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Abstract. In this paper, the abort landing problem is considered with
reference to a point-mass aircraft model describing flight in a vertical
plane. It is assumed that the pilot linearly increases the power setting
to maximum upon sensing the presence of a windshear. This option is
accounted for in the aircraft model and is not considered as a control.
The only control is the angle of attack, which is assumed to lie between
minimum and maximum values. The aim of this paper is to construct
a feedback strategy that ensures a safe abort landing. An algorithm for
solving nonlinear differential games is used for the design of such a strat-
egy. The feedback strategy obtained is discontinuous in time and space
so that realizations of control may have a bang-bang structure. To be
realistic, outputs of the feedback strategy are being smoothed in time,
and this signal is used as control.

Keywords: Aircraft model · Penetration landing · Abort landing ·
Differential game · Hamilton-Jacobi equation · Grid method · Feedback
strategy · Optimal trajectories

1 Introduction

Many aircraft accidents are caused by severe windshears such as e.g. downbursts.
A downburst appears when a descending column of air hits the ground and
then spreads horizontally. This phenomenon is especially dangerous for aircrafts
during landing or take-off, because a headwind can be followed by a downdraft
and then by a tailwind at relatively low altitudes.

There are a large number of works devoted to the problem of aircraft control
in the presence of severe windshears. In particular, papers [1–8] address the
problem of aircraft control during take-off in the presence of windshears. In
works [1,2], the wind velocity field is assumed to be known. It is shown that
open loop controls obtained as solutions of appropriate optimization problems
provide satisfactory results for rather severe wind disturbances. Nevertheless, it
is clear that the spatial distribution of wind velocity cannot be measured with
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an appropriate accuracy, and therefore feedback principles of control design are
more realistic. Different types of feedback controls are proposed in papers [3–6].
In [3], the design of a feedback robust control is based on the construction of an
appropriate Lyapunov function. Robust control theory is used in [4] to develop
feedback controls stabilizing the relative path inclination and, in [5,6], for the
design of feedback controls stabilizing the climb rate. In papers [7,8], feedback
controls, which are effective against downbursts, are designed using differential
game approach (see e.g. [9]). The value function, which is a viscosity solution (see.
e.g. [10,11]) of an appropriate Hamilton-Jacobi equation, are computed using
dynamic programming techniques described in [12,13]. Both the case of known
wind velocity field and the case of unknown wind disturbance are considered.

An approach based on differential game theory is used in paper [14] in con-
cern with the problem of landing. A full nonlinear system of model equations is
linearized and reduced to a two-dimensional differential game using a transfor-
mation of variables. The resulting differential game is numerically solved, and
optimal feedback controls are constructed.

Paper [15] considers the penetration landing problem with reference to flight
in a vertical plane. The model is governed either by one control (the angle of
attack, if the power setting is predetermined) or two controls (the angle of attack
and the power setting). The wind field is simulated by a downburst, and an near-
optimal open-loop control is computed.

Works [16–20] refer to the abort landing problem. In paper [16], the opti-
mization problem, a Chebysbev problem of optimal control, is converted into
a Bolza problem through suitable transformations. The Bolza problem is then
solved employing the dual sequential gradient-restoration algorithm for optimal
control problems. Numerical results are obtained for several combinations of
windshear intensities, initial altitudes, and power setting rates. Papers [17–19]
are also concerned with a Chebysbev problem of optimal control. They utilize
a multiple shooting method to compute a near-optimal control maximizing a
performance index and providing necessary state constraints. Paper [20] deals
with the application of differential games theory to take-off and abort land-
ing problems. The same as in [1,16], nonlinear aircraft model describing flight
in a vertical plane is considered, the dynamics equations are linearized about
some reference trajectory, and the resulting differential game is reduced to a
two-dimensional one under the assumption that the performance index is being
computed at a fixed termination time and depends on two state variables. Feed-
back strategies are constructed in the form of switch lines that divide the reduced
two-dimensional state space into components where certain constant values of
control are prescribed. A careful tuning of this method, which includes the use of
a “sliding” termination time, allows the author to obtain trajectories comparable
with those from work [16].

The current paper concerns with the abort landing problem considered in
[20] in the framework of differential game theory. The difference consists in the
application of numerical methods described in [12,13] to the original nonlinear
model reported in [16]. Moreover, a performance index of Chebysbev type is
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used in the current paper. The optimal trajectories are comparable with these
obtained in [16,20]. It should be noted that the method described in the current
paper does not require fine tuning of parameters.

2 Model Equations

We use a simplified aircraft model describing flight in a vertical plane, see papers
[1,2,16]. Hence, the following system of four ordinary differential equations gov-
erning the horizontal distance x, the altitude h, the aircraft relative velocity V ,
and the relative path inclination γ is considered:

ẋ = V cos γ + Wx,

ḣ = V sin γ + Wh,

mV̇ = T cos(α + δ) − D − mg sin γ − mẆx cos γ − mẆh sin γ,

mV γ̇ = T sin(α + δ) + L − mg cos γ + mẆx sin γ − mẆh cos γ.

(1)

Here, α is the angle of attack; Wx and Wh are the longitudinal and vertical
components of the wind velocity, respectively; g is the acceleration of gravity;
m the aircraft mass; δ the thrust inclination; T,D, and L are the thrust, drag,
and lift forces, respectively. The following definitions hold:

T = β(t)(A0 + A1V + A2V
2), β(t) =

{
β0 + β̇0 t, t ∈ [0, t0]
1, t ∈ [t0, tf ]

,

D =
1
2
CDρSV 2, CD = B0 + B1α + B2α

2, L =
1
2
CLρSV 2,

CL =

{
C0 + C1α, α ≤ α∗∗
C0 + C1α + C2(α − α∗∗)2, α ∈ [α∗∗, α∗],

where β(·) is a function that changes the power setting at time t0, upon sensing
the presence of a windshear; tf is the end time; and β0, β̇0, α∗, α∗∗ are given
constants. The attack angle α is considered as the control parameter constrained
by the inequalities 0 ≤ α ≤ α∗.

If the components Wx(x, h) and Wh(x, h) of the velocity field are known, the
derivatives Ẇx and Ẇh in model (1) are computed using the first two equations.

Two wind velocity field models are used in our simulations.

Wind Model 1. The first, downburst, model is borrowed from [3]:

Wx =

⎧⎪⎪⎨
⎪⎪⎩

−k, x ≤ a

−k + 2k
(x − a)
(b − a) , a ≤ x ≤ b

k, x ≥ b.

; Wh =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

−k(h/h∗)
(x − a)
(c − a) , a ≤ x ≤ c

−k(h/h∗)
(b − x)
(b − c) , c ≤ x ≤ b

0, x ≥ b,



140 N. Botkin and V. Turova

where a, b, c, and k are parameters defining the location and the strength of the
downburst. It was set k = 50, which corresponds to strong-to-severe windshears.

Wind Model 2. The second, double vortex model, is taken from [4]. It has
two cores of radius R located symmetric about the vertical line x = 1500. The
vortex motion of air about the centres of the cores occurs as follows. Inside of
each core, the tangential speed, Wθ, of wind increases linearly from zero (at the
center) to a maximum value W0 (at the core boundary). Outside of the core,
Wθ decreases in inverse proportion to the distance from the core. In the polar
coordinate system with the origin at the core center, the tangential speed of
wind is given by the formula

Wθ =

{
W0 r/R, 0 ≤ r ≤ R,

W0 R/r, r > R.

It was chosen W0 = 100, which corresponds to strong-to-severe windshears.

The conflict control problem is stated in the same way as in [20]:

mV̇ = T cos(α + δ) − D − mg sin γ − mẆx cos γ − mẆh sin γ

mV γ̇ = T sin(α + δ) + L − mg cos γ + mẆx sin γ − mẆh cos γ

Ẇx = −κ (Wx − v1)
Ẇh = −κ (Wh − v2).

(2)

Here, v1 and v2 are artificial disturbances that may have instantaneous jumps.
The wind components Wx and Wh smoothly track v1 and v2, respectively, with
a time lag depending on the parameter κ (set κ = 0.2). The following constraints
are imposed (cf. [20]):

α ∈ [0, 16] deg, |v1| ≤ 50 ft/s |v2| ≤ 20 ft/s. (3)

3 Problem Statement

Two problem statements will be considered. In both cases, the wind velocity
field is supposed to be unknown. Feedback controls will be constructed from the
corresponding conflict control problems.

P1. The objective of the control α in system (2) is to maximize a payoff func-
tional defined below, i.e.

J = min
τ∈[0,tf ]

(
V (τ) sin γ(τ) + Wh(τ)

) → max
α[·]

min
v1(·),v2(·)

. (4)

It is easily seen that the expression in the parentheses of (4) is the climb rate
ḣ(t). Besides, the maximum in (4) is taken over all feedback strategies α[·].

In this variant, the full four-dimensional differential game (2)–(4) will be
numerically solved.
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P2. In the second variant, the idea to derive an equation for the climb rate (see
[6]) is used. Computing ḧ from system (2) yields the formulae

ḧ =
T

m
[cos (α + δ) sin γ + sin (α + δ) cos γ] − D

m
sin γ +

L

m
cos γ − g,

sin γ =
ḣ − Wh

V
, cos γ =

√
1 − (

ḣ − Wh)2/V 2.

Thus, the following system arises:

ḣ = z, ż = Z(z, α, V,Wh),

where the function Z is defined by the above formulae. Moreover, the payoff
functional is chosen the same as in P1:

J = min
τ∈[0,tf ]

z(t) → max
α[·]

min
V (·),Wh(·)

It should be noted that the vertical wind velocity, Wh, and the relative velocity,
V , are considered as disturbances. The same constraints as in [7,8] are imposed:

0 ≤ α ≤ 16 deg, V ∈ [Vref − 20, Vref], Wh ∈ [−100, 0], (5)

where Vref = 276 ft/s is a reference value. It is worth to mention that only
negative deviations of V and Wh from their reference values are taken in (5),
because negative deviations are more dangerous.

4 Numerical Method

Let us shortly outline the solution method for problems P1 and P2. The descrip-
tion will be given in terms of general nonlinear differential games, which is similar
to that presented in [7,8].

4.1 Differential Game and Value Function

Consider a differential game defined as follows:

ẋ = f(t, x, α, β), t ∈ [0, tf ], x ∈ Rn, α ∈ A ⊂ Rp, β ∈ B ⊂ Rq (6)

where x is the state vector, α and β are control parameters of the first and
second player, respectively. The sets A and B are given compacts. The game
starts at t0 ∈ [0, tf ] and finishes at tf . The objective of the first player (control
α) is to minimize the functional

J(x(·)) = min
τ∈[t0, tf ]

σ(x(τ)). (7)

It is assumed that the first player uses pure feedback strategies, i.e. functions
of the form:

A : [0, tf ] × Rn → A.
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The second player (wind) uses feedback counter strategies:

Bc : [0, tf ] × Rn × A → B.

Thus, it is assumed that second player can measure the current value of the
attack angle (“future” values are not available), which meets the concept of
guaranteeing control.

For any initial position (t0, x0) ∈ [0, tf ]×R
n and any strategies A and Bc, two

functional sets X1(t0, x0,A) and X2(t0, x0,Bc) are defined (see [9]). It is proven
in [9] that the differential game (6), (7) has a value function defined by:

V(t0, x0) = max
A

min
x(·)∈X1(t0,x0,A)

J(x(·)) = min
Bc

max
x(·)∈X2(t0,x0,Bc)

J(x(·)).

It is known (see [10–12]) that the value function is a viscosity solution of the
Hamilton-Jacobi equation:

Vt + H(t, x,Vx) = 0, where H(t, x, p) = max
α∈A

min
β∈B

〈p, f(t, x, α, β)〉. (8)

4.2 Grid Method for Computing the Value Function

To compute viscosity solutions of (8), the following finite difference scheme can
be used (see [7,8,12,13]).

Let h1, ..., hn and τ be space and time discretization steps, and F an operator
defined on continuous functions by the relation

F (V; t, τ)(x) = max
α∈A

min
β∈B

V(x + τf(t, x, α, β)). (9)

Set Λ = tf/τ , t� = �τ, � = 0, ..., Λ, and introduce the following notation:

V�(xi1 , ..., xin) = V(t�, i1h1, ..., inhn), σh(xi1 , ..., xin) = σ(i1h1, ..., inhn).

The following backward in time finite-difference scheme yields an approxi-
mate solution:

V�−1 = max
{

F
(Lh[V�]; t�, τ

)
, σh

}
, VΛ = σh, � = Λ,Λ − 1, ..., 1. (10)

Here, Lh is an interpolation operator that maps grid functions to continuous
functions.

4.3 Control Design

During the performance of the algorithm (10), the optimal grid values of the
attack angle,

α�
i1i2...in = arg

α
max
α∈A

min
β∈B

Lh[V�](xi1i2...in + τf(t�, xi1i2...in , α, β)),

are stored on a hard disk for all �. The control at a time instant ts and the
current state x(ts) is computed as Lh[αs]

(
x(ts)

)
, where αs denotes the grid

function αs
i1i2...in

.
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5 Simulation Results

This section describes numerical results of simulations where optimal controls
obtained in problems P1 and P2 work against wind models 1 and 2. Numerical
values of parameters appearing in our considerations are the same as in [3,16,20].
The parameters correspond to Boeing-727.

In all simulations, t ∈ [0, 40] s, and the initial values of the state variables are
chosen the same as in [16,20]: x(0) = 0, h(0) = 600 ft, V (0) = 239.7 feet/s, and
γ(0) = −2.249 deg.

In all figures, the horizontal axes measure either the traveled distance (from
0 to 10700 ft) or the time of flight (from 0 to 40 s).

The calculations are performed on a Linux SMP-computer with 8xQuad-Core
AMD Opteron processors (Model 8384, 2.7 GHz) and shared 64 GB memory. The
programming language C with OpenMP (Open Multiprocessing) support is used.
The efficiency of the parallelization is up to 80%.

Simulation 1. An optimal feedback strategy α[·] computed from problem P1
works up against wind models 1 and 2 in the simulation of model (1). When
solving problem P1, a 100 × 10 × 40 × 40 grid in the state space (V, γ,Wx,Wh)
is used. Another variant concerns the application of sparse grid techniques (see
e.g. [21]). Namely, the grid functions V� are stored on a sparse grid, and the
operator Lh is implemented as interpolation on this grid.

Simulation 2. An optimal feedback strategy α[·] computed from problem P2
works up against wind models 1 and 2 in the simulation of model (1). When
solving problem P2, a 400 × 200 grid in the state space (h, ḣ) is used.

Figure 2A shows that the maximal attack angle guidance fails against wind
model 1. The reason is that the aircraft relative velocity drops just in the begin-
ning of the trajectory because of the large attack angle.

Figure 1A shows Simulation 1 in the case of wind model 1. It is seen that the
angle of attack is close to zero in the beginning of the trajectory. The aircraft
drifts down for a while and gains the relative velocity, which enables a safe abort
landing. Figure 1B shows the same but for wind model 2.

Figure 2B shows Simulation 1 for wind model 2 in the case where the differ-
ential game (2) is solved using sparse grid techniques.

Figure 3 shows the change of results if the output, ᾱ, of an optimal feedback
strategy found from the differential game (2) is being smoothed using the filter
α̇ = −(α−ᾱ) when computing trajectories in model (1). Wind model 1 is used in
this simulation. It should be noted that a comparable divergence of trajectories
occurs when using wind model 2.

Figure 4 shows the difference of results in Simulations 1 and 2. Wind model 1
is used in both simulations. The solid line corresponds to Simulations 1, and the
dashed one stands for Simulation 2.

Note that our simulation results are in a good agreement with those of paper
[16] where an open loop control is designed for the aircraft dynamics given by (1).
Besides, our results are in conformity with those of paper [20] where a control
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Fig. 1. Simulation of system (1) with an optimal feedback control found from the
differential game (2). (A) wind model 1; (B) wind model 2.
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Fig. 2. (A) Simulation of system (1) with wind model 1 and α ≡ 16 deg. (B) Simulation
of system (1) with wind model 2 and an optimal feedback control found from the
differential game (2) using sparse grid techniques.
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Fig. 3. The change of results if the output of an optimal strategy found from the
differential game (2) is being smoothed with a filter. Wind model 1 is used. The dashed
line shows the case of smoothing.
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Fig. 4. The difference of results in Simulations 1 and 2. Wind model 1 is used in both
simulations. The solid line corresponds to Simulation 1, and the dashed line stands for
Simulation 2.

based on the computation of switch lines in an appropriate two-dimensional
linear differential game is constructed.

6 Conclusion

The current investigation shows that methods based on the theory of differential
games can be successfully applied to nonlinear conflict control problems con-
cerned with aircraft maneuvers under windshear conditions. The paper demon-
strates that the approach based on the solution of nonlinear differential games
yields feedback controls that can work against strong-to-severe wind disturbances
in abort landing. It should be noted that this approach does not require spe-
cial adaptation of the controller to the problem, and, on the other hand, it is
competitive with other approaches based, e.g. on robust control theory.
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