Chapter 19

Appendix D: Defining Boolean and Fuzzy Logic Operators

Val Lowndes

19.1 Definition Boolean Logic

If an element x

is contained in set A then $\mu_A(x) = 1$ if $x \in A$

is not contained in set A then $\mu_A(x) = 0$

As $\mu_{A \cup B}(x) = 1$ if $x \in A$ or $x \in B$

and $\mu_{A \cap B}(x) = 1 \quad \text{if} \quad x \in A \text{ and } x \in B$

Then it follows that $A \cup B \to \mu_{A \cup B}(x) = \max[\mu_A(x), \mu_B(x)]$ and $A \cap B \to \mu_{A \cap B}(x) = \min[\mu_A(x), \mu_B(x)]$

19.2 Definition Fuzzy Logic

If an element x

has some membership in set A then $\mu_A(x) = k_A \quad 0 < k_A \le 1$

has no membership in set A then $\mu_A(x) = 0$

define $A \cup B \rightarrow \mu_{A \cup B}(x) = \max[\mu_A(x), \mu_B(x)]$

and $A \cap B \to \mu_{A \cap B}(x) = \min[\mu_A(x), \mu_B(x)]$

thus $0 \le \mu_{A \cup B}(x) \le 1$ and $0 \le \mu_{A \cap B}(x) \le 1$

University of Derby, Kedleston Road, DE22 1GB Derby, UK e-mail: V.P.Lowndes@derby.ac.uk

V. Lowndes (⊠)

[©] Springer International Publishing AG 2017

S. Berry et al. (eds.), *Guide to Computational Modelling for Decision Processes*, Simulation Foundations, Methods and Applications, DOI 10.1007/978-3-319-55417-4_19