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Abstract. In this paper we formulate a time-optimal control problem
in the space of probability measures endowed with the Wasserstein met-
ric as a natural generalization of the correspondent classical problem in
R

d where the controlled dynamics is given by a differential inclusion.
The main motivation is to model situations in which we have only a
probabilistic knowledge of the initial state. In particular we prove first a
Dynamic Programming Principle and then we give an Hamilton-Jacobi-
Bellman equation in the space of probability measures which is solved
by a generalization of the minimum time function in a suitable viscosity
sense.

Keywords: Optimal transport · Differential inclusions · Time optimal
control

1 Introduction

The controlled dynamics of a classical time-optimal control problem in finite-
dimension can be presented by mean of a differential inclusion as follows:{

ẋ(t) ∈ F (x(t)), for a.e. t > 0,

x(0) = x0 ∈ R
d,

(1)

where F is a set-valued map from R
d to R

d. The problem in this setting is to
minimize the time needed to steer x0 to a given closed target set S ⊆ R

d, S �= ∅,
defining the minimum time function T : Rd → [0,+∞] by

T (x0) := inf{T > 0 : ∃x(·) solving (1) such that x(T ) ∈ S}. (2)
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The main motivation of this work is to model situations in which the knowl-
edge of the starting position x0 is only probabilistic (for example in the case of
affection by noise) and this can happen even if the evolution of the system is
deterministic.

We thus consider as state space the space of Borel probability measures with
finite p-moment endowed with the p-Wasserstein metric Wp(·, ·), (Pp(Rd),Wp).
In [2] the reader can find a detailed treatment about Wasserstein distance.

Following this idea we choose to describe the initial state by a probability
measure μ0 ∈ Pp(Rd) and for its evolution in time we take a time-depending
probability measure on R

d, μ := {μt}t∈[0,T ] ⊆ Pp(Rd), μ|t=0 = μ0. In order to
preserve the total mass μ0(Rd) during the evolution, the process will be described
by a (controlled) continuity equation{

∂tμt + div(vtμt) = 0, 0 < t < T,

μ|t=0 = μ0,
(3)

where the time-depending Borel velocity field vt : Rd → R
d has to be chosen in

the set of L2
μt

-selections of F in order to respect also the classical underlying
control problem (1) which is the characteristic system of (3) in the smooth case.

It is well known that if vt(·) is sufficiently regular then the solution of the con-
tinuity equation is characterized by the push-forward of μ0 through the unique
solution of the characteristic system.

In Theorem 8.2.1 in [2] and Theorem 5.8 in [4], the so called Superposition
Principle states that, if we conversely require much milder assumptions on vt, the
solution μt of the continuity equation can be characterized by the push-forward
et�η, where et : Rd × ΓT → R

d, (x, γ) 	→ γ(t), ΓT := C0([0, T ];Rd) and η is a
probability measure in the infinite-dimensional space R

d × ΓT concentrated on
those pairs (x, γ) ∈ R

d ×ΓT such that γ is an integral solution of the underlying
characteristic system, i.e. of an ODE of the form γ̇(t) = vt(γ(t)), with γ(0) = x.
We refer the reader to the survey [1] and the references therein for a deep analysis
of this approach that is at the basis of the present work.

Pursuing the goal of facing control systems involving measures, we define a
generalization of the target set S by duality. We consider an observer that is
interested in measuring some quantities φ(·) ∈ Φ; the results of this measure-
ments are the average of these quantities w.r.t. the state of the system. The
elements of the generalized target set S̃Φ

p are the states for which the results of
all these measurements are below a fixed threshold.

Once defined the admissible trajectories in this framework, the definition
of the generalized minimum time function follows in a straightforward way the
classical one.

Since classical minimum time function can be characterized as unique vis-
cosity solution of a Hamilton-Jacobi-Bellman equation, the problem to study a
similar formulation for the generalized setting would be quite interesting. Several
authors have treated a similar problem in the space of probability measures or
in a general metric space, giving different definitions of sub-/super differentials
and viscosity solutions (see e.g. [2,3,8–10]). For example, the theory presented
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in [10] is quite complete: indeed there are proved also results on time-dependent
problems, comparison principles granting uniqueness of the viscosity solutions
under very reasonable assumptions.

However, when we consider as metric space the space P2(Rd), we notice that
the class of equations that can be solved is quite small: the general structure of
metric space of [10] allows only to rely on the metric gradient, while P2(Rd)
enjoys a much more richer structure in the tangent space (which is a subset
of L2).

Dealing with the definition of sub-/superdifferential given in [8], the major
bond is that the “perturbed” measure is assumed to be of the form (IdRd + φ) �μ
in which a (rescaled) transport plan is used. It is well known that, by Brenier’s
Theorem, if μ 
 L d in this way we can describe all the measures near to μ.
However in general this is not true. Thus if the set of admissible trajectories
contains curves whose points are not all a.c. w.r.t. Lebesgue measure (as in our
case), the definition in [8] cannot be used.

In order to fully exploit the richer structure of the tangent space of P2(Rd),
recalling that AC curves in P2(Rd) are characterized to be weak solutions of the
continuity equation (Theorem 8.3.1 in [2]), we considered a different definition
than the one presented in [8] using the Superposition Principle.

The paper is structured as follows: in Sect. 2 we give the definitions of the
generalized objects together with the proof of a Dynamic Programming Princi-
ple in this setting. In Sect. 3 we focus on the main result of this work, namely we
outline a Hamilton-Jacobi-Bellman equation in P2(Rd) and we solve it in a suit-
able viscosity sense by the generalized minimum time function, assuming some
regularity on the velocity field. Finally, in Sect. 4 we illustrate future research
lines on the subject.

2 Generalized Minimum Time Function

Definition 1 (Standing Assumptions). We will say that a set-valued func-
tion F : Rd ⇒ R

d satisfies the assumption (Fj), j = 0, 1, 2 if the following hold
true

(F0) F (x) �= ∅ is compact and convex for every x ∈ R
d, moreover F (·) is contin-

uous with respect to the Hausdorff metric, i.e. given x ∈ X, for every ε > 0
there exists δ > 0 such that |y − x| ≤ δ implies F (y) ⊆ F (x) + B(0, ε) and
F (x) ⊆ F (y) + B(0, ε).

(F1) F (·) has linear growth, i.e. there exist nonnegative constants L1 and L2

such that F (x) ⊆ B(0, L1|x| + L2) for every x ∈ R
d,

(F2) F (·) is bounded, i.e. there exist M > 0 such that ‖y‖ ≤ M for all x ∈ R
d,

y ∈ F (x).

Definition 2 (Generalized target). Let p ≥ 1, Φ ⊆ C0(Rd,R) such that the
following property holds

(TE) there exists x0 ∈ R
d with φ(x0) ≤ 0 for all φ ∈ Φ.
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We define the generalized target S̃Φ
p as follows

S̃Φ
p :=

{
μ ∈ Pp(Rd) :

∫
Rd

φ(x) dμ(x) ≤ 0 for all φ ∈ Φ

}
.

For an analysis of the properties of the generalized target see [5] or [6] for
deeper results.

Definition 3 (Admissible curves). Let F : Rd ⇒ R
d be a set-valued function,

I = [a, b] a compact interval of R, α, β ∈ Pp(Rd). We say that a Borel family of
probability measures μ = {μt}t∈I ⊆ Pp(Rd) is an admissible trajectory (curve)
defined in I for the system ΣF joining α and β, if there exists a family of Borel
vector fields v = {vt(·)}t∈I such that

1. μ is a narrowly continuous solution in the distributional sense of the conti-
nuity equation ∂tμt + div(vtμt) = 0, with μ|t=a = α and μ|t=b = β.

2. JF (μ, v) < +∞, where JF (·) is defined as

JF (μ, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫

I

∫

Rd

(
1 + IF (x) (vt(x))

)
dμt(x) dt, if ‖vt‖L1

μt
∈ L1([0, T ]),

+∞, otherwise,

(4)

where IF (x) is the indicator function of the set F (x), i.e., IF (x)(ξ) = 0 for all
ξ ∈ F (x) and IF (x)(ξ) = +∞ for all ξ /∈ F (x).

In this case, we will also shortly say that μ is driven by v.

When JF (·) is finite, this value expresses the time needed by the system to
steer α to β along the trajectory μ with family of velocity vector fields v.

Definition 4 (Generalized minimum time). Given p ≥ 1, let Φ ∈ C0(Rd;R)
and S̃Φ

p be the corresponding generalized target defined in Definition 2. In analogy
with the classical case, we define the generalized minimum time function T̃Φ

p :
Pp(Rd) → [0,+∞] by setting

T̃Φ
p (μ0) := inf {JF (μ, v) : μ is an admissible curve in [0, T ], (5)

driven by v, with μ|t=0 = μ0, μ|t=T ∈ S̃Φ
p

}
,

where, by convention, inf ∅ = +∞.
Given μ0 ∈ Pp(Rd), an admissible curve μ = {μt}t∈[0,T̃ Φ

p (μ0)]
⊆ Pp(Rd),

driven by a time depending Borel vector-field v = {vt}t∈[0,T̃ Φ
p (μ0)]

and satisfying

μ|t=0 = μ0 and μ|t=T̃ Φ
p (μ0)

∈ S̃Φ
p is optimal for μ0 if

T̃Φ
p (μ0) = JF (μ, v).
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Some interesting results concerning the generalized minimum time function
together with comparisons with the classical definition are proved in the pro-
ceedings [5] and in the forthcoming paper [6].

Here we will focus our attention on the problem of finding an Hamilton-
Jacobi-Bellman equation for our time-optimal control problem.

First of all we need to state and prove a Dynamic Programming Principle
and, for this aim, the gluing result for solutions of the continuity equation stated
in Lemma 4.4 in [7] will be used.

Theorem 1 (Dynamic programming principle). Let p ≥ 1, 0 ≤ s ≤ τ , let
F : Rd ⇒ R

d be a set-valued function, let μ = {μt}t∈[0,τ ] be an admissible curve
for ΣF . Then we have

T̃Φ
p (μ0) ≤ s + T̃Φ

p (μs).

Moreover, if T̃Φ
p (μ0) < +∞, equality holds for all s ∈ [0, T̃Φ

p (μ0)] if and only if
μ is optimal for μ0 = μ|t=0.

Proof. The proof is based on the fact that, by Lemma 4.4 in [7], the juxtaposition
of admissible curves is an admissible curve. Thus, for every ε > 0 we consider the
curve obtained by following μ up to time s, and then following an admissible
curve steering μs to the generalized target in time T̃Φ

p (μs) + ε. We obtain an
admissible curve steering μ0 to the generalized target in time s + T̃Φ

p (μs) + ε,
and so, by letting ε → 0+, we have T̃Φ

p (μ0) ≤ s + T̃Φ
p (μs).

Assume now that T̃Φ
p (μ0) < +∞ and equality holds for all s ∈ [0, T̃Φ

p (μ0)].
By taking s = T̃Φ

p (μ0) we get TΦ
p (μT̃ Φ

p (μ0)
) = 0, i.e., μT̃ Φ

p (μ0)
∈ S̃Φ

p . In particular,

μ steers μ0 to S̃Φ
p in time T̃Φ

p (μ0), which is the infimum among all admissible
trajectories steering μ0 to the generalized target. So μ is optimal.

Finally, assume that μ is optimal for μ0 and T̃Φ
p (μ0) < +∞. Starting from

μ0, we follow μ up to time s. Since μ is still an admissible curve steering μs to
the generalized target in time T̃Φ

p (μ0) − s, we must have T̃Φ
p (μs) ≤ T̃Φ

p (μ0) − s,
and so T̃Φ

p (μs) + s = T̃Φ
p (μ0), since the reverse inequality always holds true. ��

3 Hamilton-Jacobi-Bellman Equation

In this section we will prove that, under some assumptions, the generalized
minimum time functional T̃Φ

2 is a viscosity solution, in a sense we will precise, of a
suitable Hamilton-Jacobi-Bellman equation on P2(Rd). In this paper we assume
the velocity field to be continuous for simplicity. In the forthcoming paper [6]
we prove a result of approximation of L2

μ-selections of F with continuous and
bounded ones in L2

μ-norm that allows us to treat a more general case.
We recall that, given T ∈ ]0,+∞], the evaluation operator et : Rd ×ΓT → R

d

is defined as et(x, γ) = γ(t) for all 0 ≤ t < T . We set

TF (μ0) := {η ∈ P(Rd × ΓT ) : T > 0,η concentrated on trajectories of

γ̇(t) = v(γ(t)), with v ∈ C0(Rd;Rd), v(x) ∈ F (x)∀x ∈ R
d

and satisfies γ(0)�η = μ0},
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where μ0 ∈ P2(Rd).
It is not hard to prove the following result.

Lemma 1 (Properties of the evaluation operator). Assume (F0) and (F1),
and let L1, L2 > 0 be the constants as in (F1). For any μ0 ∈ P2(Rd), T ∈ ]0, 1],
η ∈ TF (μ0), we have:

(i) |et(x, γ)| ≤ (|e0(x, γ)|+L2) eL1 for all t ∈ [0, T ] and η-a.e. (x, γ) ∈ R
d×ΓT ;

(ii) et ∈ L2
η(Rd × ΓT ;Rd) for all t ∈ [0, T ];

(iii) there exists C > 0 depending only on L1, L2 such that for all t ∈ [0, T ] we
have ∥∥∥∥et − e0

t

∥∥∥∥
2

L2
η

≤ C (m2(μ0) + 1).

In the case we are considering, where the trajectory t 	→ et�η is driven by a
sufficiently smooth velocity field, we recover as initial velocity what we expected.

Lemma 2 (Regular driving vector fields). Let μ = {μt}t∈[0,T ] be an abso-
lutely continuous solution of⎧⎪⎨

⎪⎩
∂tμt + div(vμt) = 0, t ∈ ]0, T [

μ|t=0 = μ0 ∈ P2(Rd),

where v ∈ C0
b (Rd;Rd) satisfies v(x) ∈ F (x) for all x ∈ R

d. Then if η ∈ TF (μ0)
satisfies μt = et�η for all t ∈ [0, T ], we have that

lim
t→0

∥∥∥∥et − e0
t

− v ◦ e0

∥∥∥∥
L2

η

= 0.

The proof is based on the boundedness of v and on the fact that, by hypothesis,
γ ∈ C1, γ̇(t) = v(γ(t)). The conclusion comes applying Lebesgue’s Dominated
Convergence Theorem.

We give now the definitions of viscosity sub-/superdifferential and viscosity
solutions that suit our problem. As presented in the Introduction, these concepts
are different from the ones treated in [2,3,8–10], due mainly to the structure of
P2(Rd).

Definition 5 (Sub-/Super-differential in P2(Rd)). Let V : P2(Rd) → R

be a function. Fix μ ∈ P2(Rd) and δ > 0. We say that pμ ∈ L2
μ(Rd;Rd) belongs

to the δ-superdifferential D+
δ V (μ) at μ if for all T > 0 and η ∈ P(Rd × ΓT )

such that t 	→ et�η is an absolutely continuous curve in P2(Rd) defined in [0, T ]
with e0�η = μ we have

lim sup
t→0+

V (et�η) − V (e0�η) −
∫

Rd×ΓT

〈pμ ◦ e0(x, γ), et(x, γ) − e0(x, γ)〉 dη(x, γ)

‖et − e0‖L2
η

≤ δ.

(6)
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In the same way, qμ ∈ L2
μ(Rd;Rd) belongs to the δ-subdifferential D−

δ V (μ) at μ

if −qμ ∈ D+
δ [−V ](μ). Moreover, D±

δ [V ](μ) is the closure in L2
μ of D±

δ [V ](μ) ∩
C0

b (Rd;Rd).

Definition 6 (Viscosity solutions). Let V : P2(Rd) → R be a function and
H : P2(Rd) × C0

b (Rd;Rd) → R. We say that V is a

1. viscosity supersolution of H (μ,DV (μ)) = 0 if there exists C > 0 depending
only on H such that H (μ, qμ) ≥ −Cδ for all qμ ∈ D−

δ V (μ) ∩ C0
b , δ > 0 and

μ ∈ P2(Rd).
2. viscosity subsolution of H (μ,DV (μ)) = 0 if there exists C > 0 depending

only on H such that H (μ, pμ) ≤ Cδ for all pμ ∈ D+
δ V (μ) ∩ C0

b , δ > 0 and
μ ∈ P2(Rd).

3. viscosity solution of H (μ,DV (μ)) = 0 if it is both a viscosity subsolution
and a viscosity supersolution.

Definition 7 (Hamiltonian Function). Given μ ∈ P2(Rd), we define the
map HF : P2(Rd) × C0

b (Rd;Rd) → R by setting

HF (μ, ψ) := −
[
1 + inf

η∈TF (μ)

∫
Rd

〈p(x), v(x)〉 dμ(x)
]
.

Theorem 2 (Viscosity solution). Assume (F0) and (F2). Then T̃Φ
2 (·) is a

viscosity solution of HF (μ,DT̃Φ
2 (μ)) = 0, with HF defined as in Definition 7.

Proof. The proof is splitted in two claims.

Claim 1. T̃Φ
2 (·) is a subsolution of HF (μ,DT̃Φ

2 (μ)) = 0.

Proof of Claim 1. Given η ∈ TF (μ0) and set μt = et�η for all t by the Dynamic
Programming Principle we have T̃Φ

2 (μ0) ≤ T̃Φ
2 (μs) + s for all 0 < s ≤ T̃Φ

2 (μ0).
Without loss of generality, we can assume 0 < s < 1. Given any pμ0 ∈
D+

δ T̃Φ
2 (μ0) ∩ C0

b , and set

A(s, pμ0 ,η) := − s −
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), es(x, γ) − e0(x, γ)〉 dη,

B(s, pμ0 ,η) :=T̃Φ
2 (μs) − T̃Φ

2 (μ0) −
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), es(x, γ) − e0(x, γ)〉dη,

we have A(s, pμ0 ,η) ≤ B(s, pμ0 ,η).
We recall that since by definition pμ0 ∈ L2

μ0
, we have that pμ0 ◦ e0 ∈ L2

η.
Dividing by s > 0 the left hand side, we observe that we can use Lemma 2,
indeed the velocity field v(·) associated to η ∈ TF (μ0) satisfies all the hypothesis
(the boundedness comes from (F2)) and so we have

lim sup
s→0+

A(s, pμ0 ,η)
s

= −1 −
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ).
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Recalling that pμ0 ∈ D+
δ T̃Φ

2 (μ0) and using Lemma 1(iii), we have

lim sup
s→0+

B(s, pμ0 ,η)
s

= lim sup
s→0+

B(s, pμ0 ,η)
‖es − e0‖L2

η

·
∥∥∥∥es − e0

s

∥∥∥∥
L2

η

≤ Cδ,

where C > 0 is a suitable constant (we can take twice the upper bound on F
given by (F2)).

We thus obtain for all η ∈ TF (μ0) that

1 +
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ) ≥ −Cδ.

By passing to the infimum on η ∈ TF (μ0) we have

−Cδ ≤ 1 + inf
η∈TF (μ0)

∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ)

= 1 + inf
η∈TF (μ0)

∫
Rd

〈pμ0(x), v(x)〉 dμ0(x) = −HF (μ0, pμ0),

so T̃Φ
2 (·) is a subsolution, thus confirming Claim 1. �

Claim 2. T̃Φ
2 (·) is a supersolution of HF (μ,DT̃Φ

2 (μ)) = 0.

Proof of Claim 2. Given η ∈ TF (μ0), let us define the admissible trajectory
μ = {μt}t∈[0,T ] = {et�η}t∈[0,T ]. Given qμ0 ∈ D−

δ T̃Φ
2 (μ0) ∩ C0

b , we have∫
Rd×ΓT

〈qμ0 ◦ e0(x, γ),
es(x, γ) − e0(x, γ)

s
〉 dη(x, γ)

≤ 2δ

∥∥∥∥es − e0
s

∥∥∥∥
L2

η

− T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

.

Thus, using Lemma 2 and Lemma 1, we have∫
Rd×ΓT

〈qμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ) ≤ 3Cδ − T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

,

for all s > 0.
Then, by passing to the infimum on all admissible trajectories, we obtain

−HF (μ0, qμ0) − 1 = inf
η∈TF (μ0)

∫
Rd×ΓT

〈qμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ)

≤ 3Cδ − sup
η∈TF (μ0)

T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

.

Thus

HF (μ0, qμ0) ≥ −3Cδ + sup
η∈TF (μ0)

[
T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

− 1

]
.

By the Dynamic Programming Principle, recalling that
T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

−1 ≤ 0

with equality holding if and only if μ is optimal, we obtain HF (μ0, qμ0) ≥ −C ′δ,
which proves that T̃Φ

2 (·) is a supersolution, thus confirming Claim 2. ��
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4 Conclusion

In this work we have studied a Hamilton-Jacobi-Bellman equation solved by a
generalized minimum time function in a regular case. In the forthcoming paper
[6] an existence result is proved for optimal trajectories as well as attainability
properties in the space of probability measures. Furthermore, a suitable approx-
imation result allows to give a sense to a Hamilton-Jacobi-Bellman equation in
a more general case.

We plan to study if it is possible to prove a comparison principle for an
Hamilton-Jacobi equation solved by the generalized minimum time function, as
well as to give a Pontryagin maximum principle for our problem.
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LSSC 2015. LNCS, vol. 9374, pp. 109–116. Springer, Cham (2015). doi:10.1007/
978-3-319-26520-9 11

6. Cavagnari, G., Marigonda, A., Nguyen, K.T., Priuli, F.S.: Generalized control sys-
tems in the space of probability measures (submitted)
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