method
resembles the work in [5], however the continuous tracking in successive frames by
Kalman filtering in [5] is simplified here to an on-demand calibration scheme, which is
accurate enough for entertainment and gaming purposes. The method is tested with a
small number of participants, leaving benchmarks against accurate Motion Capture
systems such as Vicon, or other methods such as [5, 10] as future work.

In our tests involving multiple users, we have obtained considerably lower accuracy,
compared to the theoretical offset of a single Kinect (2.9 cm) in the optimum distance
with a single user. Specifically, the average offsets we have obtained were 22.65 cm and
12.64 cm, for one and two Kinects (fused by our method), respectively. However, we

Multi-kinect Skeleton Fusion for Enactive Games 179



can conclude that our method significantly improves the accuracy of tracking multiple
users in an optimally visible area, compared to a single Kinect. It is also worth
mentioning that we have used Kinect-v1 s in our experiments, which are known to cause
interference by the usage of structured IR-light. Kinect-v2 s, which rely on time-of-flight
instead of structured light, may give better results in the future.

Currently we are extending our displacement-only method with velocity-based cali‐
bration. The advantage of this method is that it will not require an absolute coordinate
system, and the calculations will be simpler. Moreover, we are also experimenting with
calibrating the microphone arrays of multiple Kinects by sonic gestures [11].

References

1. Moeslund, T.B., Hilton, A., Krüger, V., Sigal, L.: Visual Analysis of Humans. Springer,
London (2011)

2. Zhang, W.: Microsoft kinect sensor and its effect. IEEE Multimedia 19, 4–10 (2012)
3. Hsu, H.J.: The potential of Kinect in education. Int. J. Inf. Educ. Technol. 1(5), 365–370 (2011)
4. Berger, K.: A state of the art report on multiple RGB-D sensor research and on publicly

available RGB-D datasets. In: Shao, L., Han, J., Kohli, P., Zhang, Z. (eds.) Computer Vision
and Machine Learning with RGB-D Sensors, pp. 27–44. Springer, Cham (2014)

5. Li, S., Pathirana, P.N., Caelli, T.: Multi-kinect skeleton fusion for physical rehabilitation
monitoring. In: Proceeding 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC) (2014)

6. Umeyama, S.: Least-squares estimation of transformation parameters between two point
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)

7. Giorio, C., Fascinari, M.: Kinect in Motion - Audio and Visual Tracking by Example. Packt
Publishing, New York (2013)

8. Monir, S., Rubya, S., Ferdous, H.S.: Rotation and scale invariant posture recognition using
Microsoft Kinect skeletal tracking feature. In: Proceeding 12th International Conference on
Intelligent Systems Design and Applications (ISDA), pp. 404–409 (2012)

9. Jo, H., Yu, H., Kim, H., Sung, J.: A Study of Multiple Body Tracking System for Digital
Signage of NUI Method. Advanced Science and Technology Letters, pp. 91–95 (2015)

10. Staranowicz, A.N., Ray, C., Mariottini, G.-L.: Easy-to-use, general, and accurate multi-Kinect
calibration and its application to gait monitoring for fall prediction. In: Proceeding 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC) (2015)

11. Jylhä, A., Erkut, C.: A hand clap interface for sonic interaction with the computer. In:
Proceeding Conference Human Factors in Computing Systems, Boston, April 2009

180 N.M. Støvring et al.


	Multi-kinect Skeleton Fusion for Enactive Games
	Abstract
	1 Introduction
	2 Background
	2.1 Skeleton Tracking with the Kinect SDK
	2.2 Occlusion and Multi-camera Setups

	3 Implementation
	4 Evaluation
	4.1 Tracking Multiple Participants Without Occlusion
	4.2 Tracking Multiple Participants with Occlusion

	5 Results and Discussion
	6 Conclusions and Future Work
	References


