
A Lightweight Approach to Manage
Engineering Parameters in Mechatronic

Design Processes

Lukas Weingartner1(&), Peter Hehenberger1, Michael Friedl2,
Andreas Kellner1, Stefan Boschert3, and Roland Rosen3

1 Institute of Mechatronic Design and Production,
Johannes Kepler University Linz, Linz, Austria

{lukas.weingartner,peter.hehenberger,

andreas.kellner}@jku.at
2 Institute of Machine Design and Hydraulic Drives,

Johannes Kepler University Linz, Linz, Austria
michael.friedl@jku.at

3 Siemens Corporate Technology, Munich, Germany
{stefan.boschert,roland.rosen}@siemens.com

Abstract. In mechatronic design processes the exchange of information
between stakeholders from different disciplines is essential to enable simulta-
neous engineering and a successful integration of domain specific subsystems.
Although there is a comprehensive range of methodologies and tools to support
collaboration, intentions to implement a central data management platform
covering all stakeholders often do not succeed. Reasons are the heterogeneous
model landscape, the variety of stand-alone authoring tools, departments’, dis-
ciplines’ or companies’ boundaries and a lack of flexibility of established
solutions regarding the support of unpredictable and quickly changing design
processes. This paper focuses on the management of individual parameters and
parameter instances (values) within a multi-disciplinary development team. The
presented lightweight approach can extend existing methods and data man-
agement infrastructure by adding functionalities to provide access to individual
parameters using a dedicated database. The procedure is shown by the example
of a technical mechanism.

Keywords: Mechatronic design process � Engineering parameter management �
Parameter database � Data exchange process � Model management

1 Introduction

During the course of the multi-firm project SyMMDe [1], mechatronic design processes
of four different companies were analyzed in detail and presented in the form of model
dependency maps [2]. From this point of view, every model needs input parameters and
generates results (e.g., output parameters in various forms) for a particular purpose.
Heterogeneous models on various hierarchical levels are usually created and imple-
mented within specific authoring systems (e.g., CAx-tools) by different stakeholders

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
R. Harik et al. (Eds.): PLM 2016, IFIP AICT 492, pp. 79–88, 2016.
DOI: 10.1007/978-3-319-54660-5_8



and experts (e.g., from the disciplines of mechanics, electronics and software). In most
cases, models (e.g., parametric geometry models) are stored using a kind of file-based
model storage. There is a wide range of software solutions (e.g., file systems, “PDM -
product data management” systems, “ECM - enterprise content management” systems)
to manage (mostly proprietary) files within a central platform covering essential
functionalities like versioning, access management, configuration management, and
much more. For pragmatic reasons like performance advantages and interoperability,
individual model storage systems can be settled locally at the expert’s computer or
close to the authoring systems (e.g., team data management). From our observations,
there is usually no overall (e.g., company-wide) consistent model backbone for all
kinds of models. Although tailor-made configured PLM systems can meet these
challenges in principle, in many cases their potential has not yet been exhausted, since
only a limited scope (e.g., PDM aspects) of possible functionalities is used, without
covering all stakeholders and models.

During mechatronic modeling processes, different types of parameters appear. As
discussed in [3], a discipline-specific component can consist of a user-defined part
described by design parameters and a standardized part described by configuration
parameters. In addition to product descriptive parameters (including, for example,
process parameters in process models) there are many other parameters that are relevant
for the various discipline-specific models (e.g., regarding rules and know-how, or solver
parameters and settings in simulation processes). The subset of parameters that influence
more than one stakeholder or rather multiple models play a significant role across the
product development process. It is essential that all stakeholders gain a common
understanding of these important parameters. Globally unique and therefore complex
names and descriptions of all parameters used are usually inconvenient. Experts from
the different disciplines naturally have varied interpretations and views at the system and
demand their own naming conventions. If the parameter management concept fails to
unify these different views or to regulate access on the parameters, redundancies and
consistency problems may follow. To achieve a close integration of domain specific
subsystems, domain experts with diversified knowledge and skills often are in typical
conflicts of interests. Conflicting objectives and targets concerning subsystems force
stakeholders to negotiate about parameters (e.g., available design space). Therefore,
parameter and parameter values can change several times due to improvements or
coordination between stakeholders. Such engineering changes can have various triggers
(e.g., unforeseeable events) and arise throughout the whole design process [4]. To
enable an integration of components and solutions developed from several disciplines,
substantial main parameters must be defined and made available to all stakeholders.
Lacking access to a central parameter management system often leads to mainly spread,
unregulated, and not standardized information exchange (e.g., using telephone, post-it
notes, social media, email or additional stand-alone groupware or project management
applications). Despite the availability of PLM tools, one commonly used mostly manual
and file-based method is to manage parameters in rather simple lists with ordinary
spreadsheet tools. Although this is a proper solution for documentation purposes,
problems occur if multiple users have frequent change requests, as in the case of usual
iterations during design processes. Figure 1 shows a comparison of the basic mecha-
nisms with a central database (type 3) and without (type 1 and 2).

80 L. Weingartner et al.



The aim of this paper is to introduce and implement a methodology that covers the
following needs and requirements related to parameter management as observed during
typical interdisciplinary development processes at our industrial examples: (i) Access
to individual parameters across multiple models (e.g., from proprietary files), without
having to use the respective authoring system, e.g., by different stakeholders across
multiple departments/locations. (ii) Multi-user access including rights management.
(iii) Management of parameters including capabilities to keep an overview by using
metadata and attributes or functionalities like filtering and highlighting of major and
product defining parameters. (iv) Representation of relationships between parameters
and possibilities to analyze impacts in the case of changes. (v) Traceability and history
of changes including the possibility to add knowledge regarding decision making (e.g.,
rules) and documentation about decisions made (e.g., implicit assumptions, findings,
reasons for occurring iterations). (vi) Several models (e.g., on different hierarchical
levels created in specific authoring tools) should be able to access individual param-
eters using simple adapters and interfaces without the need of an additional overall
authoring tool. (vii) Widespread introduction of the parameter management system
should be possible, e.g., by using thin clients or web interfaces. (viii) Ability to extend
and customize the platform using standardized tools or common programming lan-
guages. (ix) No adverse impacts and limitations on the established development pro-
cess and flexibility to deal with highly dynamic changes within the development
process.

Fig. 1. This example shows three models (f1, f2, f3) and three basic types of information
exchange (parameter values of a, b, x, y) between different stakeholders and authoring tools:
(I) Manual exchange of parameter values. (II) File-based exchange of parameter values.
(III) Parameter value exchange using a central repository with an additional graphical user
interface.

A Lightweight Approach to Manage Engineering Parameters 81



2 Discussion of Established Methodologies and Tool
Concepts

Badin et al. [5] present a “KCModel” methodology to “Capitalize, Trace, Re-use and
ensure the Consistency” of technical data using centralized knowledge management.
Parameters are shared between different models and a consistency management (e.g.,
expert rules) between configurations can detect conflicts in parameter values. Other
concepts and tools to support collaborative design based on web technologies were
already introduced back in 2002 by Riboulet et al. [6]. The presented application
“CoDISS” (cooperative data & information sharing system) enables communication
(e.g., sharing of knowledge, concepts and related parameters) between various models
and different stakeholders [7].

Although it’s difficult to draw a clear line in between, there are mainly three
categories of established tool concepts that are used successfully in the industry to
manage product data in a central repository accessible to users and experts from various
disciplines. Similar differentiations are discussed in the work of Panchal et al. [8, 9].
Differentiations between PDM and “SDM - Simulation Data Management” [5] as well
as weaknesses regarding management of fine grained parameters are also discussed in
[10]. Each of the following three options has strengths and weaknesses in different
applications.

The first option (“model backbone”) are IT systems that focus on file-based product
data management to enable collaboration between the stakeholders. There are powerful
options to classify and structure the files by using metadata or structural modeling, but
their focus is not to manage fine grained information like individual parameters within
the files. The most commonly used concepts and tools can be grouped under the
headings ECM, “DMS - document management system” and PDM as a part of “PLM -
product lifecycle management”. Prominent representatives in the field of mechatronic
engineering tools are, e.g., Siemens Teamcenter® [11] or Dassault Systèmes ENOVIA®

[12]. PLM systems (as an extension of PDM systems) even provide possibilities to
extract and exchange fine-grained information and parameters from files, e.g., to initiate
and execute customized and purpose-built workflows or simulation processes. Some
authoring systems can be seamlessly integrated including bidirectional associativity of
attributes and parameter values. However, the common fundamental PLM tool con-
cepts are not designed or intended to support highly dynamic engineering processes of
different models on a parameter level. Functionalities to analyze changes of parameter
values and their impact within the model landscape are the aim of additional tools (e.g.,
requirements management and systems engineering applications), that can be con-
nected to or installed within the PLM system. Clearly defined processes – even on
parameter-level – are well-supported by tool adapters and workflows customized by
PLM experts. To set up quick changing processes (e.g., experimental simulation pro-
cesses) domain experts need ability and flexibility to implement specific processes by
their own, e.g., using an end-user-friendly interface.

This leads to a second option (“model-based workflow management”), that is pro-
vided by systems and tools that focus on models and parameter exchange to realize
workflows. So-called “PIDO - process integration and design optimization” frameworks

82 L. Weingartner et al.



or SDM solutions have to deal with a huge amount of individual parameters. Within a
framework workflows consisting of interconnected (mainly external) models can be
defined and executed. This means that parameters from different sources can be con-
nected and exchanged within the tool environment. In the area of simulation processes,
the second option is well suited for a limited number of users. The central simulation
process model within the framework (usually a proprietary system platform) allows to
run preconfigured simulations and calculations including parameter studies or opti-
mization. The simulations can run at the local machine, without the need to connect to a
server, which causes improved performance in some cases. Prominent simulation
environments like Siemens LMS Imagine.Lab™ Amesim with Sysdm [11] or Math-
Works® MATLAB® Simulink® [13] provide extensive possibilities to manage param-
eters within the associated environment.

A third option (“descriptive system model”) is to build a model that contains
essential knowledge (parameters, relationships, rules). Such approaches can be
implemented using (model based) systems engineering methodologies and modelling
languages (e.g., SysML) [14]. A major advantage of general-purpose modeling lan-
guages like SysML is the standardization, which is a basis for a tool-neutral integration.
A well-known problem is that systems engineering tools follow a generic approach and
must be adapted to fit concrete applications. Like a survey [15] pointed out, the large
learning curve to understand SysML is a large inhibitor. In traditional engineering
disciplines, only few domain experts have sufficient knowledge in this kind of mod-
eling, mainly inspired by computer science (e.g., UML). From our observations, the
role of systems engineers is not widespread introduced in industry at the present time.
In the recent past, tool vendors developed modeling applications that enable analysis
and execution of diagrams, e.g., SysML parametric diagrams, including expressions in
form of constraints [14] and management of instances.

As a conclusion, there are many individual solutions but no universal parameter
management approach, which meets all the requirements as stated in Sect. 1. The
objective was now to develop a powerful but not overloaded (“lightweight”) approach,
that can be adapted and used productively with reasonable implementation effort, e.g.,
as a supplement to established design processes.

3 Generic Methodology for Lightweight Parameter
Management

Bearing in mind that parameters only get a meaning and a significance in conjunction
with models, the following approach is based on a separation of models and parameters
and values. There are advantages (e.g., regarding transparency and simplified access to
parameters) if models and parameters are considered in separate terms and also get
technically implemented separately (e.g., in different databases). As mentioned above,
models are nowadays managed successfully using different methodologies and tools
(e.g., PLM systems) within a “model backbone”. In addition, to manage fine grained
parameters, a “parameter backbone” is introduced. In contrast to other approaches,
already existing models do not have to be changed and there is only one additional data
model necessary, but no centralized knowledge configuration model or dependency

A Lightweight Approach to Manage Engineering Parameters 83



model between parameters. Any information (e.g., functional or mathematical rela-
tions) how OUT-parameters are generated from the IN-parameters are provided by
existing models.

Figure 2 describes the basic methodology by the example of two models that are
created with different (non-integrated) authoring systems. Once stakeholder 1 creates
“model 1” using a specific tool, the model is transferred to the “model backbone” (e.g.,
a common model management system). In addition to this task, the essential parameters
are transferred to a separate “parameter backbone” (e.g., by manual input or by using
tailored interfaces). These essential parameters can be identified by the fact, that they
are generated as (interim) results for a particular purpose and they are used several
times as inputs for different models. If parameters appear only once within the
development process (e.g., as an input for one downstream model within a seamless
tool chain), the central storage may be not appropriate. For every parameter supple-
menting attributes (e.g., description, context information) need to be specified.
Dependent on the type of every attribute, that user task can also be achieved either
manually, (semi-)automatically or supported by using functionalities of the parameter
backbone (e.g., DBMS “database management system”) like (automatic) creation of
unique IDs, access and change logs, or versioning. One important attribute that needs to
be defined is which model generated the parameter. If stakeholder 2 starts creating
“model 2” using another authoring system, the parameter management system provides
access to already entered parameters. It is essential, that parameters can be found and
identified due to unique attributes. There are supporting functionalities to retrieve the
desired parameters, like using filtering by multiple criteria such as parameter name,
description, creation date, creator, owner and/or many other context information. To
establish the link between “model 2” and every required parameter, attributes are set.
Every user of the parameter backbone now has the information, who (which model)
generates and which models utilize the parameters. This information is helpful to
estimate effects on other models in case of parameter changes. If “model 2” generates
further essential parameters, they can be taken into account in the same way.

Fig. 2. Example how to use the introduced methodology in case of two models created by two
stakeholders using different authoring tools.

84 L. Weingartner et al.



To implement the parameter management approach (e.g., in an enterprise), a
well-designed data model is a prerequisite for a transparent and performant imple-
mentation (e.g., within a DBMS). To develop the data model, at first an overview of the
parameters and parameter types to be managed must be created. Parameters (and
parameter values) are usually spread and redundantly stored at different locations
within physical files, that contain a particular selection (view) of parameters. Pragmatic
reasons for the occurrence of such parameter sets can be: (i) Software tools need certain
machine-readable file formats that can be imported/exported. (ii) Sets contain all
parameters that belong to a model. (iii) Sets contain parameters structured by areas of
responsibility (e.g., due to expert knowledge or organizational reasons). (iv) Sets
contain all relevant parameters that relate to a subsystem (e.g., parameters that are
relevant to production). If parameters appear multiple times within different files, all
influences have to be considered in the database concept. At the implementation of a
central parameter backbone, required views can be provided using adequate attributes
to allow grouping or filtering. As an example, there are 10000 essential parameters
necessary to describe a certain machine tool. Thereof a set of 50 parameters belong to
an electric motor of a drivetrain (e.g., type, manufacturer, power, weight, nominal
speed). Various stakeholders from mechanical, electrical and automation departments
need different views at these motor parameters. While some of the parameters are
created and solely used by one department, other parameters (e.g., like the nominal
speed) play an important role for all stakeholders. At this point, the approach brings
enormous advantages, since all departments have access to current parameter data
(following specified rules) including history and transparency (regarding affected
stakeholders and dependent models). To sort or filter parameters, additional attributes
like responsible department, project name, assembly can be defined easily. In case of
using a relational database for the implementation, there are significant advantages in
terms of consistency, transparency and data integrity. Relations between separate tables
containing sets of essential parameters (e.g., common motor parameters) avoid data
duplication and make changes easier.

4 Example: Implementation of a Parameter Management
System

The presented methodology is currently under test in industrial case studies in the field
of mechatronic product development. The parameter management system is imple-
mented using MySQL™ [16] as a DBMS and Visual Studio [17] VBA programming to
build a graphical user interface for user login, manual parameter/attribute input or
manipulation and to visualize database queries. In following example of the develop-
ment of a mechanism, there are many models used by different stakeholders from
different departments. A first stakeholder uses a model to perform a two dimensional
multi criteria optimization of a mechanism using MATLAB® [13]. The output param-
eters of this model are characteristic dimensions (e.g., L1 = 350 mm … length of
connection rod) that can be stored within the database using the ODBC API. In addition
to every parameter, further corresponding attributes must be defined by using the fol-
lowing relations: “Model” (list and description of models used), “Units”, “Projects”,

A Lightweight Approach to Manage Engineering Parameters 85



“Visualization” (e.g., a sketch to show the context information of a parameter or even a
lightweight representation for example based on a JT visualization format [18]), “Per-
son” (general user management) and “Status” (e.g., to indicate a release status of a
parameter). These relations are shown in Fig. 3 with an exemplary data model.

Based on the created database information, a second stakeholder is able to identify
and reuse essential parameters to parameterize a CAD representation of the mechanism.
This three-dimensional model is used to perform a collision check using the advanced
capabilities of the Siemens NX™ CAD system. Input-parameters are loaded
semi-automatically by the help of NX journaling functionalities to import expressions.
Solutions of the collision check are also stored as parameters within the database, since
they are important for other stakeholders. This means, every user of the parameter
backbone has access to all actual parameter values, even without having access to the
discipline-specific models (e.g., 3D-CAD model), and without the need to open the
models within specific authoring systems.

Figure 4 shows the prototype of the graphical user interface to create and manip-
ulate individual parameters like the displayed parameter “L1”. In the lower area, a
database viewer shows the query results depending on actual filter settings. The button
“load model list” gives access to a separate list of models, that can be linked to the
parameter. Write access (e.g., to parameter values) can be limited (e.g., to the “owner”/
creator of the parameter) by generating access permissions, e.g., using the MySQL
Access Privilege System and/or GUI programming.

Fig. 3. Data model as a description of individual parameters and assigned attributes using
relations (crow’s foot database notation).

86 L. Weingartner et al.



5 Summary and Conclusion

The presented approach essentially fulfills the initial requirements regarding parameter
management, as described in Sect. 1. The exemplary implementation is done using a
DBMS. Interfaces between models (authoring tools) and the central database are set up
using several APIs. Although, the attempts to keep it lightweight lead to deliberate
limitations regarding traceability. The approach shows direct effects to subsequent
models in case of parameter value changes, but effects over several models in series are
not displayable, since all the information about parameter correlations remain within
the models. Nevertheless, first implementations showed that the presented methodol-
ogy brings transparency into multi-disciplinary development processes. Several users
get access to parameter values and receive now additional information about rela-
tionships between parameters and models considering responsibilities of stakeholders,
after a reasonably small effort in implementation. A difficulty that has to be addressed
in future work is to keep the parameter values synchronized, also considering release
status and access permissions. It is not always possible to design models in a way that
they can handle input parameters or directly link to the parameter database. As a result,
parameter values are stored within the models that are probably not up-to-date. Here a
notification mechanism could be implemented, to inform the responsible stakeholder to
update the model in case of relevant parameter changes.

Acknowledgments. This work has been supported by the Austrian COMET-K2 programme of
the Linz Center of Mechatronics (LCM), and was funded by the Austrian federal government and
the federal state of Upper Austria.

References

1. SyMMDe - System Models for Mechatronic Design: Multi-Firm-Project, Johannes Kepler
University Linz (2013–2016). http://symmde.jku.at. Accessed 15 Apr 2016

Fig. 4. Prototype of a graphical user interface to access the parameter backbone.

A Lightweight Approach to Manage Engineering Parameters 87

http://symmde.jku.at


2. Friedl, M., Weingartner, L., Hehenberger, P., Scheidl, R.: Model dependency maps for
transparent concurrent engineering processes, In: De Vin, L.J., Solis, J. (eds.): Proceedings
of the 14th Mechatronics Forum International Conference, Mechatronics 2014, Karlstad,
Sweden, pp. 614–621 (2014)

3. Hehenberger, P., Bricogne, M., Duigou, J., Eynard, B.: Meta-model of PLM for design of
systems of systems. In: Bouras, A., Eynard, B., Foufou, S., Thoben, K.-D. (eds.) PLM 2015.
IAICT, vol. 467, pp. 301–310. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33111-
9_28

4. Abramovici, M., Aidi, Y.: A Knowledge-based assistant for real-time planning and
execution of PSS engineering change processes. Procedia CIRP 30, 445–450 (2015). doi:10.
1016/j.procir.2015.03.026. 7th Industrial Product-Service Systems Conference - PSS,
Industry Transformation for Sustainability and Business

5. Badin, J., Chamoret, D., Gomes, S., Monticolo, D.: Knowledge configuration management
for product design and numerical simulation. In: Proceedings of the 18th International
Conference on Engineering Design (ICED 11), Denmark (2011)

6. Riboulet, V., Marin, P., Noël, F., Delinchant, B., Gerbaud, L.: Tools for dynamic sharing of
collaborative design information. In: Gogu, G., Coutellier, D., Chedmail, P., Ray, P. (eds.)
Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering,
pp. 493–502. Springer Netherlands, Dordrecht (2003). doi:10.1007/978-94-017-0161-7_48

7. Vu-Thi, H.,Marin, P., Noël, F.: Integrating productmodel andwhiteboard to ease collaborative
work in global product development. In: Bernard, A. (ed.) Global Product Development,
pp. 217–226. Springer, Heidelberg (2011). doi:10.1007/978-3-642-15973-2_21

8. Panchal, J.H., Fernández, M.G., Paredis, C.J.J., Allen, J.K., Mistree, F.: A modular
decision-centric approach for reusable design processes. Concurr. Eng. 17, 5–19 (2009).
doi:10.1177/1063293X09102251

9. Panchal, J.H., Fernández, M.G., Allen, J.K., Paredis, C.J.J., Mistree, F.: Facilitating
meta-design via separation of problem, product, and process information. In: ASME
International Mechanical Engineering Congress and Exposition, Orlando, pp. 49–62 (2005)

10. Penciuc, D., Durupt, A., Belkadi, F., Eynard, B., Rowson, H.: Towards a PLM
interoperability for a collaborative design support system. In: 8th International Conference
on Digital Enterprise Technology – DET, Procedia CIRP 25, vol. 42, pp. 369–376, (2014).
doi:10.1016/j.procir.2014.10.051

11. SIEMENS LMS Imagine.Lab™ System Synthesis software, NX™ software and Teamcen-
ter® software. http://www.plm.automation.siemens.com. Accessed 15 Apr 2016

12. Enovia software Dassault Systèmes http://www.3ds.com. Accessed 15 Apr 2016
13. MathWorks® software. https://www.mathworks.com. Accessed 15 Apr 2016
14. Sakairi, T., Palachi, E., Cohen, C., Hatsutori, Y., Shimizu, J., Miyashita, H.: Model based

control system design using SysML, simulink, and computer algebra system. J. Control Sci.
Eng. 2013 (2013). Article ID 485380, doi:10.1155/2013/485380

15. Bone, M., Cloutier, R.: The current state of model based systems engineering: survey results
from the OMG™ SysML request for information 2009. In: 8th Conference on Systems
Engineering Research, Hoboken (2010)

16. MySQL™. https://www.mysql.com. Accessed 15 Apr 2016
17. Microsoft Visual Studio software. http://www.visualstudio.com. Accessed 15 Apr 2016
18. Ding, L., Ball, A., Matthews, J., McMahon, C.A., Patel, M.: Product representation in

lightweight formats for product lifecycle management (PLM). In: 2007 4th International
Conference on Digital Enterprise Technology, Bath (2007)

88 L. Weingartner et al.

http://dx.doi.org/10.1007/978-3-319-33111-9_28
http://dx.doi.org/10.1007/978-3-319-33111-9_28
http://dx.doi.org/10.1016/j.procir.2015.03.026
http://dx.doi.org/10.1016/j.procir.2015.03.026
http://dx.doi.org/10.1007/978-94-017-0161-7_48
http://dx.doi.org/10.1007/978-3-642-15973-2_21
http://dx.doi.org/10.1177/1063293X09102251
http://dx.doi.org/10.1016/j.procir.2014.10.051
http://www.plm.automation.siemens.com
http://www.3ds.com
https://www.mathworks.com
http://dx.doi.org/10.1155/2013/485380
https://www.mysql.com
http://www.visualstudio.com

	A Lightweight Approach to Manage Engineering Parameters in Mechatronic Design Processes
	Abstract
	1 Introduction
	2 Discussion of Established Methodologies and Tool Concepts
	3 Generic Methodology for Lightweight Parameter Management
	4 Example: Implementation of a Parameter Management System
	5 Summary and Conclusion
	Acknowledgments
	References


