Skip to main content

User Centred Design of Rehabilitation Robots

  • Conference paper
  • First Online:
Advances in Automation and Robotics Research in Latin America

Abstract

The design of modern rehabilitation robots must be user centred. Apart from safety, robustness and the classical technical aspects (kinematics, dynamics, etc.) other issues related with the patient should be considered in the design phase. The shoulder is a complex joint frequently simplified as spherical, but the alignment of the robot and the shoulder during the movements is relevant to deal with patients that often suffer weakness, pain, etc. Specially, for robotic exoskeletons given that they are “dressed” on the body. Aspects related to shoulder and upper-limb mobility are analysed. Clinical aspects such as the patient’s disorder or capabilities and the treatment prescribed impact the design as well as the patient comfort and the possibility of being treated at home instead of in a hospital. All these aspects are reviewed through its application on the rehabilitation exoskeleton SOFI design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, M.D.: US 5,417,643. Continuous passive motion exercise device. Danninger Medical Technology Inc., Columbus Ohio

    Google Scholar 

  2. Quintinskie Jr., J.J.: US 6,007,500. Shoulder, rotator cuff, and elbow stretching machine

    Google Scholar 

  3. Zemlyakov, V., McDonough, P.: US 20030115954 A1. Upper extremity exoskeleton structure and method

    Google Scholar 

  4. Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R., Riener, R.: ARMin- exoskeleton for arm therapy in stroke patients. In: IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, pp. 68–74 (2007), doi:10.1109/ICORR..4428408

  5. Tsai, B.C., Wang, W.W., Hsu, L.C., Fu, L.C., Lai, J.S.: An articulated rehabilitation robot for upper limb physiotherapy and training. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, pp. 1470–1475 (2010)

    Google Scholar 

  6. Rosheim, M.E.: US 5,845,540. Robotic Manipulator. Ross-Hime Designs Inc.

    Google Scholar 

  7. Kim, M.S.; Lee, S.Y.; Lee, C.W.: US 6,301,526 B1. Master device having force reflection function. Institute of Science and Technology, Seoul (KR)

    Google Scholar 

  8. Schiele, A.; Visentin, G.: E03291149. EPO E03291149. Exoesqueleto para un brazo humano, Particularmente para aplicaciones espaciales

    Google Scholar 

  9. http://motorika.com/product-1/

  10. Mayhew, D., Bachrach, B., Rymer, W.Z., Beer, R.F.: Development of the MACARM–a novel cable robot for upper limb neurorehabilitation. In: 9th International Conference Rehabilitation Robotics, ICORR 2005, pp. 299–302 (2005), doi:10.1109/ICORR.2005.1501106

  11. Morales, R., Badesa, F.J., Domenech, L.M., Garca-Aracil, N., Sabater, J.M., Menchn, M., Fernandez, E.: Design and control of a rehabilitation robot driven by pneumatic swivel modules. In: 3rd IEEE RAS EMBS International Conference Biomedical Robotics and Biomechatronics, Tokyo, pp. 566–571 (2010), doi:10.1109/BIOROB.2010.5626919

  12. Sugar, T.G., He, J., Koeneman, E.J., Herman, R., Huang, H., Shultz, R.S., Herring, D.E., Wanberg, J., Balasubramanian, S., Swenson, P., Ward, J.A.: Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans. Neu. Sys. Reh. Eng. 15(3), 336–346 (2007), doi:10.1109/TNSRE.2007.903903

  13. Carignan, C.R., Liszka, M.S.: US 7,862,524 B2. Portable arm exoskeleton for shoulder rehabilitation

    Google Scholar 

  14. Carignan, C., Liszka, M.: Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In: 12th International Conference on Advanced Robotics, Seattle, WA, pp. 524–531 (2005), doi:10.1109/ICAR.1507459

  15. Guizzo, E., Goldstein, H.: The rise of the body bots [robotic exoskeletons]. IEEE Spectr. 42(10), 50–56 (2005). doi:10.1109/MSPEC.2005.1515961

    Article  Google Scholar 

  16. Gopura, R., Kiguchi, K.: Mechanical designs of active upperlimb exoskeleton robots: state-of-the-art and design difficulties. In: IEEE International Conference Rehabilitation Robotics, Kyoto, pp. 178–187 (2009). doi:10.1109/ICORR.5209630

  17. Qiu, Q., Ramirez, D.A., Saleh, S., Fluet, G.G., Parikh, H.D., Kelly, D., Adamovich, S.V.: The new jersey institute of technology robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J. NeuroEngineering Rehab. 6(1), 40. doi:10.1186/1743-0003-6-40

  18. Vitiello, N., Lenzi, T., Roccella, S., Rossi, S.M.M., Cattin, E., Giovacchini, F., Vecchi, F., Carrozza, M.C.: NEUROExos: a powered elbow exoskeleton for physical rehabilitation. IEEE Trans. Rob. 29(1), 220–235 (2013). doi:10.1109/TRO.2012.2211492

    Article  Google Scholar 

  19. Housman, S.J., Le, V., Rahman, T., Sanchez, R.J., Reinkensmeyer, D.J.: Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. In: IEEE 10th International Conference Rehabilitation Robotics, Noordwijk, pp. 562–568 (2007). doi:10.1109/ICORR.4428481

  20. Varela Sanz, J.; Saltaren Pazmio, R.: ES 2544890 B2. Exoesqueleto robotizado con soporte de codo deslizante autoajustable para brazo humano

    Google Scholar 

  21. Ueda, J., Ming, D., Krishnamoorthy, V., Shinohara, M., Ogasawara, T.: Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans. Neu. Sys. Reh. Eng. 18(4), 339–350 (2010). doi:10.1109/TNSRE.2010.2047116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Varela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Varela, J., Saltaren, R.J., Puglisi, L.J., López, J., Alvarez, M., Rodríguez, J.C. (2017). User Centred Design of Rehabilitation Robots. In: Chang, I., Baca, J., Moreno, H., Carrera, I., Cardona, M. (eds) Advances in Automation and Robotics Research in Latin America. Lecture Notes in Networks and Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-54377-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54377-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54376-5

  • Online ISBN: 978-3-319-54377-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics