Skip to main content

Nuclear Medicine Imaging Artifacts

  • Chapter
  • First Online:
Pitfalls in Musculoskeletal Radiology

Abstract

Various radiopharmaceuticals and imaging techniques are commonly used in nuclear medicine imaging to diagnose benign and malignant bone lesions. With increasing availability and utility of conventional and advanced nuclear medicine procedures, it has become necessary to know about their limitations during interpretation. Advanced fusion imaging systems, such as SPECT/CT and PET/CT, increase the complexity of inherent artifacts of individual techniques. Comprehensive quality control program and standardized scan techniques are needed to reduce the incidence and intensity of artifacts. Broadly, these artifacts can occur due to radiopharmaceutical, instrumental, and patient-related factors, and proper knowledge about them helps us to avoid misinterpretation and improve the specificity. In this chapter, we elaborate on important artifacts, how they can alter scan findings, approaches to recognize them, and ways to avoid them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone mineral densitometry

CT:

Computed tomography

DXA:

Dual-energy X-ray absorptiometry

PET:

Positron-emission tomography

SPECT:

Single-photon emission computed tomography

References

  • Agrawal K, Marafi F, Gnanasegaran G et al (2015) Pitfalls and limitations of radionuclide planar and hybrid bone imaging. Semin Nucl Med 45:347–372

    Article  PubMed  Google Scholar 

  • Blake GM, Fogelman I (1997) Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med 27:210–228

    Article  CAS  PubMed  Google Scholar 

  • Buchpiguel CA, Roizemblatt S, Pastor EH et al (1996) Cardiac and skeletal muscle scintigraphy in dermato- and polymyositis: clinical implications. Eur J Nucl Med 23:199–203

    Article  CAS  PubMed  Google Scholar 

  • Busemann-Sokole E (1987) Measurement of collimator hole angulation and camera head tilt for slant and parallel hole collimators used in SPECT. J Nucl Med 28:1592–1598

    CAS  PubMed  Google Scholar 

  • Cerqueira MD, Matsuoka D, Ritchie JL, Harp GD (1988) The influence of collimators on SPECT center of rotation measurements: artifact generation and acceptance testing. J Nucl Med 29:1393–1397

    CAS  PubMed  Google Scholar 

  • Chew FS, Hudson TM, Enneking WF (1981) Radionuclide imaging of soft tissue neoplasms. Semin Nucl Med 11:266–276

    Article  CAS  PubMed  Google Scholar 

  • Davis MA (1975) Particulate radiopharmaceuticals for pulmonary studies. In: Subramanian G, Rodes BA, Cooper JF (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York

    Google Scholar 

  • Dizendorf E, Hany TF, Buck A et al (2003) Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 44:732–738

    PubMed  Google Scholar 

  • Gnanasegaran G, Cook G, Adamson K, Fogelman I (2009) Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med 39:380–395

    Article  PubMed  Google Scholar 

  • Goerres GW, Ziegler SI, Burger C et al (2003) Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 226:577–584

    Article  PubMed  Google Scholar 

  • Goldberg E, Lieberman C (1977) “Hot spots” in lung scans. J Nucl Med 18:499–500

    CAS  PubMed  Google Scholar 

  • Gordon L, Schabel SI, Holland RD, Cooper JF (1981) 99m Tc-methylene diphosphonate accumulation in ascitic fluid due to neoplasm. Radiology 139:699–702

    Article  CAS  PubMed  Google Scholar 

  • Graham LS (1984) Quality assurance of anger cameras. In: Rao DV, Chandra R, Graham MC (eds) Physics of nuclear medicine – recent advances. American Institute of Physics, New York

    Google Scholar 

  • Hany TF, Steinert HC, Goerres GW et al (2002) PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 225:575–581

    Article  PubMed  Google Scholar 

  • Holese C, Kristensen K, Sampson CB (1994) Factors which affect the integrity of radiopharmaceuticals. In: Sampson CB (ed) Textbook of radiopharmacy, theory and practice, 2nd edn. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Howarth DM, Forstrom LA, O’Connor K et al (1996) Patient-related pitfalls and artifacts in nuclear medicine imaging. Semin Nucl Med 26:295–307

    Article  CAS  PubMed  Google Scholar 

  • Hung JC, Ponto JA, Hammes RJ (1996) Radiopharmaceutical-related pitfalls and artifacts. Semin Nucl Med 26:208–255

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JA, Jamadar DA, Hayes CW (2000) Dual X-ray absorptiometry: recognizing image artifacts and pathology. AJR Am J Roentgenol 174:1699–1705

    Article  CAS  PubMed  Google Scholar 

  • Kamel EM, Burger C, Buck A et al (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 13:724–728

    Article  PubMed  Google Scholar 

  • Kannivelu A, Padhy AK, Srinivasan S, Ali SZ (2013) Extraosseous uptake of technetium-99m methylene diphosphonate by an acute territorial cerebral infarct in a classical biodistribution pattern. Indian J Nucl Med 28:240–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly BJ, O’Connor MK (1990) Multiple window spatial registration: failure of the NEMA standard to adequately quantitate image misregistration with gallium-67. J Nucl Med Technol 19:92–95

    Google Scholar 

  • Koizumi K, Tonami N, Hisada K (1981) Diffusely increased Tc-99m-MDP uptake in both kidneys. Clin Nucl Med 6:362–365

    Article  CAS  PubMed  Google Scholar 

  • Lentle BC, Scott JR, Noujaim AA, Jackson FI (1979) Iatrogenic alterations in radionuclide biodistributions. Semin Nucl Med 9:131–143

    Article  CAS  PubMed  Google Scholar 

  • Loutfi I, Collier BD, Mohammed AM (2003) Nonosseous abnormalities on bone scans. J Nucl Med Technol 31:149–153

    PubMed  Google Scholar 

  • Malmin RE, Stanley PC, Guth WR (1990) Collimator angulation error and its effect on SPECT. J Nucl Med 31:655–659

    CAS  PubMed  Google Scholar 

  • Maloof J, Hurst J, Gupta N (1996) Diffuse pulmonary uptake of Tc-99m MDP in sarcoidosis. Clin Nucl Med 21:77–79

    Article  CAS  PubMed  Google Scholar 

  • Martineau P, Bazarjani S, Zuckier LS (2015) Artifacts and incidental findings encountered on dual-energy X-ray absorptiometry: atlas and analysis. Semin Nucl Med 45:458–469

    Article  PubMed  Google Scholar 

  • Masud T, Langley S, Wiltshire P et al (1993) Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ 307:172–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan SL, Lopez-Ben R, Nunnally N et al (2008) Black hole artifacts-a new potential pitfall for DXA accuracy? J Clin Densitom 11:266–275

    Article  PubMed  Google Scholar 

  • Morrison RT, Steuart RD (1995) Delayed massive soft tissue uptake of Tc-99m MDP after radiation therapy for cancer of the breast. Clin Nucl Med 20:770–771

    Article  CAS  PubMed  Google Scholar 

  • Ng DCE, Lam WWC, Goh ASW (2015) Nuclear medicine imaging. In: Peh WCG (ed) Pitfalls in diagnostic radiology. Springer, Berlin/Heidelberg

    Google Scholar 

  • O’Connor MK, Kelly BJ (1990) Evaluation of techniques for the elimination of “hot” bladder artifacts in SPECT of the pelvis. J Nucl Med 31:1872–1875

    PubMed  Google Scholar 

  • O’Connor MK, Brown ML, Hung JC, Hayostek RJ (1991) The art of bone scintigraphy--technical aspects. J Nucl Med 32:2332–2341

    PubMed  Google Scholar 

  • O’Connor MK (1996) Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med 26:256–277

    Article  PubMed  Google Scholar 

  • Ongseng F, Goldfarb CR, Finestone H (1995) Axillary lymph node uptake of technetium-99m-MDP. J Nucl Med 36:1797–1799

    CAS  PubMed  Google Scholar 

  • Osman MM, Cohade C, Nakamoto Y, Wahl RL (2003) Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30:603–606

    Article  PubMed  Google Scholar 

  • Oswald WM, O’Connor MK (1987) A noisy photomultiplier tube: its unusual effect on gamma camera image uniformity. J Nucl Med 15:157

    Google Scholar 

  • Padhy AK, Gopinath PG, Amini AC (1990) Myocardial, pulmonary, diaphragmatic, gastric, splenic, and renal uptake of Tc-99m MDP in a patient with persistent, severe hypercalcemia. Clin Nucl Med 15:648–649

    Article  CAS  PubMed  Google Scholar 

  • Peller PJ, Ho VB, Kransdorf MJ (1993) Extraosseous Tc-99m MDP uptake: a pathophysiologic approach. Radiographics 13:715–734

    Article  CAS  PubMed  Google Scholar 

  • Piccolo S, Lastoria S, Mainolfi C et al (1995) Technetium-99m-methylene diphosphonate scintimammography to image primary breast cancer. J Nucl Med 36:718–724

    CAS  PubMed  Google Scholar 

  • Popilock R, Sandrasagaren K, Harris L, Kaser KA (2008) CT artifact recognition for the nuclear technologist. J Nucl Med Technol 36:79–81

    Article  PubMed  Google Scholar 

  • Pryma DA (2014) Nuclear medicine: practical physics, artifacts, and pitfalls. Oxford University Press, New York

    Book  Google Scholar 

  • Rogers WL, Clinthorne NH, Harkness BA et al (1982) Field-flood requirements for emission computed tomography with an Anger camera. J Nucl Med 23:162–168

    CAS  PubMed  Google Scholar 

  • Rosenthall L (1992) Estimation of the effect of a preinjection of Tc-99m MDP on lumbar spine bone mineral density determinations. Clin Nucl Med 17:195–197

    Article  CAS  PubMed  Google Scholar 

  • Ryan PJ, Evans P, Blake GM, Fogeman I (1992) The effect of vertebral collapse on spinal bone mineral density measurements in osteoporosis. Bone Miner 18:267–272

    Article  PubMed  Google Scholar 

  • Sampson CB, Cox PH (1994) Effect of patient medication and other factors on the biodistribution of radiopharmaceuticals. In: Sampson CB (ed) Textbook of radiopharmacy, theory and practice, 2nd edn. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Schneider DL (1998) Pitfalls in interpretation: calcium that’s not bone. J Clin Densitom 1:405–406

    Article  CAS  PubMed  Google Scholar 

  • Sherkow L, Ryo UY, Fabich D et al (1984) Visualization of the liver, gallbladder, and intestine on bone scintigraphy. Clin Nucl Med 9:440–443

    Article  CAS  PubMed  Google Scholar 

  • Shih WJ, Wienrzbinski B, Ryo UY (2000) Abnormally increased uptake in the palm and the thumb as the result of a bone imaging agent injection into the radial artery. Clin Nucl Med 25:539–540

    Article  CAS  PubMed  Google Scholar 

  • Silberstein EB, DeLong S, Cline J (1984) Tc-99m diphosphonate and sulfur colloid uptake by the spleen in sickle disease: interrelationship and clinical correlates: concise communication. J Nucl Med 25:1300–1303

    CAS  PubMed  Google Scholar 

  • Siminoski K, O’Keeffe M, Brown JP et al (2013) Canadian Association of Radiologists technical standards for bone mineral densitometry reporting. Can Assoc Radiol J 64:281–294

    Article  PubMed  Google Scholar 

  • Standards Publication No.NU 1-1994 (1994) NEMA: performance measurements of scintillation cameras. National Electrical Manufactures Association, Washington, DC

    Google Scholar 

  • Storey G, Murray IPC (2004) Bone scintigraphy: the procedure and interpretation. In: Ell PJ, Gambhir SS (eds) Nuclear medicine in clinical diagnosis and treatment, 3rd edn. Churchill-Livingstone, Philadelphia

    Google Scholar 

  • Sureshbabu W, Mawlawi O (2005) PET/CT imaging artifacts. J Nucl Med Technol 33:156–161

    PubMed  Google Scholar 

  • Tu D-G, Yao W-J, Chang T-W et al (2009) Flare phenomenon in positron emission tomography in a case of breast cancer--a pitfall of positron emission tomography imaging interpretation. Clin Imaging 33:468–470

    Article  PubMed  Google Scholar 

  • Vallabhajosula S, Killeen RP, Osborne JR (2010) Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med 40:220–241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbalagan Kannivelu MBBS, FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kannivelu, A., Loke, K.S.H., Yan, S.X.X., Loi, H.Y., Ng, D.C.E. (2017). Nuclear Medicine Imaging Artifacts. In: Peh, W. (eds) Pitfalls in Musculoskeletal Radiology. Springer, Cham. https://doi.org/10.1007/978-3-319-53496-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53496-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53494-7

  • Online ISBN: 978-3-319-53496-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics