
Experimental Evaluation of Graph Classification
with Hadamard Code Graph Kernels

Tetsuya Kataoka and Akihiro Inokuchi(B)

School of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen, Sanda, Hyogo, Japan

{TKataoka,inokuchi}@kwansei.ac.jp

Abstract. When mining information from a database comprising
graphs, kernel methods are used to efficiently classify graphs that
have similar structures into the same classes. Instances represented by
graphs usually have similar properties if their graph representations have
high structural similarity. The neighborhood hash kernel (NHK) and
Weisfeiler–Lehman subtree kernel (WLSK) have previously been pro-
posed as kernels that compute more quickly than the random-walk ker-
nel; however, they each have drawbacks. NHK can produce hash col-
lision and WLSK must sort vertex labels. We propose a novel graph
kernel equivalent to NHK in terms of time and space complexities, and
comparable to WLSK in terms of expressiveness. The proposed kernel is
based on the Hadamard code. Labels assigned by our graph kernel follow
a binomial distribution with zero mean. The expected value of a label
is zero; thus, such labels do not require large memory. This allows the
compression of vertex labels in graphs, as well as fast computation. This
paper presents the Hadamard code kernel (HCK) and shortened HCK
(SHCK), a version of HCK that compresses vertex labels in graphs. The
performance and practicality of the proposed method are demonstrated
in experiments that compare the computation time, scalability and clas-
sification accuracy of HCK and SHCK with those of NHK and WLSK
for both artificial and real-world datasets. The effect of assigning initial
labels is also investigated.

Keywords: Graph classification · Support vector machine · Graph
kernel · Hadamard code

1 Introduction

A natural way of representing structured data is to use graphs [14]. As an exam-
ple, the structural formula of a chemical compound is a graph, where each vertex
corresponds to an atom in the compound and each edge corresponds to a bond
between the two atoms therein. Using such graph representations, a new research
field called graph mining has emerged from data mining, with the objective of
mining information from a database consisting of graphs. With the potential
to find meaningful information, graph mining has received much interest, and
c© Springer International Publishing AG 2017
A. Fred et al. (Eds.): ICPRAM 2016, LNCS 10163, pp. 1–19, 2017.
DOI: 10.1007/978-3-319-53375-9 1

2 T. Kataoka and A. Inokuchi

research in the field has grown rapidly in recent years. Furthermore, because the
need for classifying graphs has strengthened in many real-world applications,
such as the analysis of proteins in bioinformatics and chemical compounds in
cheminformatics [11], graph classification has been widely researched worldwide.
The main objective of graph classification is to classify graphs of similar struc-
tures into the same classes. This originates from the fact that instances repre-
sented by graphs usually have similar properties if their graph representations
have high structural similarity.

Kernel methods such as the use of the support vector machine (SVM) are
becoming increasingly popular because of their high performance in solving
graph classification problems [8]. Most graph kernels are based on the decom-
position of a graph into substructures and a feature vector containing counts
of these substructures. Because the dimensionality of these feature vectors is
typically high and this approach includes the subgraph isomorphism matching
problem that is known to be NP-complete [6], kernels deliberately avoid the
explicit computation of feature values and instead employ efficient procedures.

One representative graph kernel is the random-walk kernel (RWK) [8,10],
which computes k(gi, gj) in O(|V (g)|3) for graphs gi and gj , where |V (g)| is
the number of vertices in gi and gj . The kernel returns a high value if the
random walk on the graph generates many sequences with the same labels for
vertices and edges; i.e., the graphs are similar to each other. The neighborhood
hash kernel (NHK) [7] and Weisfeiler–Lehman subtree kernel (WLSK) [9] are
two other recently proposed kernels that compute k(gi, gj) more quickly than
RWK. NHK uses logical operations such as the exclusive OR on the label set
of adjacent vertices, while WLSK uses a concatenation of label strings of the
adjacent vertices to compute k(gi, gj). The labels updated by repeating the hash
or concatenation propagate the label information over the graph and uniquely
represent the higher-order structures around the vertices beyond the vertex or
edge level. An SVM with two graph kernels works well with benchmark data
consisting of graphs.

The computation of NHK is efficient because it is a logical operation between
fixed-length bit strings and does not require string sorting. However, its drawback
is hash collision, which occurs when different induced subgraphs have identical
hash values. Meanwhile, WLSK must sort the vertex labels, but it has high
expressiveness because each vertex v has a distribution of vertex labels within
i steps from v. To overcome the drawbacks of NHK and WLSK, in this paper,
we propose a novel graph kernel that is equivalent to NHK in terms of time and
space complexities and comparable to WLSK in terms of expressiveness. The
graph kernel proposed in this paper is based on the Hadamard code [13]. The
Hadamard code is used in spread spectrum-based communication technologies
such as Code Division Multiple Access to spread message signals. Because the
probability of occurrences of values of 1 and −1 are equivalent in each column of
the Hadamard matrix except for the first column, labels assigned by our graph
kernel follow a binomial distribution with zero mean under a certain assumption.
Therefore, the expected value of the label is zero, and for such labels, a large

Experimental Evaluation of Graph Classification 3

memory space is not required. This characteristic is used to compress vertex
labels in graphs, allowing the proposed graph kernel to be computed quickly.

Note that large portions of this paper were covered in our previous work [13].
Within the current work we demonstrate the performance and practicality of the
proposed method in experiments that compare the computation time, scalability
and classification accuracy of HCK and SHCK with those of NHK and WLSK
for various artificial datasets. The effect of assigning initial labels for the graph
kernels is also investigated.

The rest of this paper is organized as follows. Section 2 defines the graph
classification problem and explains the framework of the existing graph kernels.
Section 3 proposes the Hadamard code kernel (HCK), based on the Hadamard
code, and another graph kernel called the shortened HCK (SHCK), which is a
version of HCK that compresses vertex labels in graphs. Section 4 demonstrates
the fundamental performance and practicality of the proposed method through
experiments. Finally, we conclude the paper in Sect. 5.

2 Graph Kernels

2.1 Framework of Representative Graph Kernels

This paper tackles the classification problem of graphs. A graph is represented
as g = (V,E,Σ, �), where V is a set of vertices, E ⊆ V × V is a set of edges, Σ
is a set of vertex labels, and � : V → Σ is a function that assigns a label to each
vertex in the graph. Additionally, the set of vertices in graph g is denoted by
V (g). Although we assume that only the vertices in the graphs have labels in this
paper, the methods used in this paper can be applied to graphs where both the
vertices and edges have labels. The vertices adjacent to vertex v are represented
as N(v) = {u | (v, u) ∈ E}. A sequence of vertices from v to u is called a path,
and its step refers to the number of edges on that path. A path is described as
being simple if and only if the path does not have repeating vertices. Paths in
this paper are not always simple.

The graph classification problem is defined as follows. Given a set of n train-
ing examples D = {(gi, yi)}n

i=1, where each example is a pair consisting of a
labeled graph gi and the class yi ∈ {+1,−1} to which it belongs, the objective
is to learn a function f that correctly predicts the classes of the test examples.

In this paper, graphs are classified by an SVM that uses graph kernels. Let
Σ and c(g, σ) be {σ1, σ2, · · · , σ|Σ|} and c(g, σ) = |{v ∈ V (g) | �(v) = σ}|, respec-
tively. A function φ that converts a graph g to a vector is defined as

φ(g) =
(
c(g, σ1), c(g, σ2), · · · , c(g, σ|Σ|)

)T
.

Function k′(gi, gj), defined as φ(gi)T φ(gj), is a semi-positive definite kernel. This
function is calculated as

k′(gi, gj) = φ(gi)T φ(gj) =
∑

vi∈V (gi)

∑

vj∈V (gj)

δ(�(vi), �(vj)), (1)

4 T. Kataoka and A. Inokuchi

where δ is the Kronecker delta. When V (gi) represents a set of vertices in gi,
O(|V (gi)|× |V (gj)|) is required to compute Eq. (1). However, Eq. (1) is solvable
in O(|V (gi)| + |V (gj)|) by using Algorithm 1 [7]. In Lines 1, a multiset of labels
in the graph gi is sorted in ascending order by using the radix sort. This requires
O(|V (gi)|). Similarly, a multiset of labels in the graph gi is also sorted in Line 2.
In Lines 7 and 8, the a-th and b-th elements of the sorted labels are selected,
respectively. Then, how many labels the graph have in common is counted in
Line 10. This process is continued at most |V (gi)| + |V (gj)| iterations.

Algorithm 1. Basic Graph Kernel.

Data: two graphs gi = (Vi, Ei, Σ, �i) and gj = (Vj , Ej , Σ, �j)
Result: k′(gi, gj)

1 V sort
i ←Radix Sort(gi, �i);

2 V sort
j ←Radix Sort(gj , �j);

3 κ ← 0;
4 a ← 1;
5 b ← 1;
6 for a ≤ |V (gi)| ∧ b ≤ |V (gj)| do
7 vi ← V sort

i [a];
8 vj ← V sort

j [b];
9 if �i(vi) = �j(vj) then

10 κ ← κ + 1;
11 a ← a + 1;
12 b ← b + 1;

else
if �i(vi) < �j(vj) then

13 a ← a + 1;

else
14 b ← b + 1;

15 return κ;

Given a g(h) = (V,E,Σ, �(h)), a procedure that converts g(h) to another
graph g(h+1) = (V,E,Σ′, �(h+1)) is called a relabel. Although relabel function
�(h+1) is defined later in detail, the label of a v in g(h+1) is defined using the
labels of v and N(v) in g(h), and is denoted as �(h+1)(v) = r(v,N(v), �(h)).
Let {g(0), g(1), · · · , g(h)} be a series of graphs obtained by iteratively applying a
relabel h times, where g(0) is a graph contained in D. Given two graphs gi and
gj , a graph kernel is defined using k′ as

k(gi, gj) = k′(g(0)i , g
(0)
j) + k′(g(1)i , g

(1)
j) + · · · + k′(g(h)i , g

(h)
j). (2)

Because k is a summation of semi-positive definite kernels, k is also semi-positive
definite [3]. In addition, Eq. (2) is solvable in O(h(|V (gi)| + |V (gj)|)) according
Algorithm 1.

Experimental Evaluation of Graph Classification 5

Recently, various graph kernels have been applied to the graph classification
problem. Representative graph kernels such as NHK and WLSK follow the above
framework, where graphs contained in D are iteratively relabeled. In these ker-
nels, �(h)(v) = r(v,N(v), �(h−1)) characterizes a subgraph induced by the vertices
that are reachable from v within h steps in g(0). Therefore, given vi ∈ V (gi) and
vj ∈ V (gj), if subgraphs of the graphs induced by the vertices reachable from
vertices vi and vj within h steps are identical, the relabel assigns identical labels
to them. Additionally, it is desirable for a graph kernel to fulfill the converse of
this condition. However, it is not an easy task to design such a graph kernel.

We now review the representative graph kernels, NHK and WLSK.

NHK: Given a fixed-length bit string �
(0)
1 (v) of length L, �

(h)
1 (v) is defined as

�
(h)
1 (v) = ROT (�(h−1)

1 (v)) ⊕
⎛

⎝
⊕

u∈N(v)

�
(h−1)
1 (u)

⎞

⎠,

where ROT is bit rotation to the left and ⊕ is the exclusive OR of the bit
strings. NHK is efficient in terms of computation and space complexities because
the relabel of NHK is computable in O(L|N(v)|) for each vertex and its space
complexity is O(L).

Figure 1 shows an example of an NHK relabel and its detailed calculation for
a vertex v2, assuming that L = 3. First, �

(0)
1 (v2) = #011 is rotated to return

#110. We then obtain #001 using the exclusive OR of #110, �
(0)
1 (v1) = #011,

�
(0)
1 (v3) = #001, �

(0)
1 (v4) = #001, and �

(0)
1 (v5) = #100. In this computation,

we do not require sorted bit strings because the exclusive OR is commutative.
Three bits are required for �

(0)
1 (v2) in this example, and �

(h)
1 (v2) also requires

three bits, even if h is increased.
NHK has a drawback with respect to accidental hash collisions. For example,

vertices v1, v3, and v4 in g(1) in Fig. 1 have identical labels after the relabel. This
is because v3 and v4 in g(0) have identical labels and the same number of adjacent
vertices. However, despite the different labels and numbers of adjacent vertices
of v1 and v3, these vertices have the same vertex labels in g(1), leading to low
graph expressiveness and low classification accuracy.

Fig. 1. Relabeling g(0) to g(1) in NHK.

6 T. Kataoka and A. Inokuchi

We next describe WLSK, which is based on the Weisfeiler–Lehman algorithm,
an algorithm that determines graph isomorphism.

WLSK: When �
(0)
2 (v) returns a string of characters, �

(h)
2 (v) is defined as

�
(h)
2 (v) = �

(h−1)
2 (v) ·

⎛

⎝
⊙

u∈N(v)

�
(h−1)
2 (u)

⎞

⎠,

where · and
⊙

are string concatenation operators. Because concatenation is not
commutative, u is an iterator that obtains the vertices N(v) adjacent to v in
alphabetical order. Because �

(h)
2 (v) has information on the distribution of labels

for h steps from v, it has high graph expressiveness.1 If the labels are sorted using
a bucket sort, the time complexity of WLSK is O(|Σ||N(v)|) for each vertex.

Figure 2 shows an example of a relabel using WLSK. Vertices v1, v2, v3, v4,
and v5 in g(0) have labels A, A, B, B, and C, respectively. For each vertex, WLSK
sorts the labels of the vertices adjacent to the vertex, and then concatenates these
labels. In g(1), v3 has the label BAC, meaning that v3 has the label B in g(0)

and two adjacent vertices whose labels are A and C.

Fig. 2. Relabeling g(0) to g(1) in WLSK.

In addition to NHK and WLSK, we define the label aggregate kernel (LAK)
to facilitate the understanding of the other kernels proposed in this paper.

LAK: In this kernel, �
(0)
3 (v) is a vector in |Σ|-dimensional space. In concrete

terms, if a vertex in a graph has a label σi among Σ = {σ1, σ2, · · · , σ|Σ|}, the
i-th element in the vector is 1. Otherwise, it is zero. In LAK, �

(h)
3 (v) is defined as

�
(h)
3 (v) = �

(h−1)
3 (v) +

∑

u∈N(v)

�
(h−1)
3 (u).

1 When �
(0)
2 (v) is a string of length 1, �

(1)
2 (v) is a string of length |N(v)| + 1. By

replacing the later string with a new string of length 1, both the computation time
and memory space required by WLSK are reduced.

Experimental Evaluation of Graph Classification 7

The i-th element in �
(h)
3 (v) is the frequency of occurrence of character σi in

the string �
(h)
2 (v) concatenated by WLSK. Therefore, �

(h)
3 (v) has information on

the distribution of labels within h steps from v. Hence, LAK has high graph
expressiveness. However, when h is increased, the number of paths from v that
reach vertices labeled σi increases exponentially. Thus, elements in �

(h)
3 (v) also

increase exponentially. For example, if the average degree of vertices is d, there
are (d + 1)h vertices reachable from v within h steps. LAK thus requires a large
amount of memory.

Figures 3 and 4 show an example of a relabel using LAK, assuming that
|Σ| = 3. The vertex label of v5 in g(1) is (1, 2, 1), which means that there are
one, two, and one vertices reachable from v within one step that have labels σ1,
σ2, and σ3, respectively. Compared with relabeling g(0) to g(1), the additional
number of values in �

(h)
3 (v) when relabeling g(3) to g(4) is large.

Fig. 3. Relabeling g(0) to g(1) in LAK.

Fig. 4. Relabeling g(3) to g(4) in LAK.

2.2 Drawbacks of Existing Graph Kernels

We here summarize the characteristics of the above three graph kernels. NHK is
efficient because its computation is a logical operation between fixed-length bit
strings and does not require string sorting. However, its drawback is a tendency
for hash collision, where different induced subgraphs have identical hash values.
Meanwhile, WLSK requires vertex label sorting, but it has high expressiveness
because �

(h)
2 (v) contains the distribution of the vertex labels within h′ steps

8 T. Kataoka and A. Inokuchi

(0 ≤ h′ ≤ h) from v. LAK requires a large amount of memory to store vectors
for high h although it does not require label sorting. To overcome the drawbacks
of NHK, WLSK and LAK, in this paper, we propose a novel graph kernel that
is equivalent to NHK in terms of time and space complexities and equivalent to
LAK in terms of expressiveness.

3 Graph Kernels Based on the Hadamard Code

In this section, we propose a novel graph kernel with the Hadamard code to
overcome the aforementioned drawbacks. A Hadamard matrix is a square (−1, 1)
matrix in which any two row vectors are orthogonal, defined as

H2 =
(

1 1
1 −1

)
, H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
.

A Hadamard code is a row vector of the Hadamard matrix. Given a Hadamard
matrix of order 2k, 2k Hadamard codes having 2k elements are generated from
this matrix. Using the Hadamard codes, we propose HCK as follows.

HCK: Let H be a Hadamard matrix of order 2�log2 |Σ|� and �
(0)
4 (v) be a

Hadamard code of order |H|. If a vertex v has label σi, the i-th row in the
Hadamard matrix of order |H| is assigned to the vertex. �

(h)
4 (v) is then defined as

�
(h)
4 (v) = �

(h−1)
4 (v) +

∑

u∈N(v)

�
(h−1)
4 (u).

When �σi
is a Hadamard code for a vertex label σi, �T

σi
�
(h)
4 (v)/|H| is the occur-

rence of σi in a string �
(h)
2 (v) generated by WLSK. HCK therefore has the same

expressiveness as LAK.
Figure 5 shows an example of a relabel using HCK. Each vertex v in g(1)

is represented as a vector produced by the summation of vectors for vertices
adjacent to v in g(0). Additionally, after the relabel, we obtain the distribution
of the vertex labels within one step of v according to

1
|H|H�

(1)
4 (v5) =

1
4

⎛

⎜
⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

4
0
2

−2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
2
1
0

⎞

⎟
⎟
⎠ .

In other words, there are one σ1, two σ2, and one σ3 labels within one step
of v5. Furthermore, the result is equivalent to �

(1)
3 (v5), as shown in Fig. 3. The

reason why we divide H�
(h)
4 (v) by 4 is that the order of the Hadamard matrix

is |H| = 4.
If each element in �

(h)
4 (v) is stored in four bytes (the commonly used size

of integers in C, Java, and other languages), the space complexity of HCK is

Experimental Evaluation of Graph Classification 9

Fig. 5. Relabeling g(0) to g(1) in HCK.

equivalent to that of LAK. We therefore have not yet overcome the drawback of
LAK. In this paper, we assume that each vertex label is assigned to a vertex with
equal probability. The probabilities of occurrence of 1 and −1 are equivalent
in each column of the Hadamard matrix except for the first column, and the
i-th element (1 < i ≤ |Σ|) in �

(h)
4 (v) follows a binomial distribution with zero

mean under this assumption. Therefore, the expected value of the element in
�
(h)
4 (v) is zero, and for the elements, a large memory space is not required.

For example, Tables 1 and 2 present values of the i-th elements in �
(h)
3 (v2) and

�
(h)
4 (v2), respectively, in a graph g(h), when g(0) (shown in Fig. 6) is relabeled

iteratively h times. Under the assumption of the vertex label probability, the
expected value of all elements in �

(h)
4 (v2) except for the first element becomes

zero. The first element represents the number of paths from v2 to the vertices
reachable within h steps. On the basis of this observation, we assign bit arrays
of length ρ in the L-bit array to the elements as follows.

SHCK: Similar to NHK, �
(0)
5 (v) is a fixed-length bit array of length L. The

bit array is divided into |H| fragments, one of which is a bit array of length
L − ρ(|H| − 1) and the rest are bit arrays of length ρ. The first fragment of
length L − ρ(|H| − 1) is assigned to store the first element of �

(0)
4 (v), the next

Table 1. Elements in a label in LAK.

h Label

0 �
(0)
3 (v2) = (0 1 0 0)

1 �
(1)
3 (v2) = (1 1 1 0)

2 �
(2)
3 (v2) = (2 3 2 2)

3 �
(3)
3 (v2) = (7 7 7 6)

4 �
(4)
3 (v2) = (20 21 20 20)

5 �
(5)
3 (v2) = (61 61 61 60)

6 �
(6)
3 (v2) = (182 183 182 182)

7 �
(7)
3 (v2) = (547 547 547 546)

8 �
(8)
3 (v2) = (1640 1641 1640 1640)

9 �
(9)
3 (v2) = (4921 4921 4921 4920)

10 �
(10)
3 (v2) = (14762 14763 14762 14762)

Table 2. Elements in a label in HCK.

h Label

0 �
(0)
4 (v2) = (1 −1 −1 1)

1 �
(1)
4 (v2) = (3 −1 −1 −1)

2 �
(2)
4 (v2) = (9 −1 −1 1)

3 �
(3)
4 (v2) = (27 −1 −1 −1)

4 �
(4)
4 (v2) = (81 −1 −1 1)

5 �
(5)
4 (v2) = (243 −1 −1 −1)

6 �
(6)
4 (v2) = (729 −1 −1 1)

7 �
(7)
4 (v2) = (2187 −1 −1 −1)

8 �
(8)
4 (v2) = (6561 −1 −1 1)

9 �
(9)
4 (v2) = (19683 −1 −1 −1)

10 �
(10)
4 (v2) = (59049 −1 −1 1)

10 T. Kataoka and A. Inokuchi

Fig. 6. Relabeled graphs.

fragment of length ρ is assigned to store the second element, and so on. Here,
ρ is a positive integer fulfilling ρ(|H| − 1) = ρ(2�log2 |Σ|� − 1) ≤ L. Additionally,
each element of �

(0)
4 (v) is represented by its two’s complement in �

(0)
5 (v) for the

purpose of the following summation, which defines �
(h)
5 (v).

�
(h)
5 (v) = �

(h−1)
5 (v) +

∑

u∈N(v)

�
(h−1)
5 (u).

Because �
(h)
5 (v) is a fixed-length binary bit string and �

(h)
5 (v) is the summation

of the values represented as bit strings, both the time and space complexities
of SHCK are equivalent to those of NHK. Additionally, the expressiveness of
SHCK is equivalent that of LAK, if overflow of the fixed-length bit array does
not occur. The theoretical discussion on the overflow can be found in [13]. In the
next section, we demonstrate that the proposed graph kernel, SHCK, has the
ability to classify graphs with high accuracy.

4 Experimental Evaluation

The proposed method was implemented in Java. All experiments were done on
an Intel Xeon X5670 2.93-GHz computer with 48-GB memory running Microsoft
Windows 8. We compared the computation time and accuracy of the prediction
performance of HCK and SHCK with those of NHK and WLSK. To learn from
the kernel matrices generated by the above graph kernels, we used the LIBSVM
package [2]2 using 10-fold cross validation.

4.1 Experiments on Artificial Datasets

We generated artificial datasets of graphs using the four parameters and their
default values listed in Table 3. For each dataset, |D| graphs, each with an aver-
age of |V (g)| vertices, were generated. Two vertices in a graph were connected
with probability p of the existence of an edge, and one of |Σ| labels was assigned
to each vertex in the graph. In parallel with the dataset generation and using
the same parameters p and |Σ|, a graph pattern gs with 15 vertices was also gen-
erated for embedding in some of the |D| graphs as common induced subgraphs.

2 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Experimental Evaluation of Graph Classification 11

Fig. 7. Computation time for various
|D|.

Fig. 8. Accuracy for various |D|.

Table 3. Default parameters for the data generation program.

of graphs
in a dataset

Average number of
vertices in graphs

Prob. of
edge existence

of vertex
labels

Default values |D| = 200 |V (g)| = 100 p = 5% |Σ| = 2

gs was randomly embedded in half of the |D| graphs in a dataset, and the class
label 1 was assigned to the graphs containing gs, while the class label −1 was
assigned to the other graphs.

First, we varied only |D| to generate various datasets with the other para-
meters set to their default values. The number of graphs in each dataset was
varied from 100 to 1,000. Figures 7 and 8 show the computation time to rela-
bel graphs in each dataset and classification accuracy, respectively, for the four
graph kernels. In these experiments, h and ρ were set to 5 and 3, respectively,
and the computation time does not contain time to generate kernel matrices
from g(0), g(1), · · · , g(h). As shown in Fig. 7, the computation time for all of the
graph kernels is proportional to the number of graphs in a dataset, because the
relabels in the kernels are applied to each graph independent to the other graphs
in the dataset. As shown in Fig. 8, the classification accuracy increases when the
number of graphs is increased. This is because the number of graphs in train-
ing datasets of SVMs also increase, when the number of graphs is increased.
The classification accuracies for WLSK, HCK, and SHCK are superior to one
for NHK, because they have high expressiveness. The classification accuracy for
HCK is almost as equivalent as one for SHCK. Therefore, overflows in SHCK do
not make much impact to the accuracy, which will be also shown in the other
experiments.

Next, we varied only |Σ| to generate various datasets with the other parame-
ters set to their default values. Figures 9 and 10 show the computation time to
relabel graphs in each dataset and classification accuracy, respectively, for the
four graph kernels when the number of labels in each dataset was varied from
1 to 10. The computation time for NHK, WLSK, and SHCK is constant to the

12 T. Kataoka and A. Inokuchi

Fig. 9. Computation time for various
|Σ|.

Fig. 10. Accuracy for various |Σ|.

number of labels in datasets, while one for HCK increases when the number of
labels is increased. This is because HCK represents a label of each vertex in
a graph by a |Σ|-dimensional vector and it sums up such |Σ|-dimensional vec-
tors. On the other hand, NHK and SHCK represent the label by a fix-length
bit string whose length is independent to the number of labels of graphs. The
classification accuracy for all of the graph kernels increases when the number of
labels in datasets, because labels which vertices in graphs have carry important
information to classify graphs correctly. Especially in WLSK, HCK, and SHCK,
since each vertex v has a distribution of vertex labels within i steps from v, their
accuracies are superior to one for NHK.

Fig. 11. Computation time for various
|V (g)|.

Fig. 12. Accuracy for various |V (g)|.

We varied only |V (g)| to generate various datasets with the other parameters
set to their default values. Figures 11 and 12 show the computation time to
relabel graphs in each dataset and classification accuracy, respectively, when the
average number of vertices in graphs was varied from 50 to 150. The computation
time for all of the graph kernels increases with the square of the average number
|V (g)| of vertices in graphs. This is because a new label for each vertex v in a
graph g(h+1) is obtained from labels of v and its adjacent vertices U in a graph

Experimental Evaluation of Graph Classification 13

g(h) and the relabel for g(h) for any h is computable in O(|V (g)|×|U |), where |U |
is p × |V (g)|. Since graphs in most of real world datasets are sparse, the graph
kernels in this paper are applicable enough to such sparse graphs even if the
number of vertices in graphs is large. For example, chemical compounds which
can be represented graphs where each vertex and edge correspond to an atom and
edge in compounds, respectively, are sparse, since atoms in chemical compounds
have two chemical bonds in average. The classification accuracy decreases, when
the average number of vertices in graphs is increased, because the number of
graphs whose class labels are −1 and which contain some small subgraphs of the
embedded pattern gs increases when the average number of vertices in graphs is
increased.

Fig. 13. Computation time for vari-
ous h.

Fig. 14. Accuracy for various h.

We varied h for the graph kernels. Figures 13 and 14 show the computation
time to relabel graphs in each dataset and classification accuracy, respectively,
for the four graph kernels in the experiments, when h was varied from 1 to 20.
The computation time for all of the graph kernels is proportional to h. When
h is increased, the graph kernel has information on a large subgraph induced
by vertices reachable within h steps from every vertex in a graph. However, the
classification accuracy does not always increase, when h is increased. We do not
know an adequate value for h in advance of training SVMs. One of ways for
determining an adequate value for h for a dataset is to divide the dataset into
three portions, one of them is for the training dataset of an SVM, another is for
the dataset to obtain an adequate value for h and the SVM’s parameters, and
the other is for testing the SVM.

From these experimental results using artificial datasets, we confirmed that
the proposed graph kernel SHCK is equivalent to NHK in terms of time complex-
ity and equivalent to WLSK in terms of classification accuracy. The experimental
results do not contain time for computing kernel matrices from g(0), g(1), · · · , g(h)

obtained by the graph kernels. A kernel matrix for a dataset D is obtained in
O(h|D|2|V (g)|), where |V (g)| is the average number of vertices of graphs in D,
because we need to run Algorithm 1 h times for every pair of graphs in D.

14 T. Kataoka and A. Inokuchi

4.2 Experiments on Real-World Graphs

To assess the practicability of our proposed method, we used five real-world
datasets. The first dataset, MUTAG [4], contains information on 188 chemical
compounds and their class labels. The class labels are binary values that indi-
cate the mutagenicity of chemical compounds. The second dataset, ENZYMES,
contains information on 600 proteins and their class labels. The class labels are
one of six labels showing the six EC top-level classes [1,12]. The third dataset,
D&D, contains information on 1178 protein structures, where each amino acid
corresponds to a vertex and two vertices are connected by an edge if they are
less than 6 Ångstroms apart [5]. The remaining datasets, NCI1 and NCI109,
represent two balanced subsets of data sets of chemical compounds screened for
activity against non-small cell lung cancer and ovarian cancer cell lines, respec-
tively [15]. These datasets contain about 4000 chemical compounds, each of
which has a class label among positive and negative. Each chemical compound
is represented as an undirected graph where each vertex, edge, vertex label, and
edge label corresponds to an atom, chemical bond, atom type, and bond type,
respectively. Because we assume that only vertices in graphs have labels, the
chemical graphs are converted following the literature [7]; i.e., an edge labeled
with � that is adjacent to vertices v and u in a chemical graph is replaced with
a vertex labeled with � that is adjacent to v and u with unlabeled edges. Table 4
summarizes the datasets.

Table 4. Summary of evaluation datasets.

MUTAG ENZYMES D&D NCI1 NCI109

Number of
graphs |D|

188 600 1178 4110 4127

Maximum graph
size

84 126 5748 349 349

Average graph
size

53.9 32.6 284.3 94.5 93.9

Number of labels
|Σ|

12 3 82 40 41

Number of classes 2 6 2 2 2

(class
distribution)

(126,63) (100,100,100,
100,100,100)

(487, 691) (2053, 2057) (2048, 2079)

Average degree of
vertices

2.1 3.8 5.0 2.7 2.7

Figures 15, 16, 17, 18, and 19 show the computation time required to obtain a
graph g(h) from a graph g(0) in NHK, WLSK, HCK, and SHCK for various h for
the MUTAG, ENZYMES, D&D, NCI1, and NCI109 datasets, respectively. As
shown in the figures, NHK and SHCK are faster than HCK, and much faster than
WLSK. Additionally, the computation times of NHK, HCK, and SHCK increase

Experimental Evaluation of Graph Classification 15

Fig. 15. Computation time for various
h (MUTAG).

Fig. 16. Computation time for various h
(ENZYMES).

Fig. 17. Computation time for various
h (D&D).

Fig. 18. Computation time for various h
(NCI1).

Fig. 19. Computation time for various
h (NCI109).

Fig. 20. Accuracy for various h and ρ
(MUTAG).

16 T. Kataoka and A. Inokuchi

linearly with h. The reason why WLSK requires such a long computation time
is that WLSK must sort the labels of adjacent vertices and replace a string of
length |N(v)|+1 with a string of length 1. This is especially true when h = 11 or
15 for the MUTAG dataset, h = 8 or 14 for the ENZYMES dataset, and h = 10
or 20 for the D&D dataset. In our implementation, this replacement is done with
Java’s HashMap class, where a string of length |N(v)| + 1 is the hash key and
a string of length 1 is a value corresponding to that key. Although the average
degree in the evaluated datasets is low, WLSK requires further computation time
when the average degree of the data increases. HCK requires a long computation
time for the D&D, NCI1, and NCI109 datasets, because there are many labels in
the datasets and the computation time is proportional to the number of labels.

Fig. 21. Accuracy for various h and ρ
(ENZYMES).

Fig. 22. Accuracy for various h and ρ
(D&D).

Fig. 23. Accuracy for various h and ρ
(NCI1).

Fig. 24. Accuracy for various h and ρ
(NCI109).

Figure 20 shows the classification accuracy of NHK, WLSK, HCK, and SHCK
for various h and ρ in the case of the MUTAG dataset. The length of bit strings

Experimental Evaluation of Graph Classification 17

for NHK and SHCK was set to L = 64. The maximum accuracies for various
h are almost the same. When h = 0, the accuracy for SHCK (ρ = 1) is very
low because a value of 1 or −1 (the values in the Hadamard matrix) cannot
be stored as a two’s complement consisting of one bit. The accuracy of HCK
is exactly the same as that of SHCK (1 < ρ < 5), which means that although
overflow may occur in SHCK, the kernel can assign identical vertex labels to
the identical subgraphs induced by a vertex v and the vertices within h steps
from v. Figure 21 shows the classification accuracy of NHK, WLSK, HCK, and
SHCK for various h and ρ in the case of the ENZYMES dataset. WLSK is
slightly more accurate than HCK and SHCK (ρ = 2, ρ = 3, and 7 < ρ < 17),
which are much more accurate than NHK and SHCK (ρ = 1). The performance
of HCK is exactly the same as that of SHCK for high ρ (7 < ρ < 17) and
almost the same as that of SHCK for low ρ (ρ = 2 and ρ = 3). The maximum
accuracy of WLSK is 53.0%, while the maximum accuracies of HCK and SHCK
(ρ = 3, 4, and 7 < ρ < 17) are both 51.3%. WLSK is slightly more accurate
than HCK, because �

(h)
2 (v) contains information on the distribution of labels at

h steps from v, while �
(h)
4 (v) contains information on the distribution of all labels

within h steps from v. Although the latter distribution can be obtained from the
former distribution, the former distribution cannot be obtained from the latter
distribution. Therefore, WLSK is more expressive than HCK and SHCK. When
ρ is increased to 16, the length of a bit string needed to store the first element of
�
(h)
4 (v) is L−ρ×2�log2 |Σ|� = 64−16×2�log2 3� = 0. Even in this case, the accuracy

of SHCK is equivalent to that of HCK, which means that the overflow of the
first element of �

(h)
4 (v) has absolutely no effect on the classification accuracy.

Figure 22 shows the classification accuracy of NHK, WLSK, HCK, and SHCK
for various h and ρ in the case of the D&D dataset. The lengths of bit strings of
NHK and SHCK were set to L = 256. All accuracies except for that of SHCK
(ρ = 1) are almost equivalent. In addition, Figs. 23 and 24 show the classification
accuracy of NHK, WLSK, HCK, and SHCK for various h and ρ in the cases of
the NCI1 and NCI109 datasets, respectively. All accuracies except those of NHK
and SHCK (ρ = 1) are almost equivalent. The classification accuracy of NHK is
low owing to hash collision, while the classification accuracys of SHCK (ρ = 1)
is low because a value of 1 or −1 (the values in the Hadamard matrix) cannot
be stored as a two’s complement consisting of one bit. From the results of these
experiments, we recommend setting as large a value as possible for ρ to obtain
high classification accuracy. To do so, we set ρ = � L

|Σ|�, where L is the length of
the bit array and |Σ| is the number of labels in a dataset.

4.3 Effect of Assignment of Initial Labels

The proposed graph kernels HCK and SHCK randomly assign one of the
Hadamard codes to each label. The assignment of Hadamard codes to labels
affects the classification accuracy especially when there are few labels in a
dataset. In this experiment, we demonstrate the relationship between classifi-
cation accuracies and assignments of initial labels. Figure 25 shows the standard

18 T. Kataoka and A. Inokuchi

Fig. 25. Effect of assignment of initial labels for various h and ρ (ENZYMES).

deviations of five classification accuracies, each of which is obtained by 10-fold
cross validation for the ENZYME dataset, which has the smallest number of
labels among the five datasets. Figure 25 shows a high standard deviation for
small ρ. In SHCK, a label �

(h)
5 (v) represents a subgraph induced by vertices

reachable from v within h step. When there are many labels in a dataset, non-
isomorphic subgraphs induced by vertices reachable from a vertex within h steps
are likely represented by distinct labels. Meanwhile, when there are few labels in
a dataset, the nonisomorphic subgraphs may be represented by the same label. In
addition, the small ρ causes the overflow in �

(h)
5 (v), because a subgraph induced

by vertices reachable from v within h is represented by an short bit array with
length ρ in �

(h)
5 (v). Whether nonisomonphic subgraphs are represented by the

same labels varies according to the location where the overflow occurs, which
affects the classification accuracy. Therefore, when ρ is small, the standard devi-
ation of classification accuracies of SHCK becomes high. However, it is possible
to decrease the standard deviation by decreasing the value of ρ, because this
reduces the possibility of overflow occurring. The standard deviation of the clas-
sification accuracy for HCK in which overflow does not occur is zero. The same
experiment was conducted for the other datasets, and the standard deviation of
the classification accuracy was zero because these datasets have enough labels.

5 Conclusion

In this paper, we proposed a novel graph kernel equivalent to NHK in terms of
time and space complexities, and comparable to WLSK in terms of expressive-
ness. The proposed kernel is based on the Hadamard code. Labels assigned by
our graph kernel follow a binomial distribution with zero mean. The expected
value of a label is zero; thus, such labels do not require large memory. This
allows the compression of vertex labels in graphs, as well as fast computation.
We presented the Hadamard code kernel (HCK) and shortened HCK (SHCK), a
version of HCK that compresses vertex labels in graphs. The fundamental per-
formance and practicality of the proposed method were demonstrated in experi-
ments that compare the computation time, scalability and classification accuracy

Experimental Evaluation of Graph Classification 19

of HCK and SHCK with those of NHK and WLSK for the artificial and real-
world datasets.

References

1. Borgwardt, K.M., Cheng, S.O., Schonauer, S., Vishwanathan, S.V.N., Smola,
A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinfomatics
21(suppl 1), 47–56 (2005)

2. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines (2001).
http://www.csie.ntu.edu.tw/cjlin/libsvm

3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, Cambridge
(2000)

4. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch,
C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and hydrophobicity. J.
Med. Chem. 34, 786–797 (1991)

5. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, Gordonsville (1979)

7. Hido, S., Kashima, H.: A linear-time graph kernel. In: Proceedings of the IEEE
International Conference on Data Mining (ICDM), pp. 179–188 (2009)

8. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of the International Conference on Machine Learning
(ICML), pp. 321–328 (2003)

9. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. (JMLR) 12, 2539–
2561 (2011)

10. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
11. Schölkopf, B., Tsuda, K., Vert, J.-P.: Kernel Methods in Computational Biology.

MIT Press, Cambridge (2004)
12. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schom-

burg, D.: BRENDA, the enzyme database: updates and major new developments.
Nucleic Acids Res. 32D, 431–433 (2004)

13. Kataoka, T., Inokuchi, A.: Hadamard code graph kernels for classifying graphs. In:
Proceedings of the International Conference on Pattern Recognition Applications
and Methods (ICPRAM), pp. 24–32 (2016)

14. Vinh, N.D., Inokuchi, A., Washio, T.: Graph classification based on optimizing
graph spectra. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010.
LNCS (LNAI), vol. 6332, pp. 205–220. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16184-1 15

15. Wale, N., Karypis, G.: Comparison of descriptor spaces for chemical compound
retrieval and classification. In: Proceedings of the IEEE International Conference
on Data Mining (ICDM), Hong Kong, pp. 678–689 (2006)

http://www.csie.ntu.edu.tw/cjlin/libsvm
http://dx.doi.org/10.1007/978-3-642-16184-1_15
http://dx.doi.org/10.1007/978-3-642-16184-1_15

	Experimental Evaluation of Graph Classification with Hadamard Code Graph Kernels
	1 Introduction
	2 Graph Kernels
	2.1 Framework of Representative Graph Kernels
	2.2 Drawbacks of Existing Graph Kernels

	3 Graph Kernels Based on the Hadamard Code
	4 Experimental Evaluation
	4.1 Experiments on Artificial Datasets
	4.2 Experiments on Real-World Graphs
	4.3 Effect of Assignment of Initial Labels

	5 Conclusion
	References

