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Abstract. This article is devoted to studying dual regularization
method as applied to parametric convex optimal control problem of con-
trolled third boundary-value problem for parabolic equation with bound-
ary control and with equality and inequality pointwise state constraints.
These constraints are understood as ones in the Hilbert space L2. A
major advantage of the constraints of the original problem which are
understood as ones in L2 is that the resulting dual regularization algo-
rithm is stable with respect to errors in the input data and leads to
the construction of a minimizing approximate solution in the sense of
J. Warga. Simultaneously, this dual algorithm yields the corresponding
necessary and sufficient conditions for minimizing sequences, namely,
the stable, with respect to perturbation of input data, sequential or,
in other words, regularized Lagrange principle in nondifferential form
and Pontryagin maximum principle for the original problem. Regard-
less of the fact that the stability or instability of the original optimal
control problem, they stably generate a minimizing approximate solu-
tions for it. For this reason, we can interpret these regularized Lagrange
principle and Pontryagin maximum principle as tools for direct solving
unstable optimal control problems and reducing to them unstable inverse
problems.

Keywords: Optimal boundary control · Parabolic equation ·
Minimizing sequence · Dual regularization · Stability · Pontryagin
maximum principle

1 Introduction

Pontryagin maximum principle is the central result of all optimal control theory,
including optimal control for differential equations with partial derivatives. Its
statement and proof assume, first of all, that the optimal control problem is con-
sidered in an ideal situation, when its input data are known exactly. However,
in the vast number of important practical problems of optimal control, as well
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as numerous problems reducing to optimal control problems, the requirement of
exact defining input data is very unnatural, and in many undoubtedly interest
cases is simply impracticable. In similar problems, we can not, strictly speaking,
to take as an approximation to the solution of the initial (unperturbed) problem
with the exact input data, a control formally satisfying the maximum principle
in the perturbed problem. The reason of such situation lies in the natural insta-
bility of optimization problems with respect to perturbation of its input data.
As a typical property of optimization problems in general, including constrained
ones, instability fully manifests itself in optimal control problems (see., e.g., [1]).
As a consequence, the mentioned above instability implies “instability” of the
classical optimality conditions, including the conditions in the form of Pontrya-
gin maximum principle. This instability manifests itself in selecting by them of
arbitrarily distant “perturbed” optimal elements from their unperturbed coun-
terparts in the case of an arbitrarily small perturbations of the input data. The
above applies, in full measure, both to discussed below optimal control problem
with pointwise state constraints for linear parabolic equation in divergent form,
and to the classical optimality conditions in the form of the Lagrange principle
and the Pontryagin maximum principle for this problem.

In this paper we discuss how to overcome the problem of instability of the
classical optimality conditions in optimal control problems in the way of apply-
ing dual regularization method (see., e.g., [2–4]) and simultaneous transition to
the concept of minimizing sequence of admissible elements as the main concept
of optimization theory. In the role of the last, acts the concept of the minimiz-
ing approximate solution in the sense of Warga [5]. The main attention in the
paper is given to the discussion of the so-called regularized or, in other words,
stable, with respect to perturbation of input data, sequential Lagrange princi-
ple in the nondifferential form and Pontryagin maximum principle. Regardless
of the stability or instability of the original optimal control problem, they sta-
bly generate minimizing approximate solutions for it. For this reason, we can
interpret the regularized Lagrange principle and Pontryagin maximum princi-
ple that are obtained in the article as tools for direct solving unstable opti-
mal control problems and reducing to them unstable inverse problems [1,6,7].
Thus, they contribute to a significant expansion of the range of applicability
of the theory of optimal control in which a central role belongs to classic con-
structions of the Lagrange and Hamilton-Pontryagin functions. Finally, we note
that discussed in this article regularized Lagrange principle in the nondiffer-
ential form and Pontryagin maximum principle may have another kind, more
convenient for applications [7]. Justification of these alternative forms of the
regularized Lagrange principle and Pontryagin maximum principle is based on
the so-called method of iterative dual regularization [2,3]. In this case, they
take the form of iterative processes with the corresponding stopping rules when
the error of input data is fixed and finite. Here these alternative forms are not
considered.
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2 Statement of Optimal Control Problem

We consider the fixed-time parametric optimal control problem

(P δ
p,r) gδ

0(π) → min, π ≡ (u,w) ∈ D ⊂ L2(QT ) × L2(ST ),

gδ
1(π)(x, t) ≡ ϕδ

1(x, t)zδ[π](x, t) = hδ(x, t) + p(x, t) for a.e. (x, t) ∈ Q,
gδ
2(π)(x, t) ≡ ϕδ

2(x, t, zδ[π](x, t)) ≤ r(x, t) for a.e. (x, t) ∈ Q

with equality and inequality pointwise state constraints understood as ones in the
Hilbert space H ≡ L2(Q); D ≡ {u ∈ L2(QT ) : u(x, t) ∈ U for a.e. (x, t) ∈ QT }×
{w ∈ L2(ST ) : w(x, t) ∈ W for a.e. (x, t) ∈ ST }; U, W ⊂ R

1 are convex compact
sets. In this problem, p ∈ H and r ∈ H are parameters; gδ

0 : L2(QT )×L2(ST ) is a
continuous convex functional, Q ⊂ Qι,T is a compact set without isolated points
with a nonempty interior, ι ∈ (0, T ), Q = cl intQ; and zδ[π] ∈ V 1,0

2 (QT ) ∩ C(QT )
is a weak solution [8,9] to the third boundary-value problem1

zt − ∂

∂xi
(ai,j(x, t)zxj

) + aδ(x, t)z + u(x, t) = 0, (1)

z(x, 0) = vδ
0(x), x ∈ Ω,

∂z

∂N + σδ(x, t)z = w(x, t), (x, t) ∈ ST ,

corresponding to the pair π ≡ (u,w). The superscript δ in the input data of
Problem (P δ

p,r) indicates that these data are exact (δ = 0) or perturbed (δ > 0),
i.e., they are specified with an error, δ ∈ [0, δ0], where δ0 > 0 is a fixed number.

For definiteness, as target functional we take terminal one

gδ
0(π) ≡

∫
Ω

Gδ(x, zδ[π](x, T ))dx.

The input data for Problem (P 0
p,r) are assumed to meet the following condi-

tions:

(a) It is true that ai,j ∈ L∞(QT ), i, j = 1, . . . , n, aδ ∈ L∞(QT ), σδ ∈ L∞(ST ),
vδ
0 ∈ C(Ω),

ν|ξ|2 ≤ ai,j(x, t)ξiξj ≤ μ|ξ|2 ∀(x, t) ∈ QT , ν, μ > 0,

aδ(x, t) ≥ C0 for a.e. (x, t) ∈ QT , σδ(x, t) ≥ C0 for a.e. (x, t) ∈ ST ;

(b) It is true that ϕδ
1, hδ ∈ L∞(Q); ϕδ

2 : Q × R
1 → R

1 is Lebesgue measurable
function that is continuous and convex with respect to z for a.e. (x, t) ∈
Q, ϕδ

2(·, ·, z(·, ·)) ∈ L∞(Q) ∀z ∈ C(Q); Gδ : Ω × R
1 → R

1 is Lebesgue
measurable function that is continuous and convex with respect to z for a.e.
x ∈ Ω, Gδ(·, z(·, T )) ∈ L∞(Ω) ∀z(·, T ) ∈ C(Q);

(c) Ω ⊂ R
n be a bounded domain with Lipschitz boundary S.

1 Here and below, we use the notations for the sets QT , ST , Qi,T and also for functional
spaces and norms of their elements adopted in monograph [8].
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Assume that the following estimates hold:

|Gδ(x, z) − G0(x, z)| ≤ CMδ ∀ (x, z) ∈ Ω × S1
M , ‖ϕδ

1 − ϕ0
1‖∞,Q ≤ Cδ, (2)

‖hδ − h0‖∞,Q ≤ Cδ, |ϕδ
2(x, t, z) − ϕ0

2(x, t, z)| ≤ CMδ ∀ (x, t, z) ∈ Q × S1
M ,

‖aδ − a0‖∞,QT
≤ Cδ, |vδ

0 − v0
0 |(0)Ω

≤ Cδ, ‖σδ − σ0‖∞,ST
≤ Cδ,

where C, CM > 0 are independent of δ; Sn
M ≡ {x ∈ R

n : |x| < M}. Let’s note,
that the conditions on the input data of Problem (P δ

p,r), and also the estimates
of deviations of the perturbed input data from the exact ones can be weakened.

In this paper we use for discussing the main results, related to the stable
sequential Lagrange principle and Pontryagin maximum principle in Problem
(P 0

p,r), a scheme of studying the similar optimization problems in the papers [10,
11] for a system of controlled ordinary differential equations. In these works, both
spaces of admissible controls and spaces, where lie images of the operators that
define the pointwise state constraints, represented as Hilbert spaces of square-
integrable functions. For this reason, we put the set D of admissible controls
π into a Hilbert space also, i.e., assume that D ⊂ Z ≡ L2(QT ) × L2(ST ),
‖π‖ ≡ (‖u‖22,QT

+‖w‖22,ST
)1/2. At the same time, we note that the conditions on

the input data of Problem (P δ
p,r) allow formally to consider that the operators

gδ
1, gδ

2, specifying the state constraints of the problem, act into space Lp(Q) with
any index p ∈ [1,+∞]. However, in this paper, taking into account the above
remark, we will put images of these functional operators in the Hilbert space
L2(Q) ≡ H.

Suppose that Problem (P 0
p,r) has a solution (which is unique if g00 is strictly

(strongly) convex). Its solutions are denoted by π0
p,r ≡ (u0

p,r, w
0
p,r), and the set

of all such solutions is designated as U0
p,r. Define the Lagrange functional, a set

of its minimizers and the concave dual problem

Lδ
p,r(π, λ, μ) ≡ gδ

0(π) + 〈λ, gδ
1(π) − hδ − p〉 + 〈μ, gδ

2(π) − r〉, π ∈ D,

U δ[λ, μ] ≡ Argmin {Lδ
p,r(π, λ, μ) : π ∈ D}∀(λ, μ) ∈ H × H+,

V δ
p,r(λ, μ) → sup, (λ, μ) ∈ H × H+, V δ

p,r(λ, μ) ≡ inf
π∈D

Lδ
p,r(π, λ, μ).

Since the Lagrange functional is continuous and convex for any pair (λ, μ) ∈
H × H+ and the set D is bounded, the dual functional V δ

p,r, is obviously defined
and finite for any (λ, μ) ∈ H × H+.

The concept of a minimizing approximate solution in the sense of Warga
[5] is of great importance for the design of a dual regularizing algorithm for
problem (P 0

p,r). Recall that a minimizing approximate solution is a sequence
πi ≡ (ui, wi), i = 1, 2, . . . such that g00(π

i) ≤ β(p, r) + δi, πi ∈ D0,εi

p,r for some
nonnegative number sequences δi and εi, i = 1, 2, . . . , that converge to zero.
Here, β(p, r) is the generalized infimum, i.e., an S-function:

β(p, r) ≡ lim
ε→+0

βε(p, r), βε(p, r) ≡ inf
π∈D0,ε

p,r

g00(π), βε(p, r) ≡ +∞ if D0,ε
p,r = ∅ ,
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Dδ,ε
p,r ≡ {π ∈ D : ‖gδ

1(π) − hδ − p‖2,Q ≤ ε, min
z∈H−

‖gδ
2(π) − r − z‖2,Q ≤ ε}, ε ≥ 0 ,

D00
p,r ≡ D0

p,r, H− ≡ {z ∈ L2(Q) : z(x, t) ≤ 0 for a.e. (x, t) ∈ Q}, H+ ≡ −H−.

Obviously, in the general situation, β(p, r) ≤ β0(p, r), where β0(p, r) is the clas-
sical value of the problem. However, in the case of Problem (P 0

p,r), we have
β(p, r) = β0(p, r). Simultaneously, we may asset that β : L2(Q) × L2(Q) →
R

1 ∪ {+∞} is a convex and lower semicontinuous function. Note here that
the existence of a minimizing approximate solution in Problem (P 0

p,r) obviously
implies its solvability.

From the conditions (a)–(c) and the theorem on the existence of a weak
solution of the third boundary-value problem for a linear parabolic equation of
the divergent type (see [8, chap. III, Sect. 5] and also [12]), it follows that the
direct boundary-value problem (1) and the corresponding adjoint problem are
uniquely solvable in V 1,0

2 (QT ).

Proposition 1. For any pair (u,w) ∈ L2(QT ) × L2(ST ) and any T > 0 the
direct boundary-value problem (1) is uniquely solvable in V 1,0

2 (QT ) and the esti-
mate

|zδ[π]|QT
+ ‖zδ[π]‖2,ST

≤ CT (‖u‖2,QT
+ ‖vδ

0‖2,Ω + ‖w‖2,ST
),

takes place, where the constant CT is independent of δ ≥ 0 and pair π ≡ (u,w) ∈
L2(QT ) × L2(ST ). Also the adjoint problem

−ηt − ∂

∂xj
ai,j(x, t)ηxi

+ aδ(x, t)η = χ(x, t),

η(x, T ) = ψ(x), x ∈ Ω,
∂η

∂N + σδ(x, t)η = ω(x, t), (x, t) ∈ ST

is uniquely solvable in V 1,0
2 (QT ) for any χ ∈ L2(QT ), ψ ∈ L2(Ω), ω ∈ L2(ST )

and any T > 0. Its solution is denoted as η[χ, ψ, ω]. Simultaneously, the estimate

|ηδ[χ, ψ, ω]|QT
+ ‖ηδ[χ, ψ, ω]‖2,ST

≤ C1
T (‖χ‖2,QT

+ ‖ψ‖2,Ω + ‖ω‖2,ST
),

is true, where the constant C1
T is independent of δ ≥ 0 and a triple (χ, ψ, ω).

Simultaneously, from conditions (a)–(c) and the theorems on the existence of
a weak (generalized) solution of the third boundary-value problem for a linear
parabolic equation of the divergent type (see, e.g., [9]), it follows that the direct
boundary-value problem is uniquely solvable in V 1,0

2 (QT ) ∩ C(QT ).

Proposition 2. Let us l > n + 1. For any pair (u,w) ∈ Ll(QT ) × Ll(ST ) and
any T > 0, δ ∈ [0, δ0] the direct boundary-value problem (1) is uniquely solvable
in V 1,0

2 (QT ) ∩ C(QT ) and the estimate

|zδ[π]|(0)
QT

≤ CT (‖u‖l,QT
+ |vδ

0|(0)Ω
+ ‖w‖l,ST

),

takes place, where the constant CT is independent of pair π ≡ (u,w) and δ.
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Further, the minimization problem for Lagrange functional

Lδ
p,r(π, λ, μ) → min, π ∈ D when (λ, μ) ∈ L2(Q) × L+

2 (Q) (3)

plays the central role in all subsequent constructions. It is usual problem
without equality and inequality constraints. It is solvable as a minimization
problem for weakly semicontinuous functional on the weak compact set D ⊂
L2(QT ) × L2(ST ). Here, the weak semicontinuity is a consequence of the con-
vexity and continuity with respect to π of the Lagrange functional. Minimizers
πδ[λ, μ] ∈ U δ[λ, μ] for this optimal control problem satisfy the Pontryagin maxi-
mum principle under supplementary assumption of the existence of Lebesgue
measurable with respect to (x, t) ∈ Q for all z ∈ R

1 and continuous with
respect to z for a.e. x, t gradients ∇zϕ

δ
2(x, t, z), ∇zG

δ(x, z) with the estimates
|∇zϕ

δ
2(x, t, z)| ≤ CM , |∇zG

δ(x, z)| ≤ CM ∀z ∈ S1
M where CM > 0 is inde-

pendent of δ. Due to the estimates of the Propositions 1 and 2 and to the so
called two-parameter variation [13] of the pair πδ[λ, μ] that is needle-shaped
with respect to control u and classical with respect to control w the following
lemma is true.

Lemma 1. Let H(y, η) ≡ −ηy and the additional condition that specified above
is fulfilled. Any pair πδ[λ, μ] = (uδ[λ, μ], wδ[λ, μ]) ∈ U δ[λ, μ], (λ, μ) ∈ L2(Q) ×
L+
2 (Q) satisfies to (usual) Pontryagin maximum principle in the problem (3):

for π = πδ[λ, μ] the following maximum relations

H(u(x, t), ηδ(x, t)) = max
u∈U

H(u, ηδ(x, t)) for a.e. QT , (4)

H(w(s, t), ηδ(s, t)) = max
w∈W

H(w, ηδ(s, t)) for a.e. ST

hold, where ηδ(x, t), (x, t) ∈ QT is a solution for π = πδ[λ, μ] of the adjoint
problem

−ηt − ∂
∂xj

(ai,j(x, t)ηxi
) + aδ(x, t)η =

ϕδ
1(x, t)λ(x, t) + ∇zϕ

δ
2(x, t, zδ[π](x, t))μ(x, t), (x, t) ∈ QT ,

η(x, T ) = ∇zG
δ(x, zδ[π](x, T )), x ∈ Ω, ∂η(x,t)

∂N + σδ(x, t)η = 0, (x, t) ∈ ST .

Remark 1. Note that here and below, if the functions ϕδ
1, ∇zϕ

δ
2(·, ·, z(·, ·)),

λ, μ ∈ L2(Q) are considered on the entire cylinder QT , we set that the equalities
ϕδ
1(x, t) =∇zϕ

δ
2(x, t, z(x, t)) = λ(x, t) = μ(x, t) = 0 take place for (x, t) ∈ QT \Q;

the same notation is preserved if these functions are taken on the entire cylinder.

In the next section we construct minimizing approximate solutions for Prob-
lem (P 0

p,r) from the elements πδ[λ, μ], (λ, μ) ∈ L2(Q) × L+
2 (Q). As consequence,

this construction leads us to various versions of the stable sequential Lagrange
principle and Pontragin maximum principle. In the case of strong convexity and
subdifferentiability of the target functional g00 , these versions are statements
about stable approximations of the solutions of Problem (P 0

p,r) in the metric of
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Z ≡ L2(QT ) × L2(ST ) by the points πδ[λ, μ]. Due to the estimates (2) and the
Propositions 1 and 2 we may assert that the estimates

|gδ
0(π)−g00(π)| ≤ C1δ ∀π ∈ D, ‖gδ

1(π)−g01(π)‖2,Q ≤ C2δ(1+‖π‖) ∀π ∈ Z, (5)

‖hδ − h0‖2,Q ≤ Cδ, ‖gδ
2(π) − g02(π)‖2,Q ≤ C3δ ∀π ∈ D,

hold, in which the constants C1, C2, C3 > 0 are independent of δ ∈ (0, δ0], π.

3 Stable Sequential Pontryagin Maximum Principle

In this section we discuss the so-called regularized or, in other words, stable,
with respect errors of input data, sequential Pontryagin maximum principle for
Problem (P 0

p,r) as necessary and sufficient condition for elements of minimiz-
ing approximate solutions. Simultaneously, this condition we may treat as one
for existence of a minimizing approximate solutions in Problem (P 0

p,r) with per-
turbed input data or as condition of stable construction of a minimizing sequence
in this problem. The proof of the necessity of this condition is based on the dual
regularization method [2–4] that is stable algorithm of constructing a minimiz-
ing approximate solutions in Problem (P 0

p,r). Sketches of the proofs for the the-
orems in this section (Theorems 1, 2 and 3) and some comments may be found
in [14,15].

3.1 Dual Regularization for Optimal Control Problem
with Pointwise State Constraints

The estimates (5) give a possibility to organize for constructing a minimizing
approximate solution in Problem (P 0

p,r) the procedure of the dual regularization
in accordance with a scheme of the paper [11]. In accordance with this scheme
the dual regularization consists in the direct solving dual problem to Problem
(P 0

p,r) and its Tikhonov stabilization

Rδ,α(δ)
p,r (λ, μ) ≡ V δ

p,r(λ, μ) − α(δ)‖(λ, μ)‖2 → max, (λ, μ) ∈ L2(Q) × L+
2 (Q)

under consistency condition δ/α(δ) → 0, α(δ) → 0, δ → 0. This dual regular-
ization leads to constructing minimizing approximate solution in Problem (P 0

p,r)

from the elements πδ[λδ,α(δ)
p,r , μ

δ,α(δ)
p,r ] ∈ Argmin {Lδ

p,r(π, λ, μ) : π ∈ D}, where
(λδ,α

p,r , μδ,α
p,r ) ≡ argmax{Rδ,α

p,r (λ, μ) : (λ, μ) ∈ L2(Q) × L+
2 (Q)} and δ → 0.

We may assert that the following “convergence” theorem for the dual regu-
larization method in Problem (P 0

p,r) is valid.

Theorem 1. Regardless of the properties of the solvability of the dual problem
to Problem (P 0

p,r) or, in other words, regardless of the properties of the sub-
differential ∂β(p, r) (it is empty or not empty), it is true that exist elements
πδ ∈ U δ[λδ,α(δ)

p,r , μ
δ,α(δ)
p,r ] such that the relations

g00(π
δ) → g00(π

0
p,r), g01(π

δ) − h0 − p → 0, g02(π
δ) − r ≤ κ(δ), ‖κ(δ)‖ → 0, δ → 0,

〈(λδ,α(δ)
p,r , μ

δ,α(δ)
p,r ), (gδ

1(π
δ) − hδ − p, gδ

2(π
δ) − r)〉 → 0, δ → 0
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hold, in which the inequality g02(π
δ) − r ≤ κ(δ) is understood in the sense of

ordering on a cone of nonpositive functions in L2(Q). Simultaneously, the equal-
ity

lim
δ→+0

V 0
p,r(λ

δ,α(δ)
p,r , μδ,α(δ)

p,r ) = sup
(λ,μ)∈H×H+

V 0
p,r(λ, μ)

is valid. If the dual of Problem (P 0
p,r) is solvable, then the limit relation

(λδ,α(δ)
p,r , μ

δ,α(δ)
p,r ) → (λ0

p,r, μ
0
p,r), δ → 0 is valid also, where (λ0

p,r, μ
0
p,r) denotes

minimum-norm solution of the dual problem.

This theorem may be proved in exact accordance with a scheme of proving
the similar theorem in [11]. We note only that, as in [11], this proving uses a
weak continuity of the operators gδ

1, gδ
2 that is consequence of the conditions on

the input data of Problem (P 0
p,r) and a regularity of the bounded solutions of

the boundary-value problem (1) inside of the cylinder QT [8, chap. III, Theo-
rem10.1].

3.2 Stable Sequential Lagrange Principle for Optimal Control
Problem with Pointwise State Constraints

We formulate in this subsection the necessary and sufficient condition for exis-
tence of a minimizing approximate solution in Problem (P 0

p,r). Also, it can be
called by stable sequential Lagrange principle in nondifferential form for this
problem. Simultaneously, as we deal only with regular Lagrange function, the
formulated theorem may be called by Kuhn-Tucker theorem in nondifferential
form. Note that the necessity of the conditions of formulated below theorem
follows from the Theorem 1. At the same time, their sufficiency is a simple con-
sequence of the convexity of Problem (P 0

p,r) and the conditions on its input data.
A verification of these propositions for similar situation of the convex program-
ming problem in a Hilbert space may be found in [1,7].

Theorem 2. Regardless of the properties of the subdifferential ∂β(p, r) (it is
empty or not empty) or, in other words, regardless of the properties of the solv-
ability of the dual problem to Problem (P 0

p,r), necessary and sufficient condi-
tions for Problem (P 0

p,r) to have a minimizing approximate solution is that there
is a sequence of dual variables (λk, μk) ∈ H × H+, k = 1, 2, . . . , such that
δk‖(λk, μk)‖ → 0, k → ∞, and relations

πδk

[λk, μk] ∈ Dδk,εk

p,r , εk → 0, k → ∞, (6)

〈(λk, μk), (gδk

1 (πδk

[λk, μk]) − hδk − p, gδk

2 (πδk

[λk, μk]) − r)〉 → 0, k → ∞ (7)

hold for some elements πδk

[λk, μk] ∈ U δk

[λk, μk]. The sequence πδk

[λk, μk], k =
1, 2, . . . , is the desired minimizing approximate solution and each of its weak limit
points is a solution of Problem (P 0

p,r). As (λk, μk) ∈ H × H+, k = 1, 2, . . . , we

can use the sequence of the points (λδk,α(δk)
p,r , μ

δk,α(δk)
p,r ), k = 1, 2, . . . , generated

by the dual regularization method of the Theorem1. If the dual of Problem (P 0
p,r)
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is solvable, the sequence (λk, μk) ∈ H × H+, k = 1, 2, . . . , should be assumed to
be bounded. The limit relation

V 0
p,r(λ

k, μk) → sup
(λ,μ)∈H×H+

V 0
p,r(λ, μ) (8)

holds as a consequence of the relations (6) and (7). Furthermore, each weak limit
point (if such points exist) of the sequence (λk, μk) ∈ H × H+, k = 1, 2, . . . is a
solution of the dual problem V 0

p,r(λ, μ) → max, (λ, μ) ∈ H × H+.

Remark 2. If the functional g00 is strongly convex and subdifferentiable on D
then from the weak convergence of the unique in this case elements πδk

[λk, μk]
to unique element π0

p,r as k → ∞, and numerical convergence g00(π
δk

[λk, μk]) →
g00(π

0
p,r), k → ∞ follows the strong convergence πδk

[λk, μk] → π0
p,r, k → ∞.

Problem (P 0
p,r) with the strongly convex g00 for linear system of ordinary differ-

ential equations but with exact input data is studied in [10].

3.3 Stable Sequential Pontryagin Maximum Principle for Optimal
Control Problem with Pointwise State Constraints

Denote by U δ
max[λ, μ] a set of the elements π ∈ D that satisfy all relations of the

maximum principle (4) of the Lemma 1. Under the supplementary condition of
existence of continuous with respect to z gradients ∇zϕ

δ
2(x, t, z), ∇zG

δ(x, z) with
corresponding estimates, it follows that the proposition of the Theorem 2 may be
rewritten in the form of the stable sequential Pontryagin maximum principle. It
is obviously that the equality Uδ

max[λ, μ] = U δ[λ, μ] takes place under mentioned
supplementary condition.

Theorem 3. Regardless of the properties of the subdifferential ∂β(p, r) (it is
empty or not empty) or, in other words, regardless of the properties of the solv-
ability of the dual problem to Problem (P 0

p,r), necessary and sufficient condi-
tions for Problem (P 0

p,r) to have a minimizing approximate solution is that there
is a sequence of dual variables (λk, μk) ∈ H × H+, k = 1, 2, . . . , such that
δk‖(λk, μk)‖ → 0, k → ∞, and relations (6) and (7) hold for some elements
πδk

[λk, μk] ∈ U δk

max[λk, μk]. Moreover, the sequence πδk

[λk, μk], k = 1, 2, . . . , is
the desired minimizing approximate solution and each of its weak limit points is
a solution of Problem (P 0

p,r). As (λk, μk) ∈ H×H+, k = 1, 2, . . . , we can use the

sequence of the points (λδk,α(δk)
p,r , μ

δk,α(δk)
p,r ), k = 1, 2, . . . , generated by the dual

regularization method of the Theorem 1. If the dual of Problem (P 0
p,r) is solvable,

the sequence (λk, μk) ∈ H × H+, k = 1, 2, . . . , should be assumed to be bounded.
The limit relation (8) holds as a consequence of the relations (6) and (7).

Remark 3. When the inequality constraint in Problem (P 0
p,r) is absent, i.e.,

(P 0
p,r) = (P 0

p ), and ϕ2(x, t) = r ≡ 0, ϕ1(x, t) ≡ 1, the target functional g00
is taken, for example, in the form g00(π) ≡ ‖π‖2 ≡ ‖u‖2 + ‖w‖2 then Problem
(P 0

p ) acquires the typical form of unstable inverse problem. In this case the sta-
ble sequential Pontryagin maximum principle of the Theorem3 becomes a tool
for the direct solving such unstable inverse problem.
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Remark 4. In important partial case of Problem (P 0
p,r) = (P 0

r ), when it has only
the inequality constraint (ϕδ

1(x, t) = hδ(x, t) = p(x, t) = 0, (x, t) ∈ Q), “weak”
passage to the limit in the relations of the Theorem3 leads to usual for similar
optimal control problems Pontryagin maximum principle (see, e.g., [9,16]) with
nonnegative Radon measures in the input data of the adjoint equation.
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