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Abstract. In this paper we study an optimal control problem for a
doubly nonlinear evolution equation governed by time-dependent subd-
ifferentials. We prove the existence of solutions to our equation. Also,
we consider an optimal control problem without uniqueness of solutions
to the state system. Then, we prove the existence of an optimal control
which minimizes the nonlinear cost functional. Moreover, we apply our
general result to some model problem.
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1 Introduction

The present paper is concerned with an optimal control problem without unique-
ness of solutions to a doubly nonlinear evolution equation governed by time-
dependent subdifferentials in a real Hilbert space H.

In our optimal control problem, for each control f , the state system (P; f) is
as follows:

State system (P;f):

(P; f)
{

∂ψt(u′(t)) + ∂ϕ(u(t)) + g(u(t)) � f(t) in H for a.e. t ∈ (0, T ),
u(0) = u0 in H,

(1.1)

where 0 < T < ∞, u′ = du/dt in H, ψt : H → R ∪ {∞} is a time-dependent
proper, l.s.c. (lower semi-continuous), convex function for each t ∈ [0, T ], ϕ :
H → R∪ {∞} is a time-independent proper, l.s.c., convex function, ∂ψt and ∂ϕ
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are their subdifferential in H, g(·) is a single-valued Lipschitz operator in H, f
is a given H-valued control function and u0 ∈ H is a given initial data.

In this present paper, we consider the optimal control problem without
uniqueness of solutions to the state system (P; f). To this end, let V be a real
Hilbert space such that the embedding V ↪→ H is dense and compact. Then, we
study the following optimal control problem without uniqueness of solutions to
(P; f):

Problem (OP): Find the optimal control f∗ ∈ F such that

J(f∗) = inf
f∈F

J(f).

Here F := W 1,2(0, T ;H) ∩ L2(0, T ;V ) is the control space and J(f) is the cost
functional defined by

J(f) := inf
u∈S(f)

πf (u), (1.2)

where f ∈ F is the control, S(f) is the set of all solutions to (P; f) with the
control function f . Also, u is a solution to the state system (P; f) and πf (u) is
its functional defined by

πf (u) :=
1
2

∫ T

0

|u(t) − uad|2Hdt +
1
2

∫ T

0

|f(t)|2V dt +
1
2

∫ T

0

|ft(t)|2Hdt, (1.3)

where uad ∈ L2(0, T ;H) is a given target profile and | · |H (resp. | · |V ) is the
norm of H (resp. V ).

There is vast literature on optimal control problems to (parabolic or elliptic)
variational inequalities. For instance, we refer to [5,10,11,17–19,23]. In particu-
lar, Lions [18] and Neittaanmäki et al. [19, Sect. 3.1.3.1] discussed the singular
control problems, which is the class of control problems characterized by not
well-posed state systems.

The theory of nonlinear evolution equations are useful in the systematic
study of variational inequalities. For instance, many mathematicians studied the
nonlinear evolution equation of the form:

u′(t) + ∂ϕt(u(t)) � f(t) in H for a.e. t ∈ (0, T ), (1.4)

where ϕt(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function. For various
aspects of (1.4), we refer to [11,14,20,22]. In particular, Hu–Papageorgiou [11]
studied the optimal control problems to (1.4).

Also, doubly nonlinear evolution equations were studied. For instance,
Kenmochi–Pawlow [15] studied the following type of doubly nonlinear evolution
equations:

d

dt
∂ψ(u(t)) + ∂ϕt(u(t)) � f(t) in H for a.e. t ∈ (0, T ), (1.5)
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where ψ(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function. The abstract
results of doubly nonlinear evolution Eq. (1.5) can be applied to elliptic-parabolic
equations. Therefore, from the view point of (1.5), Hoffmann et al. [10] studied
optimal control problems for quasi-linear elliptic-parabolic variational inequali-
ties with time-dependent constraints. Also, Kadoya–Kenmochi [12] studied the
optimal sharp design of elliptic-parabolic equations.

On the other hand, Akagi [1], Arai [2], Aso et al. [3,4], Colli [8], Colli–
Visintin [9], Senba [21] investigated the following type of doubly nonlinear evo-
lution Eq. (cf. (1.1)):

∂ψt(u′(t)) + ∂ϕ(u(t)) � f(t) in H for a.e. t ∈ (0, T ). (1.6)

However, there was no result of optimal control for (1.1) and (1.6) since (1.1)
and (1.6) are not well-posed state systems, in general. Therefore, by arguments
similar to Kadoya et al. [13], more precisely, using the cost functional defined by
(1.2) and (1.3), we establish the abstract theory of the optimal control problem
(OP) without uniqueness of solutions to the state system (1.1).

The plan of this paper is as follows. In the next Sect. 2, we state the main
result in this paper. In Sect. 3, we first give the sketch of the proof of solvability
for (1.1). Also, we prove the convergence result (Proposition 3) of solutions to
(P; f). Moreover, we prove the main result (Theorem 1) on the existence of the
optimal control to (OP). In the final Sect. 4, we apply our abstract result to a
parabolic PDE with Neumann boundary condition.

Notations

Throughout this paper, let H be a real Hilbert space with the inner product
(·, ·) and norm | · |H , respectively. Also, let V be a real Hilbert space with the
norm | · |V such that the embedding V ↪→ H is dense and compact.

Let us here prepare some notations and definitions of subdifferential of convex
functions. To this end, let E be a real Hilbert space with the inner product
(·, ·)E . Then, for a proper (i.e., not identically equal to infinity), l.s.c. and convex
function φ : E → R ∪ {∞}, the effective domain D(φ) is defined by

D(φ) := {z ∈ E; φ(z) < ∞}.

The subdifferential of φ is a possibly multi-valued operator in E and is defined
by z∗ ∈ ∂φ(z) if and only if

z ∈ D(φ) and (z∗, y − z)E ≤ φ(y) − φ(z) for all y ∈ E.

The next proposition is concerned with the closedness of maximal monotone
operator ∂φ in E.

Proposition 1 (cf. [7, Lemma 1.2]). Let E be a real Hilbert space with the
inner product (·, ·)E. Let φ : E → R ∪ {∞} be a proper, l.s.c. and convex
function. Also, let [zn, z∗

n] ∈ ∂φ and [z, z∗] ∈ E × E be such that

zn → z weakly in E and z∗
n → z∗ weakly in E as n → ∞.
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Suppose that

lim sup
n→∞

(zn, z∗
n)E ≤ (z, z∗)E .

Then, it follows that [z, z∗] ∈ ∂φ and limn→∞(zn, z∗
n)E = (z, z∗)E.

For various properties and related notions of the proper, l.s.c., convex func-
tion φ and its subdifferential ∂φ, we refer to a monograph by Brézis [6].

2 Main Theorem

We begin by defining the notion of a solution to (P; f).

Definition 1. Given f ∈ L2(0, T ;H) and u0 ∈ H, the function u : [0, T ] → H
is called a solution to (P;f) on [0, T ], if the following conditions are satisfied:

(i) u ∈ W 1,2(0, T ;H).
(ii) There exist functions ξ ∈ L2(0, T ;H) and ζ ∈ L2(0, T ;H) such that

ξ(t) ∈ ∂ψt(u′(t)) in H for a.e. t ∈ (0, T ),
ζ(t) ∈ ∂ϕ(u(t)) in H for a.e. t ∈ (0, T )

and

ξ(t) + ζ(t) + g(u(t)) = f(t) in H for a.e. t ∈ (0, T ).

(iii) u(0) = u0 in H.

Now, we give the assumptions on ψt, ϕ and g.

(A1) For each t ∈ [0, T ], ψt(·) : H → R ∪ {∞} is a proper, l.s.c. and convex
function. Also, ϕ(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function.

(A2) There exists a positive constant C1 > 0 such that

ψt(z) ≥ C1|z|2H , ∀t ∈ [0, T ], ∀z ∈ D(ψt).

(A3) There exists a positive constant C2 > 0 such that

|z∗|2H ≤ C2(ψt(z) + 1), ∀[z, z∗] ∈ ∂ψt, ∀t ∈ [0, T ].

(A4) There are functions α ∈ W 1,2(0, T ) and β ∈ W 1,1(0, T ) satisfying the
following property: for any s, t ∈ [0, T ] with s ≤ t and z ∈ D(ψs), there exists
z̃ ∈ D(ψt) such that

|z̃ − z|H ≤ |α(t) − α(s)|
(
1 + ψs(z)

1
2

)
,

ψt(z̃) − ψs(z) ≤ |β(t) − β(s)| (1 + ψs(z)).
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(A5) There exists a positive constant C3 > 0 such that

ϕ(z) ≥ C3|z|2H , ∀z ∈ D(ϕ).

(A6) For each r > 0, the level set {z ∈ H;ϕ(z) ≤ r} is compact in H.
(A7) g : H → H is a single-valued Lipschitz operator. Namely, there is a positive

constant Lg > 0 such that

|g(z1) − g(z2)|H ≤ Lg|z1 − z2|H , ∀zi ∈ H (i = 1, 2).

Remark 1. The assumption (A4) is the standard time-dependence condition of
convex functions (cf. [14,20,22]).

By a slight modification of [1,3], we can prove the following existence result
for problem (P;f). We give a sketch of its proof in Sect. 3.

Proposition 2 (cf. [1, Theorem 3.2], [3, Theorem 2.1]). Assume (A1)–
(A7). Then, for each u0 ∈ D(ϕ) and f ∈ L2(0, T ;H), there exists at least one
solution u to (P;f) on [0, T ]. Moreover, there exists a positive constant N0 > 0,
independent of u0, such that

∫ T

0

ψt(u′(t))dt + sup
t∈[0,T ]

ϕ(u(t)) ≤ N0

(
ϕ(u0) + |f |2L2(0,T ;H) + 1

)
. (2.1)

Remark 2. Colli [8, Theorem 5] and Colli–Visintin [9, Remark 2.5] showed sev-
eral criteria for the uniqueness of solutions to the following type of doubly non-
linear evolution equations:

∂ψ(u′(t)) + ∂ϕ(u(t)) � f(t) in H for a.e. t ∈ (0, T ). (2.2)

For instance, if ∂ϕ is linear, positive, self-adjoint in H and ∂ψ is strictly
monotone in H, we can show the uniqueness of solutions to (2.2). However, ∂ψt

and ∂ϕ in (1.1) are nonlinear and not self-adjoint, and hence, the uniqueness
question to (1.1) is still open.

Now, we state the main result of this paper, which is directed to the existence
of an optimal control to (OP) without uniqueness of solutions to (P;f).

Theorem 1. Assume (A1)–(A7) and u0 ∈ D(ϕ). Let uad be an element in
L2(0, T ;H). Then, (OP) has at least one optimal control f∗ ∈ F such that

J(f∗) = inf
f∈F

J(f).
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3 Proof of Main Theorem1

In this section, we give the sketch of the proof of Proposition 2 by arguments
similar to Akagi [1] and Aso et al. [3]. Moreover, we prove Theorem 1.

Throughout this section, we suppose that all the assumptions of Theorem1
hold.

Sketch of the proof of Proposition 2.
By arguments similar to Akagi [1] and Aso et al. [3], we can prove Proposition 2.
In fact, for each λ ∈ (0, 1], we consider the following approximate problem for
(P;f), denoted by (P;f)λ:

(P; f)λ

⎧⎨
⎩

λu′
λ(t) + ∂ψt(u′

λ(t)) + ∂ϕλ(uλ(t)) + g(Jϕ
λ uλ(t)) � f(t) in H

for a.e. t ∈ (0, T ),
uλ(0) = u0 in H,

where ∂ϕλ and Jϕ
λ := (I + λ∂ϕ)−1 denote the Yosida approximation and the

resolvent of ∂ϕ, respectively.
By Cauchy–Lipschitz–Picard’s existence theorem and the fixed point argu-

ment for compact operators (e.g. the Schauder’s fixed point theorem), we can
prove the existence of solutions uλ to (P; f)λ on [0, T ].

From the standard calculation, we can establish a priori estimate (cf. (2.1))
of solutions uλ to (P; f)λ with respect to λ ∈ (0, 1]. Therefore, by the limiting
procedure of solutions uλ to (P; f)λ as λ → 0, we can construct the solution to
(P; f) on [0, T ] satisfying the boundedness estimate (2.1). For a detailed argu-
ment, see [1, Sects. 4 and 5] or [3, Sects. 3 and 4], for instance. ��

Here, let us mention the result of the convergence of solutions to (P; f), which
is a key proposition to proving Theorem 1.

Proposition 3. Assume (A1)–(A7). Let {fn} ⊂ L2(0, T ;H), {u0,n} ⊂ D(ϕ),
f ∈ L2(0, T ;H) and u0 ∈ D(ϕ). Assume that

fn → f strongly in L2(0, T ;H), (3.1)

u0,n → u0 in H and ϕ(u0,n) → ϕ(u0) (3.2)

as n → ∞. Let un be a solution to (P;fn) on [0, T ] with initial data u0,n. Then,
there exist a subsequence {nk} ⊂ {n} and a function u ∈ W 1,2(0, T ;H) such
that u is a solution to (P;f) on [0, T ] with initial data u0 and

unk
→ u in C([0, T ];H) as k → ∞. (3.3)

Proof. From the bounded estimate (2.1), (A2), (A5) and the level set compact-
ness of ϕ (cf. (A6)), we derive that there are a subsequence {nk} of {n} and a
function u ∈ W 1,2(0, T ;H) such that nk → ∞,

unk
→ u weakly in W 1,2(0, T ;H),

in C([0, T ];H),
weakly-∗ in L∞(0, T ;H)

⎫⎬
⎭ (3.4)
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as k → ∞. Hence, we observe from (3.2) and (3.4) that u(0) = u0 in H.
Now, let us show that u is a solution of (P; f) on [0, T ] with initial data u0.

Since unk
is a solution of (P; fnk

) on [0, T ] with initial data u0,nk
, there exist

functions ξnk
∈ L2(0, T ;H) and ζnk

∈ L2(0, T ;H) such that

ξnk
(t) ∈ ∂ψt(u′

nk
(t)) in H for a.e. t ∈ (0, T ), (3.5)

ζnk
(t) ∈ ∂ϕ(unk

(t)) in H for a.e. t ∈ (0, T ), (3.6)

ξnk
(t) + ζnk

(t) + g(unk
(t)) = fnk

(t) in H for a.e. t ∈ (0, T ). (3.7)

Then, it follows from (2.1) and (A3) that

{ξnk
} is bounded in L2(0, T ;H). (3.8)

Therefore, taking a subsequence if necessary (still denote it by {nk}), we observe
that:

ξnk
→ ξ weakly in L2(0, T ;H) for some ξ ∈ L2(0, T ;H) as k → ∞. (3.9)

Also, it follows from (A7) and (3.4) and that

g(unk
) → g(u) in C([0, T ];H) as k → ∞. (3.10)

Therefore, we infer from (3.1), (3.7), (3.8) and (3.10) that

{ζnk
} is bounded in L2(0, T ;H).

Hence, taking a subsequence if necessary (still denote it by {nk}), we observe
that:

ζnk
→ ζ weakly in L2(0, T ;H) for some ζ ∈ L2(0, T ;H) as k → ∞. (3.11)

Thus, we infer from (3.1), (3.7), (3.9), (3.10) and (3.11) that:

ξ + ζ + g(u) = f in L2(0, T ;H). (3.12)

Also, from (3.4), (3.6), (3.11) and the demi-closedness of maximal monotone
operator ∂ϕ (cf. Proposition 1), we infer that

ζ ∈ ∂ϕ(u) in L2(0, T ;H), (3.13)

which implies that ζ(t) ∈ ∂ϕ(u(t)) in H for a.e. t ∈ (0, T ).
Now, we show that

ξ(t) ∈ ∂ψt(u′(t)) in H for a.e. t ∈ (0, T ). (3.14)
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From (3.1), (3.2) and (3.4)–(3.13) we observe that

lim sup
k→∞

∫ T

0

(ξnk
(t), u′

nk
(t))dt

= lim sup
k→∞

∫ T

0

(fnk
(t) − ζnk

(t) − g(unk
(t)), u′

nk
(t))dt

= lim sup
k→∞

[∫ T

0

(fnk
(t) − g(unk

(t)), u′
nk

(t))dt −
∫ T

0

d

ds
ϕ(unk

(s))ds

]

≤
∫ T

0

(f(t) − g(u(t)), u′(t))dt + lim sup
k→∞

(−ϕ(unk
(T )) + ϕ(u0,nk

))

≤
∫ T

0

(f(t) − g(u(t)), u′(t))dt − ϕ(u(T )) + ϕ(u0)

=
∫ T

0

(f(t) − g(u(t)) − ζ(t), u′(t))dt

=
∫ T

0

(ξ(t), u′(t))dt,

thus, we observe from Proposition 1, namely, the closedness of maximal
monotone operator ∂ψt that

ξ ∈ ∂ψt(u′) in L2(0, T ;H),

which implies that (3.14) holds. Therefore, we observe that u is a solution of
(P; f) on [0, T ] with initial data u0. Thus, the proof of this proposition has been
completed. ��

Now, let us prove the main Theorem 1 in our paper, which is the existence
of an optimal control to (OP).

Proof of Theorem 1.
Note that we show the existence of an optimal control to (OP) without unique-
ness of solutions to state problem (P; f)

Also note from (1.2) and (1.3) that J(f) ≥ 0 for all f ∈ F . Let {fn} ⊂ F be
a minimizing sequence such that

d∗ := inf
f∈F

J(f) = lim
n→∞ J(fn).

Then, we observe that {J(fn)} is bounded. Therefore, by the definition (1.2) of
J(fn), for each n there is a solution un ∈ S(fn) such that

πfn
(un) < J(fn) +

1
n

.

Hence, we observe that {πfn
(un)} is bounded. Thus, by the definition of πfn

(un)
(cf. (1.3)) and by the Aubin’s compactness theorem (cf. [16, Chapter1, Sect. 5]),
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there are a subsequence {nk} ⊂ {n} and a function f∗ ∈ F such that

fnk
→ f∗ weakly in W 1,2(0, T ;H),

weakly in L2(0, T ;V ),
in L2(0, T ;H)

⎫⎬
⎭ (3.15)

as k → ∞,
Now, taking a subsequence if necessary, we infer from Proposition 3 that there

is a solution u∗ to (P;f∗) on [0, T ] with initial data u0 satisfying

unk
→ u∗ in C([0, T ];H) as k → ∞. (3.16)

Therefore, it follows from (3.15)–(3.16), u∗ ∈ S(f∗) and the weak lower semi-
continuity of L2–norm that

d∗ = inf
f∈F

J(f) ≤ J(f∗) = inf
u∈S(f∗)

πf∗(u)

≤ πf∗(u∗) =
1
2

∫ T

0

|u∗(t) − uad|2Hdt +
1
2

∫ T

0

|f∗(t)|2V dt +
1
2

∫ T

0

|f∗
t (t)|2Hdt

≤ lim inf
k→∞

πfnk
(unk

)

≤ lim inf
k→∞

{
J(fnk

) +
1
nk

}

= lim
k→∞

J(fnk
) = d∗.

Hence, we have d∗ = inff∈F J(f) = J(f∗), which implies that f∗ ∈ F is an
optimal control to (OP). Thus, the proof of Theorem1 has been completed. ��

4 Application

In this section, we apply Theorem 1 to the simple model problem as follows:

(SMP) p

⎧⎪⎨
⎪⎩

A(t, ut) − div
(|∇u|p−2∇u

)
+ g(u) � f(t) in Q := (0, T ) × Ω,

∂u

∂ν
= 0 on Σ := (0, T ) × Γ,

u(0) = u0 a.e. in Ω,

where 0 < T < ∞, Ω is a bounded domain in R
N (1 ≤ N < ∞), the boundary

Γ := ∂Ω of Ω is smooth if N > 1, g is Lipschitz on R, p is a positive number
with p ≥ 2, ν is an outward normal vector on Γ and u0 is a given initial data.
Also, A(t, ·) is the given time-dependent function defined by

A(t, z) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z − c(t), if z − c(t) ≥ 1,
1, if 0 < z − c(t) < 1,

[−1, 1] , if z = c(t),
−1, if − 1 < z − c(t) < 0,

z − c(t), if z − c(t) ≤ −1,
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where c(·) is a given smooth function on [0, T ].
To apply the abstract result to (P;f), we put H := L2(Ω) and V := H1(Ω)

with usual real Hilbert space structures. Define a function ϕ on H by

ϕ(z) :=

⎧⎨
⎩

1
p

∫
Ω

|∇z(x)|pdx + C4, if z ∈ W 1,p(Ω),

∞, otherwise ,

Also, for each t ∈ [0, T ], define a function ψt on H by

ψt(z) :=
∫

Ω

Â(t, z(x))dx for all z ∈ H := L2(Ω),

where Â(t, ·) is the primitive of A(t, ·) such that Â(t, ·) ≥ 0 for all t ∈ [0, T ].
It is not difficult to show that the assumptions (A1)–(A7) are satisfied. For

instance, put z̃ = z − c(s) + c(t), α(t) :=
∫ t

0
|c′(τ)|dτ and β(t) ≡ 0 for (A4) (cf.

[14, Chap. 3]). Therefore, by applying Theorem1, we can consider the control
problem (OP) without uniqueness of solutins to (SMP)p.
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