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Abstract. The Hilbert Uniqueness Method introduced by J.-L. Lions
in 1988 has great interest among scientists in the control theory, because
it is a basic tool to get controllability results for evolutive systems. Our
aim is to outline the Hilbert Uniqueness Method for first order coupled
systems in the presence of memory terms in general Hilbert spaces. At
the end of the paper we give some applications of our general results.
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1 Introduction

It is well known that heat equations with memory of the following type

yt = α�y +
∫ t

0

K(t − s)�y(s)ds, (1)

with α > 0, cannot be controlled to rest for large classes of memory kernels
and controls, see e.g. [3,4]. The motivation for that kind of results is due to the
smoothing effect of the solutions, because (1) is a parabolic equation when the
constant α before the Laplacian is positive.

On the other hand the class of the partial integro-differential equations
changes completely if in the Eq. (1) one takes α = 0. The physical model relies
on the Cattaneo’s paper [1]. Indeed, in [1] to overcome the fact that the solu-
tions of the heat equation propagate with infinite speed, Cattaneo proposed the
following equation

yt =
∫ t

0

K(t − s)�y(s)ds, (2)

with K(t) = e−γt, γ being a positive constant. The interest for equations of the
type (2) is in the property of the solutions to have finite propagation speed, the
same property of the solutions of wave equations.
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From a mathematical point of view, a natural question is to study integro-
differential equations of the type

ut +
∫ t

0

M(t − s)�2u(s)ds = 0 ,

where M(t) is a suitable kernel, locally integrable on (0,+∞), and �2 denotes
the biharmonic operator, that is in the N -dimensional case

�2u =
N∑

i=1

N∑
j=1

∂2
ii∂

2
jju .

The Hilbert Uniqueness Method has been introduced by Lions, see [7,8], to
study control problems for partial differential systems. That method has been
largely used in the literature, see e.g. [5].

Inspired by those problems, the goal of the present paper is to describe the
Hilbert Uniqueness Method, for coupled hyperbolic equations of the first order
with memory in a general Hilbert space, when the integral kernels involved are
general functions k1, k2 ∈ L1(0, T ) and integral terms also occur in the coupling:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1t +
∫ t

0

k1(t − s)Au1(s)ds + L1(1 ∗ u2) = 0

in (0, T ) ,

u2t +
∫ t

0

k2(t − s)A2u2(s)ds + L2(1 ∗ u1) = 0

In another context, in [2] the authors study the exact controllability of the
equation

yt =
∫ t

0

K(t − s)�y(s)ds + uχω in (0, T ) × Ω, (3)

where ω is a given nonempty open subset of Ω. The hyperbolic nature of (3)
allows to show its exact controllability under suitable conditions on the waiting
time T and the controller ω, thanks to observability inequalities for the solutions
of the dual system obtained by means of Carleman estimates.

For a different approach leading to solve control problems for hyperbolic
systems, we refer to [6,11].

2 The Hilbert Uniqueness Method

Let H be a real Hilbert space with scalar product 〈· , ·〉 and norm ‖ · ‖.
We consider a linear operator A : D(A) ⊂ H → H with domain D(A),

k1, k2 ∈ L1(0, T ) and Li (i = 1, 2) linear operators on H with domain D(Li) ⊃
D(A). We assume that L2 is self-adjoint and L1 is self-adjoint on a subset of its
domain that will be precised later.

Moreover, let H1 be another real Hilbert space with scalar product 〈· , ·〉H1

and norm ‖ · ‖H1 and B ∈ L(H0;H1), where H0 is a space such that D(A) ⊂
H0 ⊂ H. In the applications B could be, for example, a trace operator.
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We take into consideration the following first order coupled system with
memory⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1t +
∫ t

0

k1(t − s)Au1(s)ds + L1(1 ∗ u2) = 0

in (0, T ),

u2t +
∫ t

0

k2(t − s)A2u2(s)ds + L2(1 ∗ u1) = 0

(4)

with null initial conditions
u1(0) = u2(0) = 0, (5)

and satisfying

Bu1(t) = g1(t), Bu2(t) = 0, BAu2(t) = g2(t), t ∈ (0, T ). (6)

For a reachability problem we mean the following.

Definition 1. Given T > 0 and u10 , u20 ∈ H, a reachability problem consists
in finding gi ∈ L2(0, T ;H1), i = 1, 2 such that the weak solution u of problem
(4)–(6) verifies the final conditions

u1(T ) = u10, u2(T ) = u20. (7)

One can solve such reachability problems by means of the Hilbert Uniqueness
Method. To show that, we proceed as follows.

To begin with, we assume the following conditions.

Assumptions (H1)

1. There exists a self-adjoint positive linear operator A on H with dense domain
D(A) satisfying

D(A) ⊂ D(A), Ax = Ax ∀x ∈ D(A), D(
√

A) = Ker(B).

2. L2 is self-adjoint and L1 is self-adjoint on D(A) ∩ Ker(B), that is

〈L1ϕ, ξ〉 = 〈ϕ,L1ξ〉, ∀ϕ, ξ ∈ D(A) ∩ Ker(B). (8)

3. There exists Dν ∈ L(H0;H1) such that the following identity holds
〈Aϕ, ξ〉 = 〈ϕ,Aξ〉 − 〈Bϕ,Dνξ〉H1 , ∀ϕ ∈ D(A), ξ ∈ D(A). (9)

Now, we consider the adjoint system of (4), that is, the following coupled
system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z1t −
∫ T

t

k1(s − t)Az1(s)ds −
∫ T

t

L2z2(s)ds = 0

in (0, T ),

z2t −
∫ T

t

k2(s − t)A2z2(s)ds −
∫ T

t

L1z1(s)ds = 0

(10)

with given final data

z1(T ) = z1T , z2(T ) = z2T . (11)

We assume that for final data sufficiently regular an existence and regularity
result for the solution of (10)–(11) holds. Precisely:
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Theorem 1. For any z1T ∈ D(A) and z2T ∈ D(A2) there exists a unique solu-
tion (z1, z2) of (10)–(11) such that z1 ∈ C1([0, T ],H) ∩ C([0, T ],D(A)) and
z2 ∈ C1([0, T ],H) ∩ C([0, T ],D(A2)).

That type of result will be true in the applications, taking into account that
backward problems are equivalent to forward problems by means of a change of
the variable t into t − T .

If Theorem 1 holds true, then the regularity of the solution (z1, z2) of (10)–
(11) and assumption (H1)-3 allow to obtain the following properties: the func-
tions Dνzi, i = 1, 2, belong to C(0, T ;H1), because D(A) ⊂ D(A) ⊂ H0. So, we
can consider the nonhomogeneous problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1(t) +

∫ t

0

k1(t − s)Aφ1(s)ds + L1(1 ∗ φ2) = 0

φ′
2(t) +

∫ t

0

k2(t − s)A2φ2(s)ds + L2(1 ∗ φ1) = 0

in (0, T )

Bφ1(t) =
∫ T

t

k1(s − t)Dνz1(s)ds,

Bφ2(t) = 0, BAφ2(t) =
∫ T

t

k2(s − t)Dνz2(s)ds

φ1(0) = φ2(0) = 0.

(12)

If (φ1, φ2) denotes the solution of problem (12), then we can introduce the fol-
lowing linear operator on H × H:

Ψ(z1T , z2T ) = (φ1(T ), φ2(T )), (z1T , z2T ) ∈ D(A) × D(A2).

We will prove the next result.

Theorem 2. If (ξ1, ξ2) is the solution of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ′
1(t) −

∫ T

t

k1(s − t)Aξ1(s)ds −
∫ T

t

L2ξ2(s)ds = 0,

in (0, T )

ξ′
2(t) −

∫ T

t

k2(s − t)A2ξ2(s)ds −
∫ T

t

L1ξ1(s)ds = 0,

ξ1(T ) = ξ1T , ξ2(T ) = ξ2T ,

where (ξ1T , ξ2T ) ∈ D(A) × D(A2), then the identity

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉

=
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈BAφ2(t),
∫ T

t

k2(s − t)Dνξ2(s) ds〉H1 dt,

(13)

holds true.
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Proof. We multiply the first equation in (12) by ξ1(t) and integrate on [0, T ], so
we have ∫ T

0

〈φ′
1, ξ1〉 dt +

∫ T

0

〈
∫ t

0

k1(t − s)Aφ1(s) ds, ξ1〉 dt

+
∫ T

0

〈L1(1 ∗ φ2), ξ1〉 dt = 0. (14)

In the second term of the above identity we change the order of integration and,
since ξ1(t) ∈ D(A), we can use (9) to get
∫ T

0

〈
∫ t

0

k1(t − s)Aφ1(s) ds, ξ1(t)〉dt =

∫ T

0

∫ T

s

k1(t − s)〈Aφ1(s), ξ1(t)〉 dt ds

=

∫ T

0

〈φ1(s),

∫ T

s

k1(t − s)Aξ1(t) dt〉 ds

−
∫ T

0

〈Bφ1(s),

∫ T

s

k1(t−s)Dνξ1(t) dt〉H1 ds.

Note that, in virtue of assumption (H1)-1, one has D(A) ⊂ D(A) ∩ Ker(B); so,
changing again the order of integration and applying (8), we obtain

∫ T

0

〈L1(1 ∗ φ2), ξ1〉 dt =
∫ T

0

〈φ2(s),
∫ T

s

L1ξ1(t) dt〉 ds.

If we integrate by parts the first term in (14) and take into account the previous
two identities, then, in view also of φ1(0) = 0, we get

〈φ1(T ), ξ1(T )〉 −
∫ T

0

〈φ1(t), ξ′
1(t)〉 dt +

∫ T

0

〈φ1(t),
∫ T

t

k1(s − t)Aξ1(s) ds〉 dt

−
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈φ2(t),
∫ T

t

L1ξ1(s) ds〉 dt = 0.

As a consequence of the former equation and

ξ′
1(t) −

∫ T

t

k1(s − t)Aξ1(s)ds =
∫ T

t

L2ξ2(s)ds,

we obtain

〈φ1(T ), ξ1T 〉 −
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈φ2(t),
∫ T

t

L1ξ1(s) ds〉 dt −
∫ T

0

〈φ1(t),
∫ T

t

L2ξ2(s)ds〉 dt = 0.

(15)

In a similar way, we multiply the second equation in (12) by ξ2(t) and inte-
grate on [0, T ]: if we integrate by parts the first term, take into account that
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φ2(0) = 0 and change the order of integration in the other two terms, then we
have

〈φ2(T ), ξ2T 〉 −
∫ T

0

〈φ2(t), ξ′
2(t)〉 dt

+
∫ T

0

∫ T

s

k2(t − s)〈 A2φ2(s), ξ2(t)〉 dt ds

+
∫ T

0

∫ T

s

〈L2φ1(s), ξ2(t)〉 dt ds = 0.

(16)

Now, we observe that from (9) it follows for any ϕ ∈ D(A2) and ξ ∈ D(A2)

〈A2ϕ, ξ〉 = 〈ϕ,A2ξ〉 − 〈Bϕ,DνAξ〉H1 − 〈BAϕ,Dνξ〉H1 .

Putting the above equation into (16) and taking into account that the operator
L2 is self-adjoint yield

〈φ2(T ), ξ2T 〉 −
∫ T

0

〈φ2(t), ξ′
2(t)〉 dt

+
∫ T

0

〈φ2(s),
∫ T

s

k2(t − s)A2ξ2(t) dt〉 ds

−
∫ T

0

〈BAφ2(s),
∫ T

s

k2(t − s)Dνξ2(t) dt〉H1 ds

+
∫ T

0

〈φ1(s),
∫ T

s

L2ξ2(t) dt〉 ds = 0.

In virtue of

ξ′
2(t) −

∫ T

t

k2(s − t)A2ξ2(s)ds =
∫ T

t

L1ξ1(s)ds,

we get

〈φ2(T ), ξ2T 〉 −
∫ T

0

〈BAφ2(s),
∫ T

s

k2(t − s)Dνξ2(t) dt〉H1 ds

+
∫ T

0

〈φ1(t),
∫ T

t

L2ξ2(s)ds〉 dt −
∫ T

0

〈φ2(t),
∫ T

t

L1ξ1(s)ds〉 dt = 0.

(17)

If we sum Eqs. (15) and (17), then we have

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉 = 〈φ1(T ), ξ1T 〉 + 〈φ2(T ), ξ2T 〉

=
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈BAφ2(t),
∫ T

t

k2(s − t)Dνξ2(s) ds〉H1 dt,

(18)

that is, (13) holds true. �
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If we take (ξ1T , ξ2T ) = (z1T , z2T ) in (13), then we have

〈Ψ(z1T , z2T ), (z1T , z2T )〉

=
∫ T

0

(∣∣∣
∫ T

t

k1(s − t)Dνz1(s) ds
∣∣∣2
H1

+
∣∣∣
∫ T

t

k2(s − t)Dνz2(s) ds
∣∣∣2
H1

)
dt.

Consequently, we can introduce a semi-norm on the space D(A) × D(A2). Pre-
cisely, if we consider, for any (z1T , z2T ) ∈ D(A) × D(A2), the solution (z1, z2) of
the system (10)–(11), then we define

‖(z1T , z2T )‖2F :=
∫ T

0

(∣∣∣
∫ T

t

k1(s − t)Dνz1(s) ds
∣∣∣2
H1

+
∣∣∣
∫ T

t

k2(s − t)Dνz2(s) ds
∣∣∣2
H1

)
dt.

(19)

We observe that ‖ · ‖F is a norm if and only if the following uniqueness theorem
holds.

Theorem 3. If (z1, z2) is the solution of problem (10)–(11) such that

∫ T

t

k1(s − t)Dνz1(s) ds =
∫ T

t

k1(s − t)Dνz2(s) ds = 0, on [0, T ],

then

z1 = z2 = 0 in [0, T ].

The validity of Theorem3 is the starting point for the application of the Hilbert
Uniqueness Method. Indeed, if we assume that Theorem 3 holds true, then we
can define the Hilbert space F as the completion of D(A) × D(A2) for the norm
‖ · ‖F . Thanks to (13) and (19) we have

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉 = 〈(z1T , z2T ), (ξ1T , ξ2T )〉F

∀(z1T , z2T ), (ξ1T , ξ2T ) ∈ D(A) × D(A2),
(20)

where 〈·, ·〉F denotes the scalar product associated with the norm ‖ · ‖F .
Consequently,

∣∣〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉∣∣ ≤ ‖(z1T , z2T )‖F ‖(ξ1T , ξ2T )‖F

∀(z1T , z2T ), (ξ1T , ξ2T ) ∈ D(A) × D(A2).

Thanks to the above inequality, the operator Ψ can be extended uniquely to a
linear continuous operator, denoted again by Ψ , from F into its dual space F ′.
By (20) it follows that

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉 = 〈(z1T , z2T ), (ξ1T , ξ2T )〉F

∀(z1T , z2T ), (ξ1T , ξ2T ) ∈ F,
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and, as a consequence, we have that the operator Ψ : F → F ′ is an isomorphism.
Moreover, the key point to characterize the space F is to establish observ-

ability estimates of the following type

∫ T

0

(∣∣∣
∫ T

t

k1(s − t)Dνz1(s) ds
∣∣∣2
H1

+
∣∣∣
∫ T

t

k2(s − t)Dνz2(s) ds
∣∣∣2
H1

)
dt

� ‖z1T ‖2F1
+ ‖z2T ‖2F2

(21)

for suitable spaces F1 , F2. In that case, the uniqueness result stated by Theorem 3
holds true, so the operator Ψ : F → F ′ is an isomorphism, and in virtue of (19)
and (21) we get

F = F1 × F2

with the equivalence of the respective norms. Finally, we are able to solve the
reachability problem (4)–(7) for (u10, u20) ∈ F ′

1 × F ′
2.

3 Applications

Example 1. Let H = L2(0, π) be endowed with the usual scalar product and
norm. In [9] we take A = d2

dx2 with null Dirichlet boundary conditions, k1(t) =
β
η e−ηt + 1 − β

η , k2 ≡ 1. We examine the case in which Li = aiI, with ai ∈ R,
i = 1, 2 and I the identity operator on H.

By writing the solutions as Fourier series, we are able to prove Theorems 1
and 3, thanks also to some properties of the solutions of integral equations. In
particular, by showing suitable Ingham type estimates, we prove observability
estimates of the type (21) where F = H1

0 (0, π) × H1
0 (0, π). Therefore, we can

deduce reachability results by means of the Hilbert Uniqueness Method.

Example 2. We consider H = L2(0, π) endowed with the usual scalar product
and norm. In [9] we take A = d2

dx2 with null Dirichlet boundary conditions,
k1(t) = β

η e−ηt + 1 − β
η , k2 ≡ 1, L1 = a1

d2

dx2 and L2 = a2I with ai ∈ R, i = 1, 2.

Example 3. Let H = L2(Ω) be endowed with the usual scalar product and
norm. In [10] we take A = � with null Dirichlet boundary conditions, k1(t) =
β
η e−ηt + 1 − β

η , k2 ≡ 1, L1 = a1� and L2 = a2I with ai ∈ R, i = 1, 2.
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tribués. Tome 1. Contrôlabilité Exacte, with appendices by E. Zuazua, C. Bardos,
G. Lebeau and J. Rauch. Rech. Math. Appl., vol. 8. Masson, Paris (1988)
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