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Abstract. In parameter estimation problems an important issue is the
approximation of the confidence region of the estimated parameters.
Especially for models based on differential equations, the needed compu-
tational costs require particular attention. For this reason, in many cases
only linearized confidence regions are used. However, despite the low
computational cost of the linearized confidence regions, their accuracy
is often limited. To combine high accuracy and low computational costs,
we have developed a method that uses only successive linearizations in
the vicinity of an estimator. To accelerate the process, a principal axis
decomposition of the covariance matrix of the parameters is employed.
A numerical example illustrates the method.
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1 Introduction

To simplify the notation, we consider a nonlinear model f(t, θ), with θ ∈ R
n and

t ∈ R, which does not depend on an additional (dynamical) system. We assume
that f is differentiable with respect to θ and continuous with respect to t.

We consider the approximation of a confidence region about parameter val-
ues estimated by nonlinear least squares. The parameters are estimated by using
experimental data yi in some given points ti with i = 1, . . . ,m. The observed val-
ues contain unknown errors ei that we assume additive, so the response variable
can be modeled by

yi = f(ti, θtrue) + ei, (1)

where θtrue is the unknown true value of the parameters. Therefore, the least
squares estimator θ̂ is the value that solves the following problem

θ̂ = argmin
1
2
S(θ), (2)

where S(θ) is the residual sum of squares
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S(θ) =
m∑

i=1

(yi − f(ti, θ))2. (3)

We assume that the model is correct and that the errors are normal, independent
and identically distributed (iid) random variables with zero mean and variance
σ2, i.e. ei ∼ N(0, σ2).

The confidence regions are here interpreted (from the frequentistic perspec-
tive [14]) as the regions in the parameter space covering the true value of the
parameters θtrue, in large samples, with probability approximately 1 − α.

The use of linearized confidence regions with nonlinear algebraic models has
been extensively treated in literature, see for example [1,2,6,8,11,16]. In par-
ticular, it has been shown that confidence regions derived for the linear case
can be used in linearized form also for nonlinear models, but in many cases
with limited accuracy [18]. Furthermore, there are approximation techniques for
nonlinear models that are not based on linearizations [3,10,17,19].

To simplify the exposition, in this work we consider an algebraic model,
but the method can be used for more complex models. In fact, the problem to
approximate nonlinear confidence regions for implicit models, i.e. models based
on a system of (differential) equations has been considered from different points
of view and for different kind of applications by several authors. To cite only
few of them, see the work [18] and the references therein for the design under
uncertainty, [20] for an application to ground water flow, [13] for ecological sys-
tems, and [15] for additional examples. Newly, it has been presented a method
based on second-order sensitivity for the approximation of nonlinear confidence
regions applied to ODE based models [12]. It has been shown that higher order
sensitivities give a higher accurate approximation of the confidence regions than
methods using only the first order sensitivities.

With this work we show that the approximation using only linearized confi-
dence regions can be substantially improved by a systematic successive applica-
tion of linearizations, in the following called Successive Approximation of Non-
linear Confidence Regions (SANCR) method. We show results for the case with
only two model parameters. An extension to more than two parameters is tech-
nically straightforward and could be partially parallelized, but the effect of suc-
cessive linearizations in more than two (parameter space) dimensions has yet to
be studied in this framework.

This paper is organized as follows (i) In Sect. 2 we report the two methods
on which our approach is based; (ii) In Sect. 3 we describe the new method; (iii)
In Sect. 4 we show a numerical realization of the SANCR method.

2 Linearized Confidence Region and Likelihood Ratio
Test

As explained above, there are several methods to approximate (nonlinear) con-
fidence regions. Our method is based on the following two approaches [19].
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For a given estimator θ̂ of the parameter θ, we consider:

(i) The method derived from the likelihood ratio test (LR)

−2 log
(
L(θ)/L(θ̂)

) ≤ γ2, (4)

from which it follows

S(θ) − S(θ̂) ≤ γ2. (5)

where L is the likelihood function and γ2 is the confidence level.
(ii) The method based on the Wald test that leads to the linearized confidence

regions (CL):

(θ − θ̂)T Cov−1(θ − θ̂) ≤ γ2, (6)

where Cov is the estimated covariance matrix of the parameters. There are
several approximations of Cov [18], we use the one based on the Jacobian
J of f :

Cov = s2(JT J)−1, (7)

where

Ji,j =
∂f(ti, θ)

∂θj
. (8)

The level γ2 = χ2
1−α,n is given by the 1 − α percentile of the chi-square

distribution with n degrees of freedom in case σ2 is known, and it is γ2 =
s2nF(1−α,n,m−n) in case σ2 is unknown, but approximated by s2 = S(θ̂)/(m−n).
It has been proved [7] that these two confidence regions are asymptotically equiv-
alent, but far from the asymptotic behavior, i.e. in case of a small number of
data, they perform differently as presented in [18]. Additionally, our method
show the limitation of linearized confidence regions based only on (6).

One of the major goals in defining the confidence regions is the reduction
of the costs associated to their computation. From the perspective of the com-
putational costs, the method CL is cheap since it needs only one evaluation of
the covariance matrix at the parameter value θ̂, while the method LR is much
more expensive because it is based on the evaluation of the functional S in an
adequately high number of points θ in the vicinity of θ̂ to produce a contour. In
addition, the extension of the confidence region is not known a priori. In practice,
the number of function evaluations needed for the method LR is in the order of
several thousands, for example in our case with two parameters we use a grid of
104 points for the method LR.

On the contrary, as indicated in the expression (7), the covariance matrix
can be evaluated at the cost of building the Jacobian J . Therefore, the major
computational costs for the method CL are given by the computation of the
derivatives of the model f with respect to the parameters. Thus, we have few
computations of a linearized model for the method CL while many thousand
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computations of a nonlinear model are needed for the method LR. Unfortunately,
the accuracy of these two methods is inversely related to their computational
costs, with the CL method being much more inaccurate if the model is highly
nonlinear. We remind that both methods are only asymptotically exact for linear
models and their quality decreases far from the asymptotic behavior.

Therefore, a compromise between computational costs and precision is highly
required for many practical applications especially in case the model is based on
differential equations. To this aim we established a new method combining low
computational costs and high accuracy.

3 Successive Linearizations of Nonlinear Confidence
Regions

The SANCR method is based on the use of successive linearizations of the confi-
dence region, starting from the estimated parameter value θ̂ (see expression (2))
combined with the likelihood ratio test (5) as explained below examplarily for a
model with two parameters.

The likelihood ratio test is used to check whether a point belongs or not to
the approximate nonlinear confidence region. Instead of testing all points in the
vicinity of θ̂ we use an educated guess, i.e. the likelihood ratio test is performed
only on few points lying on the contour of the linearized confidence regions.
In fact, linearized confidence regions are ellipsoids in the parameter space and
the directions of the semi-axis are defined by the eigenvectors of the covariance
matrix as can be deduced by the quadratic form (6). Note that the covariance
matrix has dimension n × n, where n is the number of parameters to estimate.
Therefore, starting from θ̂ we determine the directions of the principal axes and
their length which is given by

�i = γ
√

λi,

where λi is the eigenvalue corresponding to the ith eigenvector. We perform the
likelihood ratio test for the extreme points of the semi-axes, see points θA, θB,
θC, θD in Fig. 1.

Let be θA the first point to be processed. If this point passes the test, i.e. if
the following condition is fulfilled

S(θA) − S(θ̂) ≤ γ2,

it is considered for the construction of the confidence region and the procedure
continues along the second axis. On the contrary, if the point θA does not pass
the test, it is discarded and a new candidate in the same direction θ̂θA is chosen.

A new point θ′
A along the selected semi-axis is taken by scaling �1 by a factor

α < 1 as shown in Fig. 2(a). This procedure is repeated with a new likelihood
ratio test and possibly a rescaling (reducing α) until a point that satisfies the
test
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Fig. 1. Definition of the points to perform the likelihood ratio test for two parameters.

S(θ′
A) − S(θ̂) ≤ γ2

is found. Once this point, say θnew, has been found, we linearize the confidence
region around this new point. To this aim we calculate the Jacobian J(θnew) (see
(8)) and the covariance Cov(θnew) (see (7)).

After performing the eigendecomposition of the new covariance matrix, the
principal axes might have changed direction due to the nonlinearity of the model,
see Fig. 2(b). Following the new principal directions, we can analogously find
the next candidate points belonging to the confidence region, i.e. the points
θnew,A, θnew,C and θnew,D, see Fig. 2(b). The point θnew,B is not considered
because it is the opposite extremal point of the same principal axis. In fact,
instead of taking θnew,B, we perform the same procedure starting from θB to
approximate the confidence region in the direction θ̂θB. Therefore, this proce-
dure is repeated along all principal axes considering both directions.

Stopping Criterion. The search along one principal axis is stopped if the distance
of the next accepted point, let’s say θ′

new,A, to the previous one is less than a
given tolerance

|θ′
new,A − θnew,A| < TOL, (9)

then the point θnew,A is retained to define the nonlinear confidence region, see
Fig. 3.

Contour Approximation. The countour of the nonlinear confidence region is
approximated by connecting all retained points, in our case θnew,A, θnew,C,
θnew,D, θC, θD and θB. These points are linearly connected as shown in Fig. 3(b).
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Fig. 2. Scaling the semi-axes (a) and linearize at the new point (b).
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Fig. 3. Stopping criterion (a) and interpolation (b).
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4 Numerical Results

As an example the following model is considered

y = θ1t
θ2 ,

where the parameter θ1 and θ2 are estimated by the nonlinear least squares
method. To simulate the parameter estimation process we have applied per-
turbed data generated using the “true” values of the parameters according to
the following model response:

yi = f(ti, θtrue) + ei, (11)

where ei is a random variable distributed as N(0, σ2). The Table 1 indicates the
values θtrue and σ2 used in the calculations, and the least squares estimated val-
ues θ̂ found by minimizing S(θ) for a realization of the observations yi. Addition-
ally, the Table 2 includes the measurement positions ti. One stopping criterion of
the SANCR method is that the distance of two successive candidates is smaller
than a given tolerance TOL, see (9). We have used TOL = 0.15.

To evaluate the results of our approach we compare it with a Markov Chain
Monte Carlo (MCMC) method described in [9] using the associated MCMC
toolbox for Matlab. In fact, an alternative way to perform a statistical analysis
of nonlinear models is the use of the Bayes’s theorem [4]. Bayesian inference is
not the focus of our work, therefore we refer for example to [5] for a presentation
of the Bayesian approach. Since the MCMC method does not allow to easily
define a stopping criterion to assure convergence, we have set to 5 · 106 the
number of model evaluations in the MCMC code.

In Fig. 4 the approximations of the confidence region using the four methods
can be qualitatively compared. The blue dots (for the colors see the electronic
version) are the points of the MCMC method. The cyan ellipse is the linearized
confidence region of the method CL. The green curve is the confidence region
approximated by the method LR and the red curve is the confidence region
approximated by the SANCR method.

One can observe that the linearized confidence region CL is much smaller
than the MCMC approximation and that it is not centered in it. The SANCR
method is an approximation of the confidence region defined by the method
LR obtained at a much lower computational cost than the method LR itself.
The computational costs are reported in Tables 3 and 4. The method CL is
very cheap with only one evaluation of the nonlinear model and the evaluations
of the sensitivities with respect to the two parameters, but its quality is not
satisfactory. The SANCR method uses 59 function evaluations and 42 ellipses.
The latter correspond to 84 sensitivity evaluations according to the number of
two parameters. The LR and the MCMC methods have been used here with 104,
respectively 5 · 106, model evaluations.
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Table 1. Parameters and variance

σ2 θtrue θ̂

0.1 (0.725, 4) (0.7279, 3.9974)

Table 2. Position of measurement points

x1 x2 x3 x4 x5 x6

1.309 1.471 1.490 1.565 1.611 1.680

Table 3. Model evaluations of the four methods

SANCR CL LR MCMC

59 1 104 5 · 106

Table 4. Derivatives computations of the four methods

SANCR CL LR MCMC

84 2 0 0

Fig. 4. Confidence region approximated by the four methods.
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